用户名: 密码: 验证码:
橡胶基纳米复合材料制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶基纳米复合材料是以橡胶为连续相,以无机或有机纳米粒子为分散相而制备的复合材料。由于分散相的小尺寸效应、表面效应、量子尺寸效应以及宏观量子隧道效应,橡胶基纳米复合材料在结构、性能及应用方面优于传统的橡胶复合材料,为制备高性能、多功能的复合材料提供了新途径。本论文以高性能橡胶基纳米复合胎面材料、功能材料、密封材料为应用指向,研究了基于纤维状无机纳米填料、层状无机纳米填料、颗粒状无机纳米填料、功能化无机纳米复合填料以及聚合物纳米填料的橡胶基纳米复合材料的制备、结构与性能,主要研究内容及结论主要包括:
     以纤维状凹凸棒石(AT)为纳米无机填料,分别采用硅烷偶联剂及季铵盐为改性剂对其进行改性,采用机械共混法制备了天然橡胶基凹凸棒石纳米复合材料。研究表明,改性AT与橡胶基体有良好的界面相容性,AT棒晶在橡胶基体中的均匀解离、取向以及良好橡胶/填料界面的形成是实现AT增强效应的关键。同时考察了以四针状氧化锌晶须(T-ZnO_w)及纳米氧化锌(N-ZnO)在胎面材料中协同替代间接法氧化锌(O-ZnO)的效果。研究表明,T-ZnO_w的钉扎效应以及N-ZnO的纳米效应可使二者在协同应用时的效果明显优于O-ZnO。在此基础上,以炭黑(CB)、AT、T-ZnO_w、N-ZnO协同增强橡胶基纳米复合胎面材料。对胎面材料的粒子分散状态、界面结构、填料网络等进行了表征,并对多相纳米填料在橡胶基体中的协同增强机理进行了探讨。研究表明,胎面材料的硫化特性、力学性能、耐老化性能及耐磨耗性能得到明显改善,耐寒性能、耐湿滑性能提高,且滚动阻力和生热降低。
     以有机改性层状蒙脱土(OMMT)为纳米无机填料,采用机械共混法制备了剥离型及插层型天然橡胶基蒙脱土纳米复合材料。研究表明,OMMT缩短了胶料的硫化时间并增大了其表观交联密度。硫化工艺参数影响OMMT在橡胶基体中的结构演变。OMMT的纳米片层结构对橡胶基体具有明显的增强作用,在较低填量下即可使复合材料的拉伸强度、撕裂强度、定伸应力等力学性能以及动态力学性能得到明显提高,而其阻隔效应也使复合材料的热稳定性及耐溶剂性得到改善。在此基础上,考察了CB与OMMT协同增强橡胶基纳米复合胎面材料的效果。研究表明,CB促进了OMMT在橡胶基体中的插层及分散,而OMMT片层对CB粒子网络具有一定的隔断效应。CB/OMMT粒子杂化网络的形成是实现二者协同增强的关键原因。较低填量的OMMT与CB协同增强时,可使胎面材料获得良好的力学性能、耐老化性能、耐磨耗性能、热稳定性能及耐溶剂性能,并且使胎面材料的耐寒性能和耐湿滑性能提高,但滚动阻力增大,生热增加。
     以颗粒状纳米重晶石(NB)为无机填料,采用机械共混法制备了天然橡胶基重晶石纳米复合材料。研究表明,双层包覆改性的纳米重晶石(SA-Al_2O_3-NB)与橡胶基体相容性良好且易于分散,可使复合材料获得良好的综合性能。同时,考察了SA-Al_2O_3-NB与CB协同增强橡胶基纳米复合胎面材料的结构及性能。研究表明,SA-Al_2O_3-NB粒子可均匀分散于橡胶基体中,与CB共同组成填料网络,在较低填量下即可使胎面材料的的力学性能、耐老化性能、耐磨耗性能、耐腐蚀性能得到明显提高。动态力学分析表明,SA-Al_2O_3-NB的加入使胎面材料的耐湿滑性能提高,而滚动阻力和生热降低。在实验室材料研究和工艺开发的基础上,进一步组织了百公斤级/批材料中试,制得了性能稳定的高性能橡胶基纳米复合胎面材料及合格的翻新轮胎。
     以AT作为纳米颗粒合成载体,以液相沉淀法分别在其表面负载纳米氧化铈(CeO_2)及纳米四氧化三铁(Fe_3O_4),然后采用季铵盐对其进行表面有机化改性,制备了功能化无机纳米复合填料CTAB-AT-CeO_2和CTAB-AT-Fe_3O_4,应用于制备天然橡胶/丁苯橡胶基纳米复合材料。研究表明,CeO_2粒径为5nm左右,负载于AT表面形成芝麻棒状结构。在复合材料制备过程中,CeO_2促进了AT棒晶束的解离和分散,CeO_2的弥散强化使CTAB-AT-CeO_2对橡胶基体的增强作用明显高于CTAB-AT,同时使复合材料的热稳定性及共混性提高。研究表明,Fe_3O_4粒径为10nm左右,负载于AT表面形成具有超顺磁性的功能化纳米复合粉体。CTAB-AT-Fe_3O_4对橡胶基体同样具有良好的增强作用。有机化改性及复合材料制备过程并未改变Fe_3O_4的超顺磁性,因此制备出了兼具优良力学性能和超顺磁性的功能化橡胶基纳米复合材料。
     以电子束辐照改性的微米级及纳米级的聚四氟乙烯(PTFE)微粉为填料,采用机械共混法制备了三元乙丙橡胶基聚合物纳米复合材料,并对复合材料的硫化特性、界面结合、力学性能、耐磨耗性能、耐压缩永久变形性能以及热降解行为进行了较为系统的研究。研究表明,相对于微米级的PTFE粒子,纳米PTFE粒子极低的表面摩擦系数、高比表面积以及高表面羧基浓度,会对胶料产生润滑效应及延迟硫化效应。同时,纳米级PTFE粒子的纳米效应以及与橡胶基体良好的界面结合使其对橡胶基体具有良好的增强作用,可明显提高复合材料的力学性能。PTFE颗粒的粒径大小、各向同性度以及橡胶/填料界面结合程度是造成复合材料耐压缩永久变形性能差异的主要原因。复合材料的热降解明显分为两个阶段,相对于微米级PTFE粒子,纳米级PTFE粒子促进了橡胶基体的热降解。
Rubber nanocomposites are materials that inorganic/organic nanoparticles (dispersed phase) are uniformly dispersed in rubber matrices (continuous phase). Because of the small size effect, surface effect, quantum size effect and micro-quantum tunnel effect of the nanoparticles, rubber nanocomposites exhibit markedly improved microstructures, properties and applications when compared to traditional rubber composites. Rubber nanocomposites represent a new alternative to prepare high-performance and multifunctional composites. In this paper, fibrillar nanofillers, layered nanofillers, granular nanofillers, inorganic functional composite nanofillers and polymeric nanofillers were employed to prepare rubber nanocomposites which are used in the fields of tire tread, multifunctional materials and sealing materials. The relationships between microstructure and properties of rubber nanocomposites were systematically studied. The main contents and conclusions are as follows:
     Natural rubber nanocomposites reinforced with fabrillar silicate attapulgite (AT) were prepared by mechanical compounding. Silane coupling agents and quaternary ammonium salts were employed as modifiers to improve the compatibility between AT and the rubber matrix. The results show that the modified AT and natural rubber were compatible. The disaggregation and orientation of AT needles and the strong rubber/filler interfacial interactions are crucial for the reinforcement of AT on the rubber matrix. The application of tetrapod-like zinc oxide whisker (T-ZnO_w) and nano-zinc oxide (N-ZnO) instead of conventional zinc oxide (O-ZnO) in tire tread was investigated. An obvious synergistic effect could be observed when T-ZnO_w and N-ZnO were collaborative applicated due to the anchoring effect of T-ZnO_w and the nanometer effect of N-ZnO. On this basis, carbon black (CB), AT, T-ZnO_w and N-ZnO were collaborative employed to reinforce the tire tread. Combinding with the investigation of filler dispersion status, rubber/filler interfacial structure and filler network of the nanocomposites, the synergistic reinforcing mechanism of multiphase fillers on the rubber matrix were clarified. The results show that the curing properties, mechanical properties, thermo oxidative resistance, abrasion resistance, cold resistance and wet skid resistance of the nanocomposites were significantly improved. What is more, the rolling resistance and heat build-up of the nanocomposites were reduced.
     Intercalated/exfoliated natural rubber/organo-montmorillonite (OMMT) nanocomposites were prepared by mechanical compounding. The microstructures and properties of the nanocomposites were investigated and clarified. The results indicate that the introduction of OMMT not only accelerated the curing process but also increased the crosslinking density of the nanocomposites. The microstructure evolvement of OMMT was influenced by the curing process parameters. The mechanical properties, dynamic mechanical properties, thermal stability, oil resistance were dramatically improved by the addition of a small amount of OMMT. Furthermore, CB and OMMT were employed simultaneously to reinforce the tire tread. The results demonstrate that the dispersion and intercalation of OMMT layers were promoted by CB nanoparticles. At the same time, OMMT layers exhibited a partition effect on the CB filler network. The synergistic reinforcement of OMMT and CB in the nanocomposites can be attributed to the formation of CB/OMMT hybrid filler network. Despite possessing higher rolling resistance and heat build-up, the tire tread containing CB and a small amount of OMMT exhibited enhanced mechanical properties, thermo oxidative resistance, abrasion resistance, thermal stability, solvent resistance, cold resistance and wet skid resistance.
     Natural rubber nanocomposites reinforced with nanobarite (NB) were prepared by mechanical compounding. The results show that the NB modified by sodium aluminate and sodium stearate (SA-Al_2O_3-NB) exhibited outstanding reinforcement due to its homogenous dispersion in the rubber matrix and the strong rubber/filler interactions. Furthermore, the microstructure and properties of the tire tread containing both SA-Al_2O_3-NB and CB were investigated. The results show that SA-Al_2O_3-NB and CB could be uniformly dispersed in the rubber matrix and a special hybrid filler network could be constructed. The mechanical properties, thermo oxidative resistance, abrasion resistance and corrosion resistance were obviously improved. The dynamic mechanical analysis results indicate that the tire tread possesses good wet skid resistance, rolling resistance and heat build-up properties. The pilot scale experiment was carried on based on the laboratory results and hence the high-performance tire tread and retreated tires were obtained.
     The AT-CeO_2 and AT-Fe_3O_4 composites nanoparticles were prepared by coprecipitation technique in the aqueous suspension of AT. AT-CeO_2 and AT-Fe_3O_4 were fistly modified by hexadecyl trimethyl ammonium bromide (CTAB) and then were used as fillers to prepare natural rubber/styrene butadiene rubber nanocomposites. The results show that the CeO_2 nanoparticles, with a diameter of about 5nm, were absorbed to AT needles’surfaces. CeO_2 nanoparticles enhanced the disaggregation of AT needles during the compounding process. Combinding with the dispersion strengthening of CeO_2, the reinforcement of CTAB-AT-CeO_2 on the rubber matrix was better than that of CTAB-AT. At the same time, the thermal stability and miscibility of the rubber/CTAB-AT-CeO_2 nanocomposites were also improved. The results also show that the as-obtained Fe_3O_4 nanoparticles, with a diameter of about 10nm, exhibits apparent superparamagnetism at room temperature. CTAB-AT-Fe_3O_4 composites nanoparticles also play an obvious reinforcement on the rubber matrix, and hence the multifunctional rubber nanocomposites with both good mechanical properties and superparamagnetism were obtained.
     Rubber composites based on ethylene propylene diene monomer (EPDM) and electron beam irradiated polytetrafluorethylene (PTFE) micro-/nano- particles were prepared by mechanical compounding. The curing characteristics, morphologies, mechanical properties, abrasion behaviors, permanent compression set and thermal degradation behavior of the composites were investigated. The results show that, in comparison with the PTFE microparticles, the PTFE nanoparticles enhanced the lubrication of EPDM composites and delayed the curing process due to it extremely low friction coefficient, larger specific surface area and higher concentration of carboxyl group on the surfaces. It’s evident that the mechanical properties of EPDM/PTFE nanocomposites were improved due to the nanometer particle dimension and good dispersion of PTFE nanoparticles as well as the efficient interfacial bonding between rubber and PTFE nanoparticles. The particle size, isotropy and the interactions between EPDM and PTFE particles were crucial to the permanent compression set of the EPDM/PTFE nanocomposites. The thermal degradation of the EPDM/PTFE nanocomposites was devided into two stages. However, in comparison with the PTFE microparticles, the PTFE nanoparticles promoted the thermal degradation of EPDM.
引文
[1]张玉龙.纳米复合材料手册[M].北京:中国石化出版社,2005:1-4
    [2] Ajayan P M,Schadler L S,Braun P V. Nanocomposite Science and Technology [M]. M?rlenbach:Strauss Offsetdruck GmbH,2003:77-78
    [3] Jordan J,Jacob K I,Tannenbaum R,Sharaf M A,Jasiuk I. Experimental trends in polymer nanocomposites-a review [J]. Materials Science and Engineering A,2005,393(1-2):1-11
    [4] Shenhar R,Norsten T B,Rotello V M. Polymer-mediated nanoparticle assembly structural control and applications [J]. Advanced Materials,2005,17(6):657-669
    [5] Pavlidou S , Papaspyrides C D. A review on polymer-layered silicate nanocomposites [J]. Progress in Polymer Science,2008,33(12):1119-1198
    [6] Moniruzzaman M,Winey K I. Polymer nanocomposites containing carbon nanotubes. Macromolecules,2006,39(16):5194-5205
    [7] Jog J P. Crustallisation in polymer nanocomposites [J]. Materials Science and Technology,2006,22(7):797-806
    [8] Lee L J,Zeng C C,Cao X,Han X M,Shen J,Xu G J. Polymer nanocomposites foams [J]. Composites Science and Technology,2005,65(15-16):2344-2363
    [9] Peng Z,Feng C F,Luo Y Y,Li Y Z,Kong L X. Self-assembled natural rubber/multi-walled carbon nanotube composites using latex compounding techniques [J]. Carbon,2010,48(15):4497-4503
    [10] Wang S H,Peng Z L,Zhang Y,Zhang Y X. Structures and properties of BR nanocomposites reinforced with organoclay [J]. Polymer and Polymer Composites,2005,13(4):371-384
    [11] Kim J S,Hong S,Park D W,Shim S E. Water-borne graphene-derived conductive SBR prepared by latex heterocoagulation [J]. Macromolecular Research,2010,18(6):558-565
    [12] Pal K,Pal S K,Das C K,Kim J K. In?uence of fillers on NR/SBR/XNBR blends. Morphology and wear [J]. Tribology International,2010,43(8):1542-1550
    [13] Samar(?)ija-Jovanovi(?) S,Jovanovia? V, Markovi? G, Konstantinovi(?) S,Marinovi(?)-Cincovi(?) M. Nanocomposites based on silica-reinforced ethylene-propylene-diene-monomer/acrylonitrile-butadiene rubber blends [J]. Composites:Part B,2011,42(5):1244-1250
    [14] Passaglia E, Bertoldo M, Ciardelli F,Prevosto D,Lucchesi M. Evidences of macromolecular chains confinement of ethylene-propylene copolymer in organophilic montmorillonite nanocomposites [J]. European Polymer Journal,2008,44(5):1296-1308
    [15] Parent J S,Liskova A,Resendes R. Isobutylene-based ionomer composites:siliceous filler reinforcement [J]. Polymer,2004,45(24):8091-8096
    [16] Messori M,Fiorini M. Isoprene rubber filled with silica generated in situ [J]. Journal of Applied Polymer Science,2011,119(6):3422-3428
    [17] Taghizadeh E,Naderi G,Dubois C. Rheological and morphological properties of PA6/ECO nanocomposites [J]. Rheologica Acta,2010,49(10):1015-1027
    [18] Wu J Y, Zhou C X, Zhu Q W,Li E R,Dai G,Ba L,Huang Y H,Mei J. Composite silicone rubber of high piezoresistance repeatability filled with nanoparticles [J]. Science in China Series E:Technology Sciences,2009,52(12):3497-3503
    [19] Apostolo M,Chernysheva L,Fantoni M,Verneau B. Industrial production of fluoroelastomer nanocomposites by microemulsion polymerization followed by co-coagulation [J]. Macromolecular Symposia,2010,289(1):64-71
    [20] Mahaling R N, Kumar S,Rath T,Das C K. Acrylic elastomer/filler nanocomposite:effect of silica nanofiller on thermal, mechanical and interfacial adhesion [J]. Plastics,Rubber and Composites,2007,36(6):267-273
    [21] Li B,Zhong W H. Review on polymer/graphite nanoplatelet nanocomposites [J]. Journal of Materials Science,2011,46(17):5595-5614
    [22] Zou J W,Zhang F,Huang J,Chang P R,Su Z M,Yu J H. Effects of starch nanocrystals on structure and properties of waterborne polyurethane-based composites [J]. Carbohydrate Polymers,2011,85(4):824-831
    [23] Potts J R,Dreyer D R,Bielawski C W,Ruoff R S. Graphene-based polymer nanocomposites [J]. Polymer,2011,52(1):5-25
    [24] Pasquini D, Teixeira E D M,Curvelo A A D S,Belgacem M N,Dufresne A. Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber [J]. Industrial Crops and Products,2010,32(3):486-490
    [25] Lu M,Zhou J J,Wang L S,Zhao W,Lu Y L,Zhang L Q,Liu Y K. Design and preparation of cross-linked polystyrene nanoparticles for elastomer reinforcement [J]. Journal of Nanomaterials,2010,2010:1-8
    [26] Nie Y J,Huang G S,Qu L L,Zhang P,Weng G S,Wu J R. Cure kinetics and morphology of natural rubber reinforced by the in situ polymerization of zinc dimethacrylate [J]. Journal of Applied Polymer Science,2010,115(1):99-106
    [27] Sahoo S,Maiti M,Ganguly A,George J J, Bhowmick A K. Effect of zinc oxide nanoparticles as cure activator on the properties of natural rubber and nitrile rubber [J]. Journal of Applied Polymer Science,2007,105(4):2407-2415
    [28] Liu Q,Ren W T,Zhang Y,Zhang Y X. Hydrogenated carboxylated nitrile rubber/modified zinc carbonate basic composites with photoluminescence properties [J]. European Polymer Journal,2011,47(5):1135-1141
    [29]施利毅.纳米材料[M].上海:华东理工大学出版社,2007:328-329
    [30] Smits V,Chevalier P,Deheunynck D. A new filler dispersion technology for the plastic industry [J]. ADDCON 2008. The Fourteenth International Conference on Plastic Additives and Compounding, Barcelona, Spain, 15-16 October 2008:14
    [31] Osman M A,Atallah A. High-density polyethylene micro- and nanocomposites:Effect of particle shape,size and surface treatment on polymer crystallinity and gas permeability [J]. Macromolecular rapid communications,2004, 25(17):1540-1544
    [32] Mishra S,Shimpi N G,Patil U D. Effect of nano CaCO3 on thermal properties of styrene butadiene rubber [J]. Journal of polymer research,2007,14(6):449-459
    [33] Arantes T M,Le?o K V,Tavares M I B,Antonio Gilberto Ferreira,Elson Longo,Emerson R Camargo. NMR study of styrene-butadiene rubber (SBR) and TiO2 nanocomposites [J]. Polymer testing,2009,28(5):490-494
    [34] Li P Y,Yin L L,Song G J,Sun J,Wang L,Wang H L. High-performance EPDM/organoclay nanocomposites by melt extrusion [J]. Applied Clay Science,2008,40(1-4):38-44
    [35] Gatos K G , Karger-Kocsis J. Effects of primary and quaternary amine intercalants on the organoclay dispersion in a sulfur-cured EPDM rubber [J]. Polymer,2005,46(9):3069-3076
    [36] Wang S H,Zhang Y,Ren W T,Zhang Y X,Lin H F. Morphorlogy,mechanical and optical properties of transparent BR/clay nanocomposites [J]. Polymer testing,2005,24(6):766-774
    [37] Zhang Y D,Liu Q F,Zhang Q,Lu Y P. Gas barrier properties of natural rubber/kaolin composites prepared by melt blending [J]. Applied Clay Science,2010,50(2):255-259
    [38] Menon A R R,Pillai C K S,Nando G B. Physicomechanical properties of filled natural rubber vulcanizates modified with phosphorylated cashew nut shell liquid [J]. Journal of applied polymer science,1998,68(8):1303-1311
    [39] Deng C M,Chen M,Ao N J,Yan D,Zheng Z Q. CaCO3/natural rubber latex nanometer composite and its properties [J]. Journal of applied polymer science,2006,101(5):3442-3447
    [40]邝向升,敖宁建,陈美,等.胶乳法制备天然橡胶/蒙脱土纳米复合材料研究[J].电子显微学报,2003,22(6):535-536
    [41] Jia Q X,Wu Y P,Wang Y Q,Lu M,Yang J,Zhang L Q. Organic interfacial tailoring of styrene butadiene rubber-clay nanocomposites prepared by latex compounding method [J]. Journal of Applied Polymer Science,2007,103(3):1826-1833
    [42] Acharya H,Srivastava S K,Bhowmick A K. Synthesis of partially exfoliated EPDM/LDH nanocomposites by solution intercalation: Structuralcharacterization and properties [J]. Composites Science and Technolgy. 2007,67(13):2807-2816
    [43] Joly S,Garnaud G,Ollitrault R,Bokobza L,Mark J E. Organically modified layered silicates as reinforcing fillers for natural rubber [J]. Chemistry of materials,2002,14(10):4202-4208
    [44] Sadhu S,Bhowmick A K. Preparation and properties of styrene-butadiene rubber based nanocomposites:the in?uence of the structural and processing parameters [J]. Journal of Applied Polymer Science,2004,92(2):698-709
    [45] Hashim A S, Kawabata N,Kohjiya S. Silica reinforcement of epoxidized natural rubber by the sol-gel method [J]. Journal of sol-gel science and technology,1995,5(3):211-218
    [46]罗洁,胡庆云,李佳,贾红兵.原位生成纳米SiO2/橡胶复合材料的制备及性能研究[J].化工新型材料,2008,36(1):25-27
    [47] Messori M,Bignotti F,Santis R D,Taurino R. Modification of isoprene rubber by in situ silica generation [J]. Polymer international,2009,58(8):880-887
    [48] Chaichua B,Prasassarakich P,Poompradub S. In situ silica reinforcement of natural rubber by sol-gel process via rubber solution [J]. Journal of sol-gel science and technology,2009,52(2):219-227
    [49]葛建华,王迎军,郑裕东,龚克诚.溶胶凝胶法在聚合物/无机纳米复合材料中的应用[J].材料科学与工程学报,2004,22(3):442-445
    [50] Lu Y L,Liu L,Tian M,Geng H P,Zhang L Q. Study on mechanical properties of elastomers reinforced by zinc dimethacrylate [J]. European Polymer Journal,2005,41(3):589-598
    [51] Lu Y L,Liu L,Yang C,Tian M,Zhang L Q. The morphology of zinc dimethacrylate reinforced elastomers investigated by SEM and TEM [J]. European Polymer Journal,2005,41(3):577-588
    [52]黄安民,王小萍,贾德民.甲基丙烯酸镁增强氢化丁腈橡胶的结构与形态和性能[J].高分子学报,2007,12(12):1154-1160
    [53] Usuki A. Composite material containing a layered silicate [P]. USA :US4889885,1989
    [54] Yuan X H,Li X H,Zhu E B,Jie Hu,Cao S S,Sheng W C. Synthesis and properties of silicone/montmorillonite nanocomposites by in-situ intercalative polymerization [J]. Carbohydrate Polymers,2010,79(2):373-379
    [55] Lagaly G. Interaction of alkylamines with different types of layered compounds. Solid State Ionics,1986,22(1):43-51
    [56] J J B道奈,A埃沃特.炭黑[M].北京:化学工业社,1982:1-31
    [57]杨凤香,王鲁鑫,孟莲香,尚波.纳米白炭黑对NBR性能的影响[J].橡胶工业,2005,52(10):601-604
    [58] Patel A C,Lee K. Characterizing carbon black aggregate via dynamic and performance properties [J]. Elastomerics,1990,122(3):14-18
    [59] Gruber T C,Herd C R. Anisomery measurements in carbon black aggregate populations [J]. Rubber Chemistry and Technology,2000,70(5):727-746
    [60]胡小龙.二氧化硅/硅烷填充橡胶体系的交联和增强[J].橡塑资源利用,2004,5-6:35-43
    [61]赵同建,劳邦盛,符新.纳米无机粒子补强天然橡胶的研究-(Ⅱ)纳米SiO2/天然橡胶复合材料的研究[J].弹性体,2007,17(6):63-68
    [62] Shanmugharaj A M,Bhowmick A K. Rheological properties of styrene-butadiene rubber filled with electron beam modified surface treated dual phase fillers [J]. Radiation Physics and Chemistry,2004,69(1):91-98
    [63] Liauw C M, Allen N S,Edge M,Lucchese L. The role of silica and carbon-silica dual phase filler in a novel approach to the high temperature stabilisation of natural rubber based composites [J]. Polymer Degradation and Stability,2001,74(1):159-166
    [64]张玉龙.纳米复合材料手册[M].北京:中国石化出版社,2005:57-66
    [65] Jin F L,Park S J. Thermo-mechanical behaviors of butadiene rubber reinforced with nano-sized calcium carbonate [J]. Materials Science and Engineering A,2008,478(1-2):406-408
    [66]李玉林,范杰,张少华,李薇,冯泳兰.改性纳米碳酸钙填料对氯丁橡胶性能影响的研究[J].广东化工,2008,35(5):77-79
    [67] Mishra S,Sonawane S H,Badgujar N,Gurav K,Patil D. Comparative study of the mechanical and flame-retarding properties of polybutadiene rubber filled with nanoparticles and fly ash [J]. Journal of Applied Polymer Science,2005,96(1):6-9
    [68]张琦,刘力,田明,吴友平,张立群.纳米碳酸钙/炭黑并用对丁苯橡胶性能的影响[J].特种橡胶制品,2004,25(6):6-8
    [69] Su X Q,Hua Y Q,Qiao J L,Liu Y Q,Zhang X H,Gao J M,Song Z H,Huang F,Zhang M L. The relationship between microstructure and properties in PP/rubber powder/nano-CaCO3 ternary blends [J]. Macromolecular Materials and Engineering,2004,289(3):275-280
    [70] Sharif J,Yunus W M Z W ,Dahlan K Z H M,Ahmad M H. Preparation and properties of radiation crosslinked natural rubber/clay nanocomposites [J]. Polymer Testing 2005,24(2):211-217
    [71] Zheng H,Zhang Y,Peng Z L,Influence of clay modification on the structure and mechanical properties of EPDM/montmorillonite nanocomposites [J]. Polymer Testing,2004,23(2): 217-223
    [72] Maiti M, Bhowmick A K. New insights into rubber-clay nanocomposites by AFM imaging [J]. Polymer,2006,47(17):6156-6166
    [73] Chen T H,Zhu J J,Li B H,Guo S Y,Yuan Z Y,Sun P C,Ding D T. Exfoliation of organo-clay in telechelic liquid polybutadiene rubber [J]. Macromolecules,2005,38(9):4030-4033
    [74]郑小瑰,郭宝春,贾德民.含羧基有机蒙脱土/天然橡胶纳米复合材料的结构与性能[J].合成橡胶工业,2006,29(4):280-283
    [75] Jia Q X,Wu Y P,Wang Y Q,Lu M,Zhang L Q. Enhanced interfacial interaction of rubber/clay nanocomposites by a novel two-step method [J]. Composites science and technology,2008,68(3-4):1050-1056
    [76] López-Manchado M A,Herrero B,Arroyo M. Preparation and characterization of organoclay nanocomposites based on natural rubber [J]. Polymerinternational,2003,52(7):1070-1077
    [77] Sharif J,Yunus W M Z W,Dahlan K Z H M,Ahmad M H. Preparation and properties of radiation crosslinked natural rubber&clay nanocomposites [J]. Polymer Testing 2005,24(2):211-217
    [78] Chang Y W,Yang Y C,Ryu S,Nah C. Preparation and properties of EPDM/organomontmorillonite hybrid nanocomposites [J]. Polymer International,2002,51(4):319-324
    [79]徐博,郑强.熔融插层法制备聚合物/层状硅酸盐纳米复合材料的调控因素[J].高分子材料科学与工程,2005,21(1):43-47
    [80] Dai J C,Huang J T. Surface modification of clays and clay-rubber composites [J]. Applied clay science,1999,15(1-2):51-65
    [81] Ray S S,Okamoto M. Polymer/layered silicate nanocomposites:a review from preparation to processing [J]. Progress in polymer science,2003,28(11):1539-1641
    [82] Paul D R,Robeson L M. Polymer nanotechnology:Nanocomposites [J]. Polymer,2008,49(15):3187-3204
    [83] Tan Y J,Liang Y R,Hu G S,Wang Y Q,Lu Y L,Zhang L Q. Structure and properties of isobutylene-isoprene rubber/swollen organoclay nanocomposites prepared by shear mixing [J]. Chinese Journal of Polymer Science,2011,29(2):225-231
    [84] Hwang W G,Wei K H,Wu C M. Preparation and mechanical properties of nitrile butadiene rubber/silicate nanocomposites [J]. Polymer,2004,45(16):5729-5734
    [85] Liu B L,Ding Q J,He Q H,Cai J,Hu B X,Shen J. Novel preparation and properties of EPDM/montmorillonite nanocomposites [J]. Journal of applied polymer science,2006,99(5):2578-2585
    [86] Lu Y L,Li Z,Yu Z Z,Tian M,Zhang L Q,Mai Y W. Microstructure and properties of highly filled rubber/clay nanocomposites prepared by melt blending [J]. Composites science and technology,2007,67(14):2903-2913
    [87] Wan C Y,Dong W,Zhang Y X,Zhang Y. Intercalation process and rubber-filler interactions of polybutadiene rubber/organoclay nanocomposites [J]. Journal ofapplied polymer science,2008,107(1):650-657
    [88] Ma J,Yu Z Z,Kuan H C,Dasari A,Mai Y W. A new strategy to exfoliate silicone rubber/clay nanocomposites [J]. Macromolecular rapid communications,2005,26(10):830-833
    [89] Liang Y R,Cao W L,Li Z,Wang Y Q,Wu Y P,Zhang L Q. A new strategy to improve the gas barrier property of isobutylene-isoprene rubber/clay nanocomposites [J]. Polyemer testing,2008,27(3):270-276
    [90]王萍.凹凸棒石/丁苯橡胶纳米复合材料制备及其性能[J].非金属矿,2004,27(6):8-10
    [91]胡志孟,赖世全,李同生.凹凸土/丁腈橡胶纳米复合材料的制备与性能[J].弹性体,2004,14(3):39-42
    [92] Murray H H. Traditional and new applications for kaolin, smectite, and palygorskite:a general overview [J]. Applied clay sciecne,2000,17(5-6):207-221
    [93] Huang Y J,Li Z,Li S Z,Shi Z L,Yin L,Hsia Y F. M?ssbauer investigations of palygorskite from Xuyi,China [J]. Nuclear instruments and methods in physics research B,2007,260(2):657-662
    [94] Xue S Q,Reinholdt M,Pinnavaia T J. Palygorskite as an epoxy polymer reinforcement agent [J]. Polymer,2006,47(10):3344-3350
    [95] Suárez M,García-Romero E. FTIR spectroscopic study of palygorskite:Influence of the composition of the octahedral sheet [J]. Applied clay science,2006,31(1-2):154-163
    [96]沈上越,汤庆国,杨眉,李珍.磁性坡缕石复合材料的制备及性能[J].硅酸盐学报,2006,34(7):875-878
    [97]汤庆国,沈上越,胡珊.坡缕石提纯和改性及其在NBR中的应用研究[J].橡胶工业,2004,51(8):467-471
    [98]丁永红,孙传金,姚超,张良,许晓锋.凹凸棒土填充SBR的性能研究[J].橡胶工业,2009,56(2):91-94
    [99] Tian M,Qu C D,Feng Y X,Zhang L Q. Structure and properties of fibrillar silicate/SBR composites by direct blend process [J]. Journal of MaterialsScience,2003,38(24):4917-4924
    [100] Shen S Y,Yang M,Ran S L,Xu F,Wang Z X. Preparation and properties of natural rubber/palygorskite composites by co-coagulating rubber latex and clay aqueous suspension [J]. Journal of polymer research,2006,13(6):469-473
    [101]李铁,杨眉,洪汉烈,沈上越,姚柏文.天然橡胶/凹凸棒石纳米复合材料的制备与性能研究[J].化工新型材料,2009,37(8):81-84
    [102]胡志孟.纳米凹凸棒补强丁腈橡胶的机理初探[J].功能材料,2006,37(增刊):639-641
    [103]王益庆,张立群,张慧峰,王一中,程治国,徐和昌.凹凸棒土/橡胶纳米复合材料结构和性能研究[J].北京化工大学学报,1999,26(3):25-29
    [104]李汉堂.短纤维-橡胶复合材料的发展前景[J].现代橡胶技术,2006,32(4):5-12
    [105]许泗贵,周彦豪,陈福林,贾德民,短纤维在轮胎中的应用[J].橡胶工业,2001,48(8):501-506
    [106] Shaffer M S P,Fan X,Windle A H. Dispersion and packing of carbon nanotubes [J]. Carbon,1998,36(11):1603-1612
    [107] Sui G,Zhong W H,Yang X P,Yu Y H,Zhao S H. Preparation and properties of natural rubber composites reinforced with pretreated carbon nanotubes [J]. Polymers for Advanced Technologies,2008,19(11):1543-1549
    [108]赵红振,齐暑华,周文英,刘乃亮.碳纳米管/橡胶复合材料研究进展[J].合成橡胶工业,2008,31(4):315-318
    [109] Sui G,Zhong W H,Yang X P,YuY H. Curing kinetics and mechanical behavior of natural rubber reinforced with pretreated carbon nanotubes [J]. Materials science & engineering A,2008,485(1-2),524-531
    [110]陈晓红,宋怀河.多壁碳纳米管填充丁苯橡胶复合材料的研究[J].新型炭材料,2004,19(3):60-64
    [111] Falco A D,Goyanes S,Rubiolo G H,Mondrahon I,Marzocca A. Carbon nanotubes as reinforcement of styrene-butadiene rubber [J]. Applied surface science,2007,254(1):262-265
    [112] Fakhru’l-Razi A,Atieh M A,Girun N,Chuah T G,El-Sadig M,Biak D R A. Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber [J]. Composite structures,2006,75(1-4):496-500
    [113] Bhattacharyya S,Sinturel C, Bahloul O,Saboungi M L,Thomasb S,Salvetat J P. Improving reinforcement of natural rubber by networking of activated carbon nanotubes [J]. Carbon,2008,46(7):1037-1045
    [114] Park B H. Tread rubber composition with corn starch,having low fuel mileage property and excellent braking ability [P]. Korea:KR2005049219-A,2005;KR558963-B1,2006
    [115] Valodkar M,Thakore S. Thermal and mechanical properties of natural rubber and starch nanocomposites [J]. International Journal of Polymer Analysis and Charaterization,2010,15(6):387-395
    [116] Fang Q,Liang Y. Preparation of functional rubber reinforcing agent comprises pasting starch and initiator,adding hydroxyl protecting agent component A and protonic acid component B,washing,drying,crushing and adding coupling agent composite [P]. China:CN101186722-A,2008
    [117] Tang H G,Qi Q,Wu Y P,Liang G H,Zhang L Q,Ma J. Reinforcement of elastomer by starch [J]. Macromolecular Materials and Engineering,2006,291(6):629-637
    [118]谢东,古菊,崔跃飞,周向阳,贾德民.淀粉改性及其在橡胶中的应用研究进展[J].弹性体,2008,18(5):70-75
    [119] Qi Q,Wu Y P,Tian M,Liang G H,Zhang L Q,Ma J. Modification of starch for high performance elastomer [J]. Polymer,2006,47(11):3896-3903
    [120] Zhang W Y,Wang C,Xu D M,Pan Z L,Wang X F. Preparation and properties of starch nanocrystals/natural rubber composites [J].合成橡胶工业,2009,32(4):330
    [121] Angellier H,Molina-Boisseau S,Dufresne A. Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber [J]. Macromolecules,2005,38(22):9161-9170
    [122] Angellier H,Molina-Boisseau S,Dufresne A. Waxy maize starch nanocrystalls as filler in natural rubber [J]. Macromolecular Symposia,2006,233(1):132-136
    [123] Ji M Q,Wang Y Q,Wu Y P,Zhang L Q. A novel starch/nitrile rubber composites [J].合成橡胶工业,2003,26(5):314
    [124] Yue D M,Zhao H,Wu Y P,Zhang L Q. Preparation of nano-starch particles and its dispersion in rubber [J].合成橡胶工业,2005,28(6):475
    [125] Mondragón M,Hernández E M, Rivera-Armenta J L,Rodríguez-González F J. Injection molded thermoplastic starch/natural rubber/clay nanocomposites:Morphology and mechanical properties [J]. Carbohydrate polymers,2009,77(1),80-86
    [126] Rouilly A,Rigal L,Gilbert R G. Synthesis and properties of composites of starch and chemically modified natural rubber [J]. Polymer,2004,45(23):7813-7820
    [127] Sahoo S,Bhowmick A K. Influence of ZnO nanoparticles on the cure charateristics and mechanical properties of carboxylated nitrile rubber [J]. Journal of applied polymer science,2007,106(5):3077-3083
    [128]徐文总,马德柱,梁俐.纳米ZnO对天然橡胶交联反应和热稳定性的影响[J].应用化学,2002,19(12):1186-1188
    [129] Arantes T M,Le?o K V,Tavares M I B,Ferreira A G,Longo E,Camargo E R. NMR study of styrene-butadiene rubber (SBR) and TiO2 nanocomposites [J]. Polymer testing,2009,28(5):490-494
    [130]张琦,田明,吴友平,刘力,童玉清,胡伟康,张立群.纳米氢氧化镁/橡胶复合材料的分散特性和分散机理[J].复合材料学报,2003,20(4):88-95
    [131] Tangboriboon N , Wongpinthong P , Sirivat A , Kunanuruksapong R. Electroactive alumina particles embedded in an acrylic elastomer [J]. Polymer Composites,2011,32(1):44-51
    [132]杨建,田明,贾清秀,史俊红,张立群.丁腈橡胶/石墨纳米复合材料的制备、结构及性能研究[J].特种橡胶制品,2007,28(1):1-5
    [133]林雅玲,肖孔清,张安强,王炼石.稀土化合物改性炭黑/天然橡胶复合材料的制备与性能[J].中国稀土学报,2005,23(6):708-712
    [134]王连盛,陆明,周建军,赵蔚,刘亚康,张立群.纳米聚合物填料的制备及其填充橡胶性能研究[J].橡胶工业,2008,55(4):197-202
    [135] IRSG. 2007~2009年世界天然橡胶、合成橡胶消费量[J].中国橡胶,2010,26(13):20
    [136] Rauline D,Roland R. Tyre tread reinforced with silica having a very low specific surface area [P]. USA:US20050016650-A1,2005
    [137] Arnaud L,Saturnin S. Tyre rubber composition based on a reinforcing metal hydroxide [P]. USA:US20070254983-A1,2007
    [138] Noriko Y,Kiyoshige M. Rubber composition for tyre treads and pneumatic tyre having tread thereof [P]. USA:US2002040086-A1,2002
    [139] Heloisa C S , Marria R M , Fernando G. Process for obtaining solid nanocomposite, useful in e.g. gaskets and sealants, comprises an electrolytic coagulation of polymer latex and an aqueous dispersion containing non-modified solid layered silicate [P]. USA:WO2009015453-A2,2009
    [140] Zine C L G,Concei??o A J D,Visconte L L Y,Ito E N,Nunes R C R. Styrene-butadiene rubber/cellulose II/clay nanocomposites prepared by cocoagulation-mechanical properties [J]. Journal of Applied Polymer Science,2011,120(3):1468-1474
    [141] Kashani M R. Aramid-short-fiber reinforced rubber as a tire tread composite [J]. Journal of Applied Polymer Science,2009,113(2):1355-1363
    [142] Shojaei A,Yousefian H,Saharkhiz S.Performance characterization of composite materials based on recycled high-density polyethylene and ground Tire rubber reinforced with short glass fibers for structural applications [J]. Journal of Applied Polymer Science,2007,104(1):1-8
    [143] Shojaei A,Arjmand M,Saffar A. Studies on the friction and wear characteristics of rubber-based friction materials containing carbon and cellulose fibers [J]. Journal of Materials of Science,2011,46(6):1890-1901
    [144] Manna A K,De P P,Tripathy D K,De S K,Peiffer D G. Bonding between precipitated silica and epoxidized natural rubber in the presence of silanecoupling agent [J]. Journal of Applied Polymer Science,1999,74(2):389-398
    [145]高轶,赵素合,刘晓.纳米SiO2粉体有计划程度的表征及评价[J].合成橡胶工业,2006,29(6):424-428
    [146] Sae-oui P,Sirisinha C,Thepsuwan U,Hatthapanit K. Comparison of reinforcing e?ciency between Si-69 and Si-264 in a conventional vulcanization system [J]. Polymer testing,2004,23(8):871-879
    [147]杨清芝.实用橡胶工艺学[M].北京:化学工业出版社,2005:314-363
    [148]李瑜,李为民,姚超,陈志刚,张跃,王文娟.季铵盐改性凹凸棒土处理含油废水[J].非金属矿,2010,33(1):58-63
    [149] Alex R , Nah C. Preparation and characterization of organoclay-rubber nanocomposites via a new route with skim natural rubber latex [J]. Journal of Applied Polymer Science,2006,102(4):3277-3285
    [150]张殿荣,辛振祥.现代橡胶配方设计[M].北京:化学工业出版社,2007:67-78
    [151] Wu Y P,Wang Y Q,Zhang H F,Wang Y Z,Yu D S,Zhang L Q,Yang J. Rubber-pristine clay nanocomposites prepared by co-coagulating rubber latex and clay aqueous suspension [J]. Composites Science and Technology,2005,65(7-8):1195-1202
    [152]马德柱,何平笙,徐种德,周漪琴.高聚物的结构与性能[M].北京:科学出版社,2006:208-238
    [153] Lin Y L,Zhang A Q,Wang L S. Rare earth compounds modified carbon black filled powdered natural rubber: Preparation, morphology and properties [J]. Journal of Applied Polymer Science,2008,108(3):1393-1401
    [154] Zhou Z W,Liu S K,Gu L X. Studies on the strength and wear resistance of tetrapod-shaped ZnO whisker-reinforced rubber composites [J]. Journal of Applied Polymer Science,2001,80(9):1520-1525
    [155] Vatansever N,Polat ?. Effect of zinc oxide type on ageing properties of styrene butadiene rubber compounds [J]. Materials and Design,2010,31(3):1533-1539
    [156] Hu G S,Ma Y L,Wang B B. Mechanical properties and morphology of nylon 11/tetrapod-shaped zinc oxide whisker composite [J]. Materials Science andEngineering A,2009,504(1-2):8-12
    [157] Shi J,WangY,Liu L,Bai H W,Wu J,Jiang C X,Zhou Z W. Tensile fracture behaviors of T-ZnOw/polyamide 6 composites [J]. Materials Science and Engineering A,2009,512(1-2):109-116
    [158] WangY,Shi J,Han L,Xiang F M. Crystallization and mechanical properties of T-ZnOw/HDPE composites [J]. Materials Science and Engineering A,2009,501(1-2):220-228
    [159] Choi S S,Jose J,Lyu M Y,Huh Y I,Cho B H,Nah C. Influence of filler and cure systems on thermal aging resistance of natural rubber vulcanizates under strained condition [J]. Journal of Applied Polymer Science,2010,118(5):3074-3081
    [160] Baldwin J M,Bauer D R. Rubber oxidation and tire aging-a review [J]. Rubber Chemistry and Technology,2008,81(2):338-358
    [161] Li H,Sun J,Song Y H,Zheng Q. The mechanical and viscoelastic properties of SSBR vulcanizates filled with organically modified montmorillonite and silica [J]. Journal of Materials Science,2009,44(7):1881-1888
    [162] Salaeh S, Muensit N,Bomlai P,Nakason C. Ceramic/natural rubber composites:in?uence types of rubber and ceramic materials on curing,mechanical,morphological,and dielectric properties [J]. Journal of Materials Science,2011,46(6):1723-1731
    [163] Guan Y,Zhang L X,Zhang L X,Lu Y L. Study on ablative properties and mechanisms of hydrogenated nitrile butadiene rubber (HNBR) composites containing different fillers [J]. Polymer Degradation and Stability,2011,96(5):808-817
    [164] Zhang Z J , Zhang L N , Li Y , Xu H D. Styrene-butadiene-styrene/ montmorillonite nanocomposites synthesized by anionic polymerization [J]. Journal of Applied Polymer Science,2006,99(5):2273-2278
    [165] Wang J C , Chen Y H , Wang J H. Synthesis of hyperbranched organo-montmorillonite and its application into high-Temperature vulcanizatedsilicone rubber systems [J]. Journal of Applied Polymer Science,2009,111(2):658-667
    [166] Zhang R L, Liu L, Huang Y D,Tang Y R,Zhang T C,Zhan S Z. Prepared hydrogenated nitrile rubber (HNBR)/organo-montmorillonite nanocomposites by the melt intercalation method [J]. Journal of Applied Polymer Science,2010,117(5):2870-2876
    [167] Tabsan N,Wirasate S,Suchiva K. Abrasion behavior of layered silicate reinforced natural rubber [J]. Wear,2010,269(5-6):394-404
    [168] Jurkowska B,Jurkowski B,Oczkowski M,Pesetskii S S,Koval V,Olkhov Y A. Properties of montmorillonite-containing natural rubber [J]. Journal of Applied Polymer Science,2007,106(1):360-371
    [169] Chang Y W,Yang Y,Ryu S,Nah C. Preparation and properties of EPDM/organomontmorillonite hybrid nanocomposites [J]. Polymer International,2002,51(4):319-324
    [170] Wu Y P,Huang H H,Zhao W,Zhang H F,Wang Y Q,Zhang L Q. Flame retardance of montmorillonite/rubber composites [J]. Journal of Applied Polymer Science,2007,107(5):3318-3324
    [171] Khanlari S,Kokabi M. Thermal stability, aging properties, and flame resistance of NR-based nanocomposite [J]. Journal of Applied Polymer Science,2011,119(2):855-862
    [172] Kim E S,Kim E J,Shim J H,Yoon J S. Thermal stability and ablation properties of silicone rubber composites [J]. Journal of Applied Polymer Science,2008,110(2):1263-1270
    [173] Madhusoodanan K N,Varghese S. Technological and processing properties of natural rubber layered silicate-nanocomposites by melt intercalation process [J]. Journal of Applied Polymer Science,2006,102(3):2537-2543
    [174] Kim J T,Oh T S,Lee D H. Morphology and rheological properties of nanocomposites based on nitrile rubber and organophilic layered silicates [J]. Polymer International,2003,52(7):1203-1208
    [175] Gherib S,Satha H,Pelletier J M,Chazeau L,Frihi D. Cracking behavior of carbon black filled elastomers [J]. International Journal of Nanosciecne,2010,9(6):557-561
    [176] Shan C P,Gu Z,Wang L,Li P Y,Song G J,Gao Z B,Yang X Y. Preparation,characterization,and application of NR/SBR/organoclay nanocomposites in the tire industry [J]. Journal of Applied Polymer Science,2011,119(2):1185-1194
    [177]于清溪.工程轮胎生产现状与发展前景[J].橡塑技术与装备,2007,33(10):5-15
    [178] Ostad-Movahed S, Ansarifar A,Song M. Effects of different interphases on the mechanical properties of cured silanized silica-filled styrene-butadiene/ polybutadiene rubber blends for use in passenger car tire treads [J]. Journal of Applied Polymer Science,2009,113(3):1868-1878
    [179]高孝恒.轮胎翻新行业“十一五”发展规划意见和建议[J].橡胶科技市场,2006,14:3-4
    [180]高孝恒.轮胎翻新行业“十一五”发展规划意见和建议(二)[J].橡胶科技市场,2006,15:12-13
    [181] He G,Lu N,Zhou S. Tread rubber for engineering tire includes rubber component,reinforcing carbon black,silica,chemically modified short fiber,silane coupling agent,accelerant,anti-reversion agent,sulfur,anti-aging agent,zinc oxide,and stearic acid [P]. China:CN101735492-A,2010
    [182] Qu M H,Wang Y Z,Wang C,Ge X G,Wang D Y,Zhou Q. A novel method for preparing poly(ethylene terephthalate)/BaSO4 nanocomposites [J]. European Polymer Journal. 2005,41(11):2569-2574
    [183] Qu M H,Wang Y Z,Liu Y,Ge X G,Wang D Y,Wang C. Flammability and thermal degradation behaviors of phosphrous-containing copolyester/BaSO4 nanocomposites [J]. Journal of Applied Polymer Science,2006,102(1):564-570
    [184] Hang J Z,Zhang Y F,Shi L Y,Feng X. Electrokinetic properties of barite nanoparticles suspensions in different electrolyte media. Journal of Materials Science,2007,42(23):9611-9616
    [185] Ge C H,Ding P,Shi L Y,Fu J F. Isothermal crystallization kinetics and melting behavior of poly(ethylene terephthalate)/barite nanocomposites. Journal of Polymer Science Part B:Polymer Physics. 2009,47(7):655-668
    [186]杭建忠.纳米重晶石制备及其在卷材涂料中的应用[D].上海大学,2008:71-89
    [187]聂恒凯.橡胶材料与配方[M].北京:化学工业出版社,2009:246-248
    [188] Shimpi N G,Mishra S. Synthesis of nanoparticles and its effect on properties of elastomeric nanocomposites [J]. Journal of Nanoparticle Research,2010,12(6):2093-2099
    [189]盖国胜.微纳米颗粒复合与功能化设计[M].北京:清华大学出版社,2008:1-9
    [190] Zhao D F,Zhou J,Liu N. Characterization of the structure and catalytic activity of copper modified palygorskite/TiO2 (Cu2+-PG/TiO2) catalysts [J]. Materials Science and Engineering A,2006,431(1-2):256-262
    [191] Fang J H,Cao Z Y,Zhang D S,Shen X,Ding W Z,Shi L Y. Preparation and CO conversion activity of ceria nanotubes by carbon nanotubes templating method [J]. Journal of Rare Earth,2008,26(2):153-157
    [192] Lei Y D,Tang Z H,Zhu L X,Guo B C,Jia D M. Functional thiol ionic liquids as novel interfacial modifiers in SBR/HNTs composites [J]. Polymer,2011,52(5):1337-1344
    [193] Das A,St?ckelhuber K W,Jurk R,Jehnichen D,Heinrich G. A general approach to rubber-montmorillonite nanocomposites:Intercalation of stearic acid [J]. Applied Clay Science,2011,51(1-2):117-125
    [194] Iida H,Takayanagi K,Nakanishi T,Osaka T. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis [J]. Journal of Colloid and Interface Science,2007,314 (1):274-280
    [195] Lu W S,Shen Y H,Xie A J,Zhang W Q. Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles [J]. Journal of Magnetism and Magnetic Materials,2010,322(13):1828-1833
    [196] Zhao Q L,Li X G,Gao J. Aging of ethylene-propylene-diene monomer (EPDM) in artificial weathering environment [J]. Polymer Degradation and Stability,2007,92(10):1841-1846
    [197] Pla?ek V,Kohout T,Hnát V,Bartoní?ek B. Assessment of the EPDM seal lifetime in nuclear power plants [J]. Polymer Testing,2009,28(2):209-214
    [198] Zachary M,Camara S,Whitwood A C,Gilbert B C, Duin M V,Meier R J,Chechik V. EPR study of persistent free radicals in cross-linked EPDM rubbers [J]. European Polymer Journal,2008,44(7):2099-2107
    [199] Schierholz K , Lappan U , Lunkwitz K. Electron beam irradiation of polytetrafluoroethylene in air:investigations on the thermal behavior [J]. Nuclear Instruments and Methods in Physics Research B,1999,151(1-4):232-237
    [200] Sadovskaya N V,Kozlova E E,Konova E M,Serov S A,Tomashpolskii Yu Y,Khatipov S A. Experimental results on the morphology of radiation-treated composite materials based on poly(tetrafluoroethylene) [J]. Science Intensive Technologies,2011,3(3):11-16
    [201]李恩军,张勇,任文坛,王仕峰. FKM/PTFE/炭黑复合材料的性能研究[J].橡胶工业,2009,56(1):20-24
    [202] Khan M S,Franke R,Gohs U,Lehmann D,Heinrich G. Friction and wear behaviour of electron beam modified PTFE filled EPDM compounds [J]. Wear,2009,266(1-2):175-183
    [203] Khan M S,Lehmann D,Heinrich G. Newly developed chloroprene rubber composites based on electron-modified polytetra?uoroethylene powder [J]. Acta Materialia,2009,57(16),4882-4890
    [204]唐斌,李晓强,王进文.乙丙橡胶应用技术[M].北京:化学工业出版社,2005:133-201
    [205] Dijkhuis K A J,Noordermeer J W M,Dierkes W K. The relationship between crosslink system, network structure and material properties of carbon black reinforced EPDM [J]. European Polymer Journal,2009,45(11):3302-3312
    [206] Orza R A,Magusin P C M M,Litvinov V M,Duin M V,Michels M A J. Network density and diene conversion in peroxide-cured gumstock EPDMrubbers:a solid-state NMR study [J]. Macromolecular Symposia,2005,230(1):144-148
    [207] Ehabe E E,Farid S A. Chemical kinetics of vulcanisation and compression set [J]. European Polymer Journal,2001,37(2):329-334

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700