用户名: 密码: 验证码:
白云石均匀沉淀法和反相微乳液法制备纳米氧化镁的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米氧化镁是一种新型高功能精细无机材料。其本身具有的量子尺寸效应,小尺寸效应,表面效应,宏观量子隧道效应等使其具有明显优于本体材料的性能。本文介绍了纳米氧化镁的国内外研究现状,探讨了均匀沉淀法以及微乳液法反应的原理,并采用白云石均匀沉淀法以及反相微乳液法制得了纳米氧化镁晶体。
     本文直接以湖南永州市东安县白云石矿为镁源,采用均匀沉淀法制得了纳米氧化镁晶体,并且用正交试验等研究了制备粒径小、分散程度好的纳米氧化镁颗粒的最佳条件。用原子吸收(AAS)、X射线衍射(XRD)、扫描电镜(SEM)、热重分析(TGA)等方法对产物进行了表征和分析。研究了分散剂种类、分散剂用量、沉淀剂种类、溶剂等对纳米氧化镁粒径的影响,并应用相关理论对各因素造成的影响进行了机理探讨。这对纳米氧化镁的工业化制备具有一定的参考价值。
     采用正交试验法确定了制备纳米氧化镁的最佳工艺条件为:以淀粉为分散剂,用量为45%(质量百分含量),以尿素为沉淀剂,在70℃下超声波20分钟,然后沉淀离心洗涤,真空常温干燥,灼烧。结果表明采用该法制备的纳米粒子分散性好,晶体粒子分布均匀,结晶度高,纳米颗粒粒径为12.5纳米,且粒子产率达到86%。该法制备纳米氧化镁,具有广泛的应用前景。
     由于微乳液法制备纳米材料不仅可以实现粒径可控,而且可以实现形貌可控,它已成为合成纳米颗粒的一种有效方法,受到人们的青睐,但目前通过反相微乳液制备纳米MgO的文献很少。本工作采用反相胶团作为微反应器,使溶解在水核内的试剂在水核内发生反应,并研究了不同水相/表面活性剂质量比(w0),煅烧温度,反应物浓度,陈化时间,以及反应温度等对制备MgO纳米粒子的影响,表征了粒子的结构,并对其形成机理进行了探讨。
     通过聚乙二醇辛基苯基醚(曲拉通X-100)/正丁醇/正庚烷/水溶液形成的反相微乳体系,合成了MgO纳米粒子。对前驱体进行热重分析(TGA),确定了合适的煅烧温度为600℃。采用X射线衍射(XRD)、扫描电镜(SEM)、紫外可见分光光度法(UV-vis)分别对产物的结构、粒度和形貌进行了表征,考察了微乳液中水与表面活性剂的质量比(w0)对纳米氧化镁紫外屏蔽性能的影响以及煅烧温度、反应物浓度、陈化时间、反应温度等关键因素对产物粒子尺寸形貌的影响,并通过分析进一步揭示了Mg0纳米粒子的形成机理。结果表明,控制w0为15,煅烧温度为600℃,反应物浓度为0.05mol/L,陈化时间为15小时且反应温度在30℃时可得到分散性好,粒径分布均匀的MgO纳米粒子。
Nano-MgO is a new type of high function fine inorganic material. Because of its quantum size effect, small-size effect, surface effect, macroscopic quantum tunneling effect, etc, it has a superior performance to the materials now existing.This paper introduced the current research status on nano-MgO,the theory of homogenous precipitation and micro-emulsion reaction.The nano-MgO crystal was made by the sluggish precipitation method from dolomite and reverse microemulsion method
     In this paper,the dolomite which was native to Dongan Countr y, Yongzhou City of Hunan Province was used to make the nano-MgO by the homogenous precipitation method.And the orthogonal test methodused was used to find the optimum conditions under which the nana-MgO of small size and good dispersion could be obtained.The atomic absorption (AAS), X-ray diffraction (XRD),scanning electron microscopy (SEM) and thermogravimetric (TGA) were used to research the effect of dispersant types, dispersant dosage, precipitant types and solvent on the size of nano-MgO. A discussion was devoted to the mechanism of the impact of every factor with correlate theory. And the research could be usefull for the industrialization of nano-MgO.
     The optimum technological conditions which was decided by the orthogonal test was:The optimum synthesis condition of nanometer-sized magnesium oxide (MgO) powders investigated by an orthogonal test was that,the urea and amylum as the precipitator and the dispersant separate-ly,and the dosage of amylum was 45% on the condition of ultrasonic vibration 20 minutes at 70℃,and then by the process of the depositi-on,centrifugation,washing,solvent replacement,vacuum drying at room temperature and ultimately calcining. The results indicated that the dispersity of the nanoparticles was well, The crystal size was 12.5nm,they were well-proportioned,the crystallinity was high,and the productive rate reached 86%.This method will have a wide application.
     A the preparation of nano-MgO via microemulsion method could realize the control of the particle size and the morphology,so micro- emulsion method has become an effective method to obtain nano-MgO, but there were not plenty of Researches dealing with the microemulsion method.reverse micelles were used as microreactors,so reagents disso-lving in the water shell reacted within the shell,and the influences of mass ratio of water to surfactant(w0) on UV-shielding properties of nano-MgO, assembly time,and calcination temperature on the particle size and morp-hologies of product were studied, the structure of the particles were characterized and the formation mechanism was discussed.
     MgO nanoparticles have been prepared by polyethylene glycol octylphenyl ether(Triton X-100)/n-butyl alcohol/n-heptane/water reverse microemulsion.The result of thermal analysis (TG-DTG-DTA) of the precursor products showed that the proper calcination temperature was 600℃.The structures and morphologies of MgO nanoparticles were char-acterized by X-ray powder diffraction(XRD),Scanning electron micro-scope(SEM) and UV-vis spectrophotometry.The influences of mass ratio of water to surfactant(w0) on UV-shielding properties of nano-MgO, assembly time,and calcination temperature on the particle size and morp-hologies of product were studied,and the formation mechanisms in the reverse microemulsion were also discussed.The results show that the obtained MgO powder has no obvious agglomeration and narrow particle size distribution under the condition of mass ratio of water to surfactant wo= 15,calcination temperature r=600℃, assembly time of 15 h, reaction temperature t=30℃.
引文
[1]张立德,牟季美.纳米材料学.沈阳:辽宁科学技术出版社,1994:303.
    [2]E.M.Lueas, K.J.Klabunde. Nanocrystales as destructive adsorbents for mimic of Chemical Warfare agents. Nanostrctured Materials,1999,12:179-182
    [3]Ryan Riehards,Ravichandra S. Nanocrystalline ultra high surface area magnesium oxide as a selective base catalyst. ScriPta mater.2001,44:1663
    [4]张立德,牟季美著.纳米材料和纳米结构.北京:科学出版社,2001
    [5]童忠良.纳米化工产品生产技术.北京:化学工业出版社,2006
    [6]张梅.纳米材料的研究现状及展望.导弹与航天运载技术,2000,(3):11-16
    [7]蔡元霸,梁玉仓.纳米材料的概述、制备及其结构表征.结构化学,2001,20(6):425-437
    [8]阎峻.纳米材料的表征.材料导报,2001,15(4):53-55
    [9]余琴仙,李涛,李竟先.纳米材料的制备、表征及应用研究进展.中国陶瓷工业,2002,9(6):56-59
    [10]陈玉萍,徐甲强,方少明.现代测试技术在纳米材料研究中的应用.北学研究与应用.2004,16(5):593-59
    [11]王永礼,屠恒贤.微观表面的表征技术与方法.安徽工业大学学报,2005,22(4):369
    [12]常同钦.纳米材料的测试与表征.微纳电子技术,2006,(1):499-501
    [13]李颖,王光祖.纳米材料的表征与测试技术.超硬材料工程,2007,19(2):38-42
    [14]唐芳琼,候莉萍,郭广生.单分散二氧化钛的研制.无机材料学报,2001,16(4):615-619
    [15]酒金婷,张谏戎,屠凡,等.无团聚纳米氧化错的制备及应用.无机化学学报,2001,16(5):867-871
    [16]M. A. Gulgun, M.H.Nguyen, W.M.Kriven. Polymerized Organie-Inorganie Synthesis of Mixed oxides. Journal of the American Ceramic Society,1999, 82:556-562
    [17]周全发,徐正,包建春,等.还原-保护法制备纳米级银粉的研究.精细化工,2001,18(1):40-42
    [18]吴义权,张玉峰,黄校先,等.低温制备纳米α-Al2O3粉体.无机材料学报,2001,16(3):249-352
    [19]徐龙堂,徐滨士,周美玲.电刷镀镍/镍包纳米Al2O3颗粒复合镀层微动磨损 性能研究.磨擦学学报,2001,16(2):24-27
    [20]K. E. Gonsalves, H. Li, P. Santiago. Synthesis of acicular iron oxide nanoParticles and their disPersion in a Polymer matrix. Journal of materials Scienee,2001,36:2461-2471
    [21]邹玲,乌学东,陈海刚.表面修饰二氧化钛纳米粒子的结构表征及形成机理.物理化学学报.2001,17(4):305-309
    [22]杜振霞,贾志谦,饶国瑛.改性纳米碳酸钙表面性质的研究.现代化工,2001,21(4):42-44
    [23]李晓娥,祖庸等.纳米二氧化钛有机化改性工艺研究.无机盐工业,2001,33(4):5-7
    [24]张敬波,林原,肖绪瑞.半导体CdS簇合物的制备及性能.半导体学报,2000,21(3):245-249
    [25]孙继红,章斌,范文浩,等.SiO2-PEG溶胶-凝胶过程及物化特性.材料研究学报,1999,13(3):301-304
    [26]孙继红,巩雁军,王树国,等.嵌段共聚物对SiO2溶胶-凝胶过程的修饰行为.无机化学学报,2000,6(1):131-135
    [27]L.Guo, S.Yang, C.Yang, et al. Synthesis and characterization of Poly(vinylPyrrolidone)-modified zinc oxide nanoPartieles. Chemistry of materials,2000,12:2268-2274
    [28]储高升,卞国良,张志成,等.表面活性剂对MoO2纳米微粉的影响.物理化学学报,1999,15(4):365-369
    [29]陈春霞,钱思明,杨燮龙,等.用高能球磨制备氧化铁/聚氯乙烯纳米复合材料.材料研究学报,2000,14(3):334-336
    [30]覃兆海,陈馥衡,谢毓元.超声波在有机合成中的应用.化学进展,1998,10(1):63-73
    [31]J. Lu, B. Liu, H.Yang, et al. Surface modification of CrSi sub 2 nanocrystal swith Polymer coating. Journal of materials Science Letters.1998,17: 1605-1607
    [32]张立德.超微粉体制备与应用技术.北京:中国石化出版社,2001
    [33]天津化工研究院.无机盐工业手册.北京:化学工业出版社,1999
    [34]王训.纳米氧化镁制备工艺研究.西北大学.2001
    [35]Z. H. He, X. M. Xiong, Y. S. Lai. Introduction of the Ultrafine MgO to the high Tcmelt-textureYba2Cu3O7-6. Physica C 282-287 (1997) 547-548
    [36]郑海涛,张娟.超细氧化镁催化合成乙酞丙酮的研究.辽宁化工,2002,31(1): 1-3
    [37]涂忠亮,李丹,杨绪杰.纳米MgO催化双马来酞亚胺聚合研究.上海化工,2001(6)
    [38]廖莉玲,刘吉平.固相法合成纳米氧化镁.精细化工,2001,15(12):696-697
    [39]王志奎,杨荣臻.超细粉体氧化镁的合成.功能材料.1990,30(5):555-557
    [40]张近.均匀沉淀法制备纳米氧化镁的研究.功能材料.1999,30(2):193-194
    [41]蒋红梅,赵晓玲,郭人民.纳米氧化镁的合成技术进展.西北大学学报,2002(增刊),144-146
    [42]郭人民,王训,赵晓玲.沉淀转化法制备纳米氧化镁沉淀过程的研究.化学工程,2002(增刊),292-294
    [43]陈改荣,徐绍红,杨军.硬脂酸溶胶凝胶法制备氧化镁纳米微粒的研究.功能材料,2002,33(5):521-523
    [44]杨荣臻.纳米级氧化镁团聚和解团聚行为的研究.陕西师范大学学报(自然科学版),2002,30(1):53-55
    [45]符晓荣,武光明,宋志棠,等.新型溶胶-凝胶法制备纳米MgO薄膜的研究.无机材料学报,1999,14(6):828-832
    [46]王训.纳米氧化镁制备工艺研究.西北大学.2001
    [47]Yoon J G, J.Korean. Phys. Soc.1996,29:648-651
    [48]Bing Zhao, xiang gongWan, Wenhai Song. Nano-MgO particlea dditionin silver-sheathed(Bi, Pb)2Sr2Ca2Cu3Ox tapes. Physica C 2000(337):138-144
    [49]朱亚先,曾人杰,刘新锦,等.MgO纳米粉制备及表征.厦门大学学报(自然科学版),2001,40(6):1256-1258
    [50]武光明,符晓荣,宋世庚,等.用喷雾热分解法制备MgO薄膜.材料研究学报,2000,14(1):72-75
    [51]Yoko Suyama, Akio Kato. J.Amer.ceram.Soc.1976,59(3):146-149
    [52]Akhtar M K, Vemury S, et al, Nanostructure Materials.1994,4(5):537-544
    [53]李春虎,赵九生,王大祥.纳米MgO和MgAl2O4;尖晶石的制备与表征.无机材料学报,1996,11(3):557-560
    [54]汪国忠,程素芳,何国良,等.纳米级MgO粉体的合成.合成化学,1996,4(4):300-302
    [55]张近.超细粉体氧化镁的合成.化学工程,1999,27(2):34-36
    [56]酒金婷,李立平,葛钥,等.固相法合成纳米氧化镁.无机化学报,2001,17(3):361-365
    [57]王路明.石灰卤水法制备超细氧化镁的研究.海湖盐与化工.2001,30(1): 21-24
    [58]曾燮榕.金属氧化物超细粉体的水溶胶制备技术.中国专利,CN1190077A.1998-08-12.
    [59]张近.纳米氧化镁合成工艺的研究.无机盐工业,1999-03,31(2):3-5
    [60]J.A.Wang, O.Novara. X, BoKhimi etal. Characterizations of the thermal decomposition of brucite PrePared by sol-gel technique for synthesis of nanocrystalline MgO. Materials Letters,1998,35:317-323
    [61]Olga B.KoPer, Isabelle, Lagadie, Alexander volodin. Alkaline-earth oxide nanoparticles obtained by aerogel methods. Chemical materials,1997(11): 2468-2480
    [62]溶胶-凝胶技术制取超微粒氧化镁粉末.台湾专利,TW241243A.1984-02-21.
    [63]Bhargava, Atit. Alarco, Jose A. Synthesis and characterization of nanoseale magnesium oxide Powders and their application in thick films of Bi2Sr2CaCu2O3. Materials letters,1998,34(3-6):133-142
    [64]Kamal M, et al. J.Amer. Ceram. Soc,1992,75(12):3408-3410
    [65]K.Chhor, J. E. Bocquet, C. Pommier. Syntheses of submicron magnesium oxide Powders. Mater, chem. Phys,1995,40:63-68
    [66]Watari takanori, Nakayoshi kazurni, kato Akio PreParation of submicron magnesium oxide Powders by vapor-Phase reaction of magnesium and oxygen. Journal of the Chemical Soeiety of JaPan.1984(6):1075-1076
    [67]Otakazuhide;Abe Susumu. Process for producing ultra-fine ceramic particle. European Patents,EP 151490.1984-02-09
    [68]EI-shall M S, Slack W. Synthesis of nanoscale metal oxide Particles from laser VaPorization/condensation in a diffusion cloud chamber. Mater. Res. Soc. Symp. Proc.1994:3067-3070
    [69]M Suzuki, M Kagawa, Y Syono et al. Synthesis of ultrafine single component oxide Particles by the Spray-ICP technique. Mater. Sci.1992,27(3):679-684
    [70]Sagawa Masahieo, Nagae Tsuneki. PreParation of unrefined Powders by inductively coupled plasma generated with modified conventional induction heater. Science reports of the Researeh Institutes, Tohoku University, SeriesA. 1983,31(2):216-224
    [71]昊庆生,郑能武,丁亚平.氯化铅纳米线的胶束模板诱导合成及其机理研究.高等学校化学学报.2001,22(6),898-900
    [72]Jian Xu and Yadong Li.Formation of zinc sulfide nanorods and nanopartides in ternary W/O microemulsions.Journd of Colloid and Interface Science,2003, 259:275-281
    [73]马天,黄勇,杨金龙,等.纳米微反应器法制备球形超细氧化锆粉体.无机材料学报,2003,18(5):1107-1112
    [74]周海成,徐建,徐晟,等.CaSO4纳米棒(线)的微乳法制备与表征.无机化学学报,2002,18(8):815-817
    [75]刘洪成,楮莹,刘莹莹.反胶束法制备纳米Ni(OH)2.应用化学,2003,20(3):302-304
    [76]朱启安,陈万平,宋方平,等.(Ba, Sr)Ti03纳米棒的反相微乳法制备与表征.化学学报,2007,65(5):470-474.
    [77]吴树森.应用物理化学第一分册界面化学与胶体化学.北京:高等教育出版社198336-42
    [78]V.K.LaMer,et al,J.Am.Chem.Soc,72:4874,1950
    [79]邵庆辉,古国榜,章莉娟.微乳反胶团体系在纳米超微颗粒制备中的应用.化工进展,2002,21(2):136
    [80]P.D.I.Fletcher,A.M.Howe,B.H.Robinson,J.Chem.Soc.Faraday Transl,83:985(1987)
    [81]C.H.Chew,L.M.Gan,D.O.Shah,J.Disp.Sci.Techn.,11:593(1990)
    [82]M.J.Hou,M.Kim,D.O.Shah,J.Colloid Interface Sci.,123:398(1988)
    [83]朱履冰,表面与界面物理,天津大学出版社,1992,125
    [84]华东理工大学技术化学物理研究所.超细颗粒制备科学与技术,上海:华东理工大学出版社,1996,113-115
    [85]尾崎义治,贺集诚一郎.超微颗粒导论.武汉:武汉工业大学出版社,1988.125-126
    [86]赵惠忠,张文杰,汪厚植.合成镁白云石中CaO和MgO晶粒生长动力学团.耐火材料,1996,30(2)84-87.
    [87]刘志强,李小斌,彭志宏,等.湿化学法制备超细粉末过程中的团聚机理及消除方法.化学通报,1999(7):54-57·
    [88]黄浪欢,曾令可,罗民华.湿化学法制备纳米粉体时团聚现象的探讨.佛山陶瓷,2001(10):11-13.
    [89]杨咏来,宁桂玲,吕秉玲.液相法制备纳米粉体时防团聚方法概述.材料导报,1998,12(2):11-13.
    [90]陆厚根,张庆红,梅芳.超细碳酸钙表面改性.上海化工1996,21(4):15
    [91]葛荣德,赵天从,刘志宏,等.团聚参数在氧化锆超细粉末团聚状态表征中的 应用.粉末冶金技术,1994,12(2):87-90.
    [92]Rekhi, S., S. K. Saxena, Z. D. Atlas, and J. Hu, Effect of particle size on the compressibility of MgO.Solid State Commun.2000,117:33-36,.
    [93]彭晓峰,黄校先,张玉峰.高性能细品氧化铝陶瓷材料的制备与研究.无机材料学报,1998,13(3):327-332
    [94]F Bielawa H,Hinrichsen O, Birkner A et al.The ammonia-synthesis catalyst of thenextgeneration:barium-promoteoxide-support-ruthenium.AngewChem.IntEd ,2001,40(6):1061-1063
    [95]Mishakov I V,Bedilo A F,Richards R M,et al.Nanocrystalline MgO as adehydrohalogenation caralyst.J catal,2002,206:40-48.
    [96]Hu, Q. F.; Liu, B. S.; Song, L. Y. New technological process for production of light magnesium carbonate from dolomite by carbonization, Non-metallic Mines.2004,27 (3):33-35
    [97]Xu Lingling, Deng Min. Dolomite used as raw material to produce MgO-based expansive agent.Cement and Concrete Research.2005,35:1480-1485
    [98]Watafi Takanori, Nakayoshi Kazumi, Kato Akio. Preparation of submicron magnesium oxide powders by vapor—phase reaction of magnesium and oxygen. Journal of the Chemical Society of Japan,1984,6:1075-1076
    [99]El·Shall M S.Slack W.Characterization of nanoscale particles producted by laser vaporization/condensation in a diffusion cloud chamber. Mater.Res.Soc. Symp. Proc-,1994,351:369-374.
    [100]王麟生,方海红,李强,胡炳元.一种用自蔓延溶胶凝胶法制备纳米氧化镁的方法.中国专利,CN1789131,2006-06-21.
    [101]Kagawa M,Nagae Tseuneki.Preparation of ultrofine powders by indutively coupled plasma generated with modified conventional induction heater. Science.Reports of the Research Institutes,Tohoku University (Seri8 A),1983,31(2):216-224.
    [102]杨翠,胡炳元.分散剂对低温固相法制备纳米氧化镁的影响.功能材料.2007,2(38):320-322.
    [103]霍超,晏刚,郑遗凡,等.超声法制备掺钡纳米氧化镁及其负载钌基氨合成催化剂的催化性能.催化学报,2007,28(5),484-488.
    [104]滕素珍.数理统计.大连:大连理工大学出版社,1999.
    [105]黄惠忠,王远,刘忠范,等.纳米材料分析,北京:化学工业出版社,2003.
    [106]候万国,庄群岳,韩书华,等.共沸蒸馏法制备AMH纳米材料及其机理研究.化 学物理学报,1997,10(5):461-465.
    [107]周益明,忻新泉.低热固相合成化学.无机化学学报,1999,15(3):273-292.
    [108]Kaliszewski M S,Heuer A H.Alcohol interaction with zirconia powder. Am. Ceram. Soc.,1990,73:1504-1509.
    [109]Gatumel C,Espitalier F,Schwartzentruber J et al.Characterization of the influence of ultrasound on barium sulfate precipitation. Acta Polytechnica Scandinavica,1997,244:96-98.
    [110]Enomoto N,Katsumoto M,Nakagawa Z. Effect of ultrasound on the dissolution-precipitation process in the aluminium hydroxide-water system Ceramic Soc. Jpn.,1994,102:1105-1110.
    [111]Alvarado E, Torres-Martines L M, Fuentes A F, et al. Polyhedron. 2000,19:2345-2351.
    [112]Jang,J.,Yoon,H. Microemulsion-based synthesis of titanium phosphate nanotubes. Adv.Mater.2004,16,799-802.
    [113]Yates,M.Z.,Ott,K.C.,Birnbaum,E.R.Angew.Chem,Int.Ed.2002,41,476-478.
    [114]Li M,Schnablegger H,Mann S.Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization.Nature,1999, 402(6760):393-395.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700