用户名: 密码: 验证码:
微乳液法制备超微细包覆型催化剂及其催化苯酚氧化羰基化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯酚氧化羰基化反应合成碳酸二苯酯(DPC)直接利用初级化工原料CO、O_2及苯酚,具有工艺简单、原料便宜、无污染等特点,被视为合成DPC最有发展前途的方法。本文系统地研究了影响W/O微乳液体系相平衡的各种因素,利用W/O微乳液为纳米反应器制备了超微细包覆型催化剂,并对其在苯酚氧化羰基化反应中的活性进行了评价,最后对环境友好溶剂在该反应中的应用进行了探讨。
     利用拟三元相图,对影响W/O微乳液相区的因素进行了考察。非离子表面活性剂TX-10较阳离子表面活性剂CTAB形成的W/O微乳液区域大;采用TX-10为表面活性剂时,当m(S)/m(CS)等于1:1时,所形成的界面膜具有较高的稳定性,因而具有较大的W/O微乳液区域;随着温度的升高,W/O微乳液区域呈缩小的趋势;水相pH值及助表面活性剂碳链长度的改变对W/O微乳液稳定区域的影响不大;当水相为电解质溶液时,W/O微乳液区域随其浓度的增大而减小。
     当微乳液出现渗滤现象时,电导率的极大值随水相电导率的增大而增大,说明渗滤是由微乳液“内相”的连通所导致。在本文研究的微乳液体系中,首次发现当V(S+CS)/V(Oil)为1/1时,虽然微乳液体系的电导率随含水量的增加也出现极大值,但此值与水相的电导率无关。说明在此种情况下,随着水相含量的增加,W/O微乳液液滴数目逐渐增加,但互相之间并不连通,而是发生碰撞后又迅速分开,无法形成导电链,因此不能出现渗滤现象。
     通过对TX-10/cyclohexane/n-hexanol/H_2O微乳液中水分子的O-H伸缩振动吸收峰的分峰拟合研究,发现该W/O微乳液中有三种不同的水分子,分别为处于表面活性剂长链之间的束缚水、水核中心部分的自由水和与表面活性剂氧乙烯链形成氢键的结合水。首次发现当含水量较低时,该微乳液中的水分子只有两种存在状态,一种是自由水,另一种是结合水。说明由于束缚水分子之间的作用力较弱,在含水量较低时,水分子优先形成自由水和与氧乙烯链形成结合水。微乳液中自由水、束缚水和结合水的摩尔分数随含水量增加的变化不大。
The direct synthesis of diphenyl carbonate (DPC) by oxidative carbonylation of phenolwith CO and O_2 is a promising synthetic method because of its simple process, cheap raw material and no pollutants produced. In this paper, the effects of various conditions on the phase equilibrium of water-in-oil (W/O) microemulsion were systematically studied. The preparation of ultrafine embedded catalyst using W/O microemulsion as nano-reactor for synthesis of DPC was also studied. At last, the exploration of environmentally friendly solvent for oxidative carbonylation of phenol was carried out.The influences on the homogeneous region in W/O microemulsion were studied by utilizing the pseudo-triangle phase diagram. The homogeneous region in W/O microemulsion stabilized by the nonionic surfactant TX-10 is larger than that of the microemulsion stabilized by the cation surfactant, CTAB. When using TX-10 as surfactant and the weight ratio of m(S)/m(CS) equals to 1, the interface between water and oil is the most stable and can form the largest W/O microemulsion homogeneous region. As the increase of temperature, the area of W/O microemulsion region decreases evidently. The pH value of the water phase and the length of the carbon chain of the co-surfactant have a less effect on the stability of the W/O microemulsion. When the electrolyte solution was used as water phase, the area of W/O microemulsion homogeneous region decreased with the increase of its concentration.The conductivity of the W/O microemulsion increases with that of water phase at percolation threshold. It indicates that the take place of percolation is due to the connection of 'inner phase' in W/O microemulsion. However, the percolation doesn't exist at any situations. When the weight ratio of V(S+CS)/V(Oil) equals to 1, the maximum value of the conductivity is independent of the value of the water phase. It can be concluded that the connection of the 'inner phase' doesn't occur at this situation. The number of the water core in the microemulsion increases with the increase of the water content. They collide with each other and then leave away rapidly not to form the electric chain, so the percolation doesn't happen.Using PeakFit 4.12 data processing soft, the stretching vibration of hydroxyl group of water molecular in W/O microemulsion was multiple fitted to study its existing mode. There are three different kinds of water molecular and they are the trapped water, which are trapped in the long carbon chain of the surfactant; the free water, which are located in the center of the water core; the bounded water, which are bounded with the oxyethylene of TX-10 by hydrogen bond. But when the water content is low, there are
    only two kinds of water molecular and the trapped water is disappear. It shows that the acting force between the trapped water is weak. The free water and bounded water have priorities to be come into being when the water is a little. Moreover, the molar fractions of the three kinds of water molecular don't change markedly with the increase of the water content in microemulsion.The size controllable mono-dispersed spherical silica particles were prepared in the W/O microemulsion composed of ammonia, cyclohexane, TX-10 and n-hexanol. The silica particles' sizes range from 50 to 90 nm and can keep stability at high temperatures. A novel method, W/O microemulsion coupling with sol-gel process, for the preparation of ordered mesoporous silica powder with large specific surface area was developed.A novel ultrafine embedded catalyst Pd-Cu-O/SiO2 was prepared using W/O microemulsion as nano reactor. XRD, TEM, SEM and XPS were used to characterize it. It shows that the active center of the catalyst is the complex oxide CuPdO2 which was wholly or partly embedded in the silica particles in nano scale. Because of the protection by silica, this catalyst has higher activity and longer service time than that of the catalyst prepared by impregnation or sol-gel process. The DPC yield can reach to 35.4% and the TOP (Turnover of frequency) on Pd atom is 20.1 mol DPC/mol Pd?h. The heterogeneous Cu( II) promoter can change the active species from PdO to CuPdO2, then change the chemical environment of Pd atom and make it easy for Pd atoms to transfer electron to Cu atoms around. The homogeneous Cu2+ can promote the change Pd(0) -? Pd( II) more effectively than the heterogeneous Cu( II) because all the Cu2+ in the system can take action. While, only the Cu( II) that enter into the crystal lattice of PdO to form the CuPdO2 can obtain electron from Pd(0).The silica embedded metal palladium catalysts Pd/SiO2 were prepared using W/O microemulsion as nano-reactor. The size of metal palladium particles can be controlled in the range of 8-30 nm. From the evaluation by the synthesis of DPC, the catalyst with small palladium particles has higher activity and selectivity because the little the palladium particles, the larger the surface area of it and it implies the more probability for the molecular of reactants to contact with the active center. The reaction mechanism of oxidative carbonylation over Pd/SiO2 catalyst is the multiple step electron transfer process. Firstly, the metal Pd is oxidized to bivalent Pd( II) by Cu2+, while Cu2+ changes into Cu+. Then Pd( II) combines with PhO- to obtain the PhO-Pd-O-, which can react with CO to form PhO-C(=O)-Pd-O-. Finally, PhO-C(=O)-Pd-O- reacts with the second PhO- to prepare the PhO-C(=O)-O-Ph (DPC) and Pd(II) is reduced to Pd(0) simultaneously to finish the catalytic cycle.
引文
[1] 樊美公等.光化学基本原理与光子学材料科学[M].北京:科学出版社,2001.
    [2] 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [3] 郭永,巩雄,杨宏秀.纳米微粒的制备方法及其进展[J].化学通报,1996(3):1-4.
    [4] Xu B S, Tanaka S I. Phase Transformation and Bonding of Ceramic Nanoparticles in the TEM [J]. Nanostructured Materials, 1995(6): 727-730.
    [5] Xu B S, Tanaka S I. Control of Nanoscale Interphase Boundaries by an Electronbeam [J]. Materials Science Forum, 1996(207-209): 137-140.
    [6] 张立德,牟季美.纳米材料学[M].沈刚:辽宁科学技术出版社,1994.
    [7] 严东生.纳米粉体制备新方法[J].无机材料学报,1995,10(1):14.
    [8] 徐华蕊,李凤生.沉淀法制备纳米级粒子的研究[J].化工进展,1996(5):29-33.
    [9] 伊藤徽司郎.胶体化学法[J].色材,1984,57(7):394-398.
    [10] 巩雄,张桂兰,汤国庆,等.纳米晶体材料研究进展[J].化学进展,1997,9(4):349-354.
    [11] 王笃金,吴瑾光.反胶团或微乳液法制备超细颗粒的研究进展[J].化学通报,1995(9):1-5.
    [12] Wang Y, Andris S, Mchugh J, et al. Optical Transient Bleaching of Quantum Confined CdS Cluster: The Effect of Surface-Trapped Electron Hole [J]. Chem Phys, 1990, 92(11): 6927-6939.
    [13] 周根陶,刘双怀,郑永永.一种新的制备超微粉末的方法——沉淀转化法[J].科学通报,1996,41(4):321-323.
    [14] Herzer G. Magnetization Process in Nanocrystalline ferromagnets [J]. Mater Sci Engi, 1991(A133): 1-5.
    [15] Hoar T P, Schuhnan J H. Transparent water-in-oil dispersions: the oleopathic hydro-micelle [J]. Nature, 1943, 152: 102~103.
    [16] Schulman J H, Stoeckenius W, Prince L M. Mechanism of formation and structure of microemulsions by electron micros-copy [J]. J Phys Chem. 1959, 63: 1677.
    [17] Prince L M. Microemulsions, Theory and Practice [M]. Academic Press, New York, 1977.
    [18] Flint G W. Polish [P]. US 2045455, 1936.
    [19] Kokatnur V R. Motor fuels and the methods of making them [P]. US 2111100, 1935.
    [20] Shinoda K, Friberg S. Microemulsion: Colloidal aspects [J]. Adv Colloid Interface Sci. 1975, 4: 281-230.
    [21] Robbins M L. Micellization, Solubilization and Microemulsion [M]. Vol. 2. New York: Plenum Press, 713-735, 1977.
    [22] Michell D J, Ninham B W. Micelles, Vesicles and Microemulsions [J]. J Chem Soc Faraday Trans. 1981, 2(77): 601-629.
    [23] 崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社.2001:93-99.
    [24] Bourrel M, Schechter R S. Microemulsion and Related Systems: Formulation, Solvency, and Physical Properties [M]. Vol.30. New York: Marcel Dekker Inc, 1988.
    [25] 崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社.2001:378.
    [26] Boutonnet M, Kizling J, Steniue P. The preparation of monodisperse colloidal metal particles from microemulsions [J] Colloids and Surfaces, 1982, (5): 209~225.
    [27] 梁桂勇,翟学良.微乳液法制备纳米银粒子[J].功能材料,1999,30(5):484~485.
    [28] 成国祥,沈锋,张仁柏等.反相胶束微反应器及其制备纳米微粒的研究进展[J].化学通报,1997,(3):14~19.
    [29] Liz L, Lopez-Quintela M A, Mira J, et al. Preparation of colloidal Fe_3O_4 ultrafine particles in microemulsions [J]. Journal of Material Science, 1994, 29: 3793~3801.
    [30] Dvolaitzky M, Ober K, Taupin C, et al. Silver chloride microcrystals suspensions in microemulsion media [J]. Journal of Dispersion Science & Technology, 1983, 4: 29~45.
    [31] Motte L, Petit C, Boulanger L, et al. Synthesis of cadmium sulfide in situ in cadmium bie(ethyl-2-hexyl) sulfosuccinate reverse micelle: polydispersity and photochemical reaction [J]. Langmuir, 1992, 8: 1049~1053.
    [32] Santosh K H, Anand R M. [J]Journal of Physics Chemistry, 1996, 100: 5858~5873.
    [33] Milan-Johann S, Katrin S, Reinhard S. [J]. Chem. Rev, 1995, 95: 849~864.
    [34] 康保安,续浩,张明慧等.微乳法制备脂肪醇胺化催化剂的研究[J].日用化学工业,2000,30(2):4~6.
    [35] 施利毅,胡莹玉,张剑平等.微乳液反应法合成二氧化钛超细粒子[J].功能材料,1999,30(5):495~497.
    [36] 陈龙武,甘礼华,岳天仪等.微乳液反应法制备氧化铝(含水)超细微粒[J].高等学校化学学报,1995,16(1):13~16.
    [37] 何天平,彭子飞.微乳法制备纳米级WO_3粉体[J].合成化学,1997,5(1):4~6.
    [38] 郭荣,宋根萍,钱俊红.O/W微乳液中聚邻甲苯胺超微粒子的制备[J].高等学校化学学报,1997,18(12):2073~2075.
    [39] 屈小中,唐亚林,陈柳生等.纳米聚苯乙烯胶乳颗粒的特殊成膜性质[J].科学通报,2001,46(3):205~209.
    [40] Gan L M, Zhang L H, Chan H S O et al. Preparation of conducting polyaniline-coated barium sulfate nanoparticles in inverse microemulsions [J]. Material Chemical Physics, 1995, 40: 94.
    [41] Gao M, Peng X, Shen J. [J] Thin Solid Fihns, 1994, 69: 838.
    [42] Pileni M P, Lisiecki I. Nanometer metallic copper particles synthesis in reverse micelles [J]. Colloids and Surfaces, 1993, 80: 63.
    [43] Lang J, Lalem N, Zana R. Droplet size and dynamics in water-in-oil microemulsions [J]. Colloids and Surfaces, 1992, 68: 199~206.
    [44] Motte L, Petit C, Boulanger L, et al. Synthesis of cadmium sulfide in situ in cadmium bis(2-ethylhexyl) sulfosuccinate reverse micelle: polydispersity and photochemical reaction [J]. Langmuir, 1992, 8: 1049~1053.
    [45] 沈兴海,高宏成.纳米微粒的微乳液制备法[J].化学通报,1995,(11):6~9.
    [46] 施利毅,华彬,张剑平.微乳液的结构及其在制备超细颗粒中的应用[J]功能材料,1998,29(2):136~139.
    [47] Schwuger M J, Stickdonn K, Schormacker R. Microemulsions in technical process [J]. Chemical Review, 1995, 95: 849~864.
    [48] Janos B N. Measurement of 2-D distribution of power loading on the TFTR bumper limiter during disruption [J]. Colloids and Surfaces, 1989, 35: 201~220.
    [49] Santosh K H, Anand R M. [J] Journal of Physics Chemistry, 1996, 100: 5858~5873.
    [50] 施利毅,李春忠,房鼎业等.二氧化钛超细粒子的制备及其光催化降解含酚溶液[J].华东理工大学学报,1998,24(3):291~297.
    [51] 郭林,吴波,庄亚辉等.钴氧化物纳米催化剂的制备及对N_2O的分解[J].环境科学学报,1998,18(5):457~461.
    [52] 徐鲁华,翁端,吴晓东等.La_(1-x)Sr_xMn_(0.7)Zn_(0.3)O~(3+λ)钙钛矿的制备及稀燃条件下氮氧化物的催化还原性能[J].中国稀土学报,2002,20(4):378~381.
    [53] 关荐伊,李桂芬.MnO超微粒子的制备及其对PEMFC电催化性能的研究[J].化学世界,2002,43(1):7~9.
    [54] 王少君,李德才,安庆大等.微乳液反胶团法制备超细微粒SO_4~(2-)/ZrO_2催化剂[J].大连轻工业学院学报,2001,20(4):235~237.
    [55] Kishida M, Hanaoka Ti, Kim W Y, et al. Size control of rhodium particles of silica-supported catalysts using water-in-oil microemulsion [J]. Applied Surface Science. 1997, 121/122, 347~350.
    [56] Kishida M, Ichiki K, Hanaoka T, et al. Preparation method for supported metal catalysts using w/o microemulsion: Study on immobilization conditions of metal partMes by hydrolysis of alkoxide [J] Catalysis Today. 1998, 45(1-4): 203~208.
    [57] Tago T, Hanaoka T, Dhupatemiya P, et al. Effects of Rh content on catalytic behavior in CO hydrogenation with Rh-silica catalysts prepared using micromeulsion [J]. Catalysis Letters. 2000, 64: 27~31.
    [58] Ikeda M, Takeshima S, Tago T, et al. Preparation of size-controlled Pt catalysts supported on alumina [J]. Catalysis Letters. 1999, 58: 195~197.
    [59] Tago T, Shibata Y, Hatsuta T, et al. Synthesis of silica-coated rhodium nanoparticles in reversed micellar solution [J]. Journal of Materials Science, 2002, 37: 977~982.
    [60] Pocoraba E, Pettersson L J, Agrell J. [J] Topics in Catalysis. 2001, 16/17, No. 1-4, 407~412.
    [61] Zhang K, Chew C H, Kawi S, et al. Synthesis and evaluation of ruthenium-copper oxide/silica catalysts derived from microemulsion processing [J]. Catalysis Letters, 2000, 64, 179~184.
    [62] 化工百科全书编委会编.化工百科全书[M].化学工业出版社,1997,860.
    [63] 洪仲苓主编.化工有机原料深加工[M].化学工业出版社,1999,96:952.
    [64] Abbas-Alli G S, Swaminathan S. Organic Carbonate [J]. Chemical Reviews, 1996(3): 952~975
    [65] Brown N M D, Emsley J, Evans D A, et al. Plastics without phosgene [J]. Chemistry in Britain, 1994, 30(12): 970.
    [66] 章思规.精细有机化学品手册(上册)[M].北京:科学出版社,1992,811.
    [67] 王延吉,赵新强.绿色催化过程与工艺[M].化学工业出版社:2002.2
    [68] Asahi Chemical Industry Co Ltd. Preparation of Diaryl Carbonates [P]. JP 03200746. 1991.
    [69] Asahi Chemical Ind. Process for Continuously Producing an Aromatic Carbonate [P]. WO 9109832. 1991.
    [70] Gabriello I, Ugo R, Renato T. Aromatic Carbonates [P]. Ger Often 2528412. 1976.
    [71] Masanari H, Masalnichi M, Katsuhiro I, et al. Preparation of Aromatic Carbonate Esters [P]. JP 05331108. 1994.
    [72] Tetsuo I, Takahito T. Preparation of Aromatic Carbonic Acid Esters [P]. JP 08259505. 1996
    [73] Masashi I, Kohei S, Tatsuro T. Continuous of Preparation of Aromatic Carbonates [P]. JP 08188588. 1996
    [74] Abbas-Alli G S, Swaminathan S. Dialkyl and Diaryl Carbonates by Carbonate Interchange Reaction with Dimethyl Carbonate [J]. Ind Eng Res, 1992, 31: 1167~1170
    [75] 孙碧锈,吕耀宏.复合物催化剂上酯交换法合成碳酸二苯酯[J].大然气化工,1992,17(4):21
    [76] 姚洁,高俊杰,王公应.Lewis酸碱催化碳酸二甲酯与苯酚酯交换反应[J].石油化工,2002,31(2):99~101
    [77] 梅付名,李光兴,莫婉玲.n-Bu_2SnO催化酯交换合成碳酸二苯酯的研究[J].现代化工,2000,20(4):29~31
    [78] Akinobu Y, Takoshi Y. Preparation of Diaryl Carbonates and/or Alkyl Aryl Carbonates [P]. JP 0959223. 1997
    [79] Akinobu Y, Takoshi Y. Preparation of Diaryl Carbonates and/or Alkyl Aryl Carbonates [P]. JP 09241218. 1997
    [80] Akinobu W, Yoshiyuki O, Hideaki T. Preparation of Aryl Esters and Heterogeneous Microporous Catalysts for the Method [P]. JP 11279126. 1999
    [81] Kim W B, Lee J S. A new process for the synthesis of Diphenyl Carbonate from Dimethyl Carbonate and Phenol over heterogeneous catalysts [J]. Catalysis Letters, 59(1999): 83~88
    [82] Kim W B, Lee J S. Gas Phase Transesterification of Dimethyl Carbonate and Phenol over supported Titanium Dioxide. Journal of Catalysis [J], 185(1999): 307~313
    [83] Kim W B, Kim Y G, Lee J S. The role of Carbon deposition in the gas phase transesterification of Dimethyl Carbonate and Phenol over TiO_2/SiO_2 catalyst [J]. Applied Catalysis A, General 194~195(2000): 403~414
    [84] Fu Z h, Ono Y. Two-step synthesis of diphenyl carbonate from dimethyl carbonate and phenol using MoO3/SiO2 catalysts [J]. J Mol Catal A, 1997, 118(3): 293~299.
    [85] 周炜清.苯酚与碳酸二甲酯酯交换法合成碳酸二苯酯的研究[D].河北工业大学硕士学位论文.天津,2003.
    [86] 王胜平,马新宾,刘戈等.碳酸二苯酯合成研究的进展[J].石油化工,2002,3 1(1):53~57
    [87] Keigo N, Shuji T, Katsamasa H, etal. Process for Producing Diaryl Carbonate [P]. US 5834615, 1998, 11, 10
    [88] Katsumasa H, Ryoji S, Yoichil, etal. Preparation of Diaryl Carbonates by Heating Diaryl Oxalates [P]. JP 08325207, 1996, 12
    [89] Yoshifumi Y, Tsunemi S, Toshio K. Preparation of Diaryl Carbonates from Diaryl Oxalate [P]. JP 09255628, 1997, 09, 30
    [90] Katsumasa H, Ryoji S, Yoichil, etal. Preparation of Diaryl Carbonates by Decarbonylation of Diaryl Oxalates [P]. JP 10101618, 1998, 04, 21
    [91] 王胜平,马新宾,李振花等.Ph_4PCl催化合成碳酸二苯酯研究[J].天然气化工,2002,27(2):1~3
    [92] 王胜平,马新宾,郭宏利等.Zn(OAc)_2·2H_2O催化苯酚和草酸二甲酯酯交换合成草酸二苯酯[J].化学通报,2002,(7):476~481
    [93] 王胜平,马新宾,郭宏利等.TS-1分子筛催化苯酚和草酸二甲酯合成草酸二苯酯[J].应用化学,2002,19(9):832~836
    [94] Kongen K, Arihito C, Kashum S, et al. Preparation of Carbonate Compounds by Esterification of Urea Derivatives in High-Yield and High-Selectivity [P]. JP 08198815. 1996
    [95] Hwang K Y, Chen Y Z, Chu C C, et al. Process and Catalysts for Preparing Carbonate Esters from Ureas via Carbamates Esters [P]. CA2133231. 1996
    [96] Ito M. Preparation of Aromatic Carbonate Diesters [P]. JP 0892167. 1996
    [97] Mavlyutov R F, Ishteev R F, Chanylsheu N T. Method of Producing Diphenyl Carbonate [P]. US 1595837. 1990
    [98] King S. Method of Producing Diphenyl Carbonate [P]. US 5663406. 1997
    [99] Deborah A H, Marsha M G, Kathryn L L. Phosphine Ligand Promoted Synthesis of Tetraary loxyalkane [P]. US 5973183. 1999.
    [100] Kazuyoshi S, Fusashi T. Manufacture of Diaryl or Alkyl Aryl Carbonates [P]. JP 04187661. 1992
    [101] Robert E C. Process and Catalysts for Making Diaryl Carbonates from Tetraaryl Orthocarbonates [P]. US 5504238. 1996
    [102] Masao S, Kyosuke M. Thermal Decomposition of Aromatic Polycarbonates [P]. JP 07205153.
    [103] Kateumasa H, Ryoji S, Koichi K, et al. Preparation of Diaryl Carbonates by Disproportionation Reaction [P]. JP 10158220. 1998
    [104] 沈荣春,方云进,肖文德等.碳酸二甲酯与醋酸苯酯合成碳酸二苯酯的研究[J].石油化工,2002,31(11):897~900
    [105] Romano U, Tesei R, Massi M M, et al. Synthesis of dimethyl carbonate from methanol, carbon monoxide, and oxygen catalyzed by copper compounds [J]. Ind Eng Chem Prod Res Dev, 1980, 19(3): 396~403.
    [106] Hallgren J E, Lucas G M, Matthews R O. The palladium-catalyzed synthesis of diphenyl carbonate from phenol, carbon monoxide, and oxygen [J]. J Organomet Chem. 1981,204(1): 135~138.
    [107] Goyal M, Nagahata R, Sugiyama J, et al. Direct synthesis of diphenyl carbonate by oxidative carbonylation of phenol using Pd-Cu based redox catalyst system [J]. J Mole Catal A: Chemical, 1999, 137(1-3): 147~154.
    [108] Fumio O. Process and catalysts for the preparation of aromatic carbonates by oxidative carbonylation of aromatic hydroxy compounds [P]. JP 06211750, 1994.
    [109] King J A, Mckerzie P D, Pressman E J. Preparation of aromatic organic carbonate [P]. WO 9303000, 1993.
    [110] King J A, Krafft T E, Faoler G R. Method for making organic carbonates [P]. US 5142086, 1992.
    [111] Fujita T, Yoshihisa K, Takuji N, et al. Preparation of aromatic carbonates [P]. JP 0525095, 1993.
    [112] Chalk A J. Preparation of aromatic carbonates catalyzed by a group Vi metal salt in the presence of a base [P]. US 4096167, 1978.
    [113] Fukuoka S, Ogawa H, Watanabe T. Preparation of aromatic carbonates by catalytic carbonylation of hydroxy compounds [P]. JP 0116551, 1989.
    [114] Takagi M, Miyagi H, Yuji O, et al. Process and catalysts for producing aromatic carbonates from aromatic hydroxy compounds [P]. EP 663388, 1995.
    [115] Takagi M, K Kujira. Process and catalysts for the preparation of aromatic carbonates from hydroxy aromatic compounds and CO [P]. GB 2311777, 1998.
    [116] Jshii H, Ueda M, Takeuchi K, et al. Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by Pd-Sn complexes with redox catalyst [J]. J Mol Catal A: Chemical, 1999, 138(2-3): 311~313.
    [117] Ishii H, Ueda M, Takeuchi K, et a!. Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by Pd_2-Sn heterotrinuclear complex along with Mn redox catalyst without any addition of ammonium halide [J]. J Mole Catal A: Chemical, 1999, 144(2): 369~372.
    [118] Ishii H, Goyal H, Ueda M, et al. Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by Pd complex with 2,2'-bipyridyl ligands [J]. Applied Catalysis A: General, 2000, 201(1): 101~105.
    [119] Takagi M, Miyagi H, Yoneyama T, et al. Palladium-lead catalyzed oxidative caronylation of phenol [J].J Mole Catal A: Chemical, 1998, 129(1): L1~L3.
    [120] Song H Y, Park E D, Lee J S. Oxidative carbonylation of phenol to diphenyl carbonate over supported palladium catalysts [J]. J Mole Catal A: Chemical, 2000, 154: 243~250.
    [121] Iwane H, Miyagi H, Imada S, Seo S, Yoneyama T. Method of producing aromatic carbonate [P]. EP 0614876. 1993
    [122] Kezuka H, Okuda F. Process for producing an organic carbonate [P]. US 5336803, 1994.
    [123] Mizukami M, Hayashi K, Iura K. Method for preparing aromatic carbonates [P]. US 5380907, 1995.
    [124] Buysch H-J, Jentsch J D. Process for the continuous production of diaryl carbonates [P]. US 5821377, 1998.
    [125] Buysch H-J, Jentsch J D. Supported catalysts containing a platinum metal and process for preparing diaryl carbonates [P]. US 6001768, 1999.
    [126] Ishii H, Ueda M, Takeuchi K, et al. Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by bis(benzonitrile)-dichloropalladium in the presence of polyvinyl-pyrrolidone [J]. Catalysis Communication, 2001, 2(1): 17~22.
    [127] Ishii H, Takeuchi K, Asai M, et al. Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by Pd-pyridyl complexes tethered on polymer support [J]. Catalysis Communication, 2001, 2(3-4): 145~150.
    [128] 王延吉,赵茜,刘宏伟等.合成碳酸二苯酯用负载型催化剂及其制备方法[P].CN 1391985,2003.
    [129] [P].特開平10-43596,1998.
    [130] Kuehling S, Hallenberger K, Ooms P, et al. Distillation process for purifying diaryl esters of carbonic acid [P]. EP 7848048, 1997.
    [131] Buysch H J, Hesse C, Rechner J. Phase-separation process for the extraction of diaryl carbonate and phenolic compounds from reaction mixtures [P]. DE 19605167, 1997.
    [132] Ofori J Y, Shafer S J, Pressman E J, et al. Method for recovering and recycling catalyst constitunents [P]. EP 913197, 1999.
    [133] Sheldon J S. Method of recovering and purifying diphenyl carbonate from phenolic solutions thereof [P]. US 5239106, 1993.
    [134] Sheldon J S, Clifton P, Pressman E J. Method of purifying diphenyl carbonate-phenol adduct [P]. US 5756801, 1998.
    [135] 孙碧秀,吕耀宏.复合物催化剂上酯交换法合成碳酸二苯酯[J].天然气化工,1992,17(4):21.
    [136] 梅付名,李光兴,莫婉玲.n-Bu_2SnO催化酯交换合成碳酸二苯酯的研究[J].现代化工,2000,20(4):30.
    [137] 姚洁,高俊杰,王公应.Lewis酸、碱催化碳酸二甲酯与苯酚酯交换反应[J].石油化工,2002,31(2):99~101.
    [138] 周炜清,赵新强,王延吉.酯交换法合成碳酸二苯酯用氧化铅-氧化锌催化剂的研究[J].催 化学报,2003,24(10):760~764.
    [139] 周炜清,赵新强,王淑芳等.负载型n-Bu_2SnO催化剂上合成碳酸二苯酯的研究[J].四川大学学报(工程科学版),2002,34(5):39~41.
    [140] Zhou W Q, Wang Y J, Zhao X Q. Synthesis of diphenyl carbonate by transesterification over lead and zinc double oxide catalyst [J]. Applied Catalysis, 2004(260): 19~24.
    [141] Mei F M, Li G X. A new PdCl_2-Co(Pyca)_2 catalyst system for synthesis of diphenyl carbonate by oxidative carbonylation of phenol [J]. 燃料化学学报,2000,28(6):481.
    [142] 张光旭,吴元欣,马沛生,等.非均相催化一步合成碳酸二苯酯的研究.Ⅰ.载体制备方法对催化剂性能的影响[J].催化学报,2002,23(2):130~132.
    [143] 张光旭,马沛生,吴元欣,等.非均相催化一步合成碳酸二苯酯的研究.Ⅱ.焙烧温度对催化剂性能影响[J].燃料化学学报,2002,30(4):363~367.
    [144] 张光旭,吴元欣,马沛生,等.非均相催化一步合成碳酸二苯酯的研究.Ⅲ.镧的添加量对催化剂性能的影响[J].分子催化,2002,16(4):293~297.
    [145] 张光旭,马沛生,吴元欣,等.非均相催化一步合成碳酸二苯酯的研究.Ⅳ.活性细分及其负载方法对催化剂性能的影响[J].催化学报,2002,23(5):413~417.
    [146] 刘宏伟,赵茜,赵新强,等.钯系络合物催化剂上苯酚氧化羰基化合成碳酸二苯酯[J].四川大学学报(工程科学版),2002,34(增刊):47~49.
    [147] 刘宏伟,周炜清,赵新强,等.苯酚氧化羰基化直接合成碳酸二苯酯负载型催化剂[J].石油学报(石油加工),2004,20(3):49~53.
    [148] 刘程.表面活性剂应用大全.北京:北京工业大学出版社,1994:75-78.
    [149] Lagourette B, Peyrelasse J, Boned C, et al. Percolative conduction in microemulsion type systems [J]. Nature, 1979, 281: 60~62.
    [150] Lagues M. Study of structure and electrical conductivity in microemulsions: Evidence for percolation mechanism and phase inversion [J]. J Phsy (Paris) Lett, 1987, 39(24): L487-L491.
    [151] Hammersley J M. Proc. Monte Carlo estimate of percolation probabilities for various latties [J]. Proc Cambridge Phil Soc, 1957, 53: 642
    [152] Jada A, Lang J, Zana R. Relation between electrical percolation and rate constant for exchange of material between droplets in water in oil microemulsions [J]. J Phys Chem, 1989, 93: 10.
    [153] Lagues M, Sauterey C. Percolation transition in water in oil microemulsions. Electrical conductivity measurements [J]. J Phys Chem, 1980, 84(26): 3503~3508.
    [154] Eicke H F, Thomas H. Langmuir, 1999, 15: 400.
    [155] 莫春生,童永芬,甘贵兰.CTAB/C_4H_9OH/C_7H_(16)/H_2O体系中W/O型微乳液的导电活化能[J].化学研究与应用,2003,15(2):211~214.
    [156] 辛寅昌,张积树,陈宗淇等.以非离子型表面活性剂组成的W/O型微乳液的渗滤现象[J].化学学报,1996,54:132~139.
    [157] Gerbacia W, Rosane R L. Microemulsions: Formation and Stabilization [J]. J Colloid and Interface Science. 1973, 44: 242~248.
    [158] Bowcott J E, Schuhnan J H. Control of droplet size and phase continuity in transparent oil-water dispersions stabilized with soap and alcohol [J]. Elecktrochem Phys Chem. 1955, 59: 283.
    [159] 沈兴海,王文清,高宏成.稀释法求微乳液体系的结构参数[J].北京大学学报(自然科学版),1994,30(2):147~153.
    [160] 罗希权,罗毅,王澄华等.表面活性剂产品手册[M].北京:中国轻工业出版社,1997,122.
    [161] Fang J, Venable R L. Conductivity study on microemulsion system. [J]. J Colloid and Interface Science, 1987, 116(1): 269~277.
    [162] Temsamani M B, Maeck M, Hassani I E, et al. Fourier transform infrared investingation of water states in AOT reverse micelles as a function of counterionic nature [J]. J Phys Chem 13, 1998, 102(18): 3335~3340.
    [163] Giammona G, Goffredi F, Liveri V T, et al. Water structure in water/AOT/n-heptane microemulsion by FT-IR spectroscopy [J]. J Colloid Interf Sci, 1992, 154(2): 411~415.
    [164] Onori G, Santuci A. IR investingations of water structure in AOT reverse micellar aggregates [J]. J Phys Chem, 1993, 97(20): 5430~5434.
    [165] Jain T K, Varshney M, Maitra A. Structural studies of AOT reverse micellar aggregates by FT-IR spectroscopy [J]. J Phys Chem, 1989, 93 (21): 7409~7416.
    [166] Goto A, Yoshioka H, Kishimoto H, et al. Calorimetric studies on the state of water in reversed micelles of sodium bis(2-ethylhexy)sulfosuccinate in various solvents [J]. Langmuir, 1992, 8(2): 441~445.
    [167] Goto A, Harada S, Fujita T, et al. Enthalpic studies on the state of water in sodium bis(2-ethylhexy)sulfosuccinate reversed micelles [J]. Langmuir, 1993, 9(1): 86~89.
    [168] Gonzalez-Blanco C, Rodriguez L J, Velazquez M M. Effect of the addition of water-soluble polymers on the structure of Aerosol OT water-in-oil microemulsions: A fourier transform infrared spectroscopy study [J]. Langmuir, 1997, 13 (7): 1938~1945.
    [169] 李泉,李维红,翁诗甫,等.水/AOT/正庚烷微乳体系中水结构的FT-IR研究[J].物理化学学报,1997,13(5):438~443.
    [170] 腾弘霓,杨泽福,辛寅昌,等.红外光谱研究以非离子型表面活性剂所组成微乳液的水结构[J].化学学报,1998,56:135~140.
    [171] 吴谨光,高宏成,陈滇等.离子水化过程的核磁共振研究——二-(2-己基)膦酸-长链醇-煤油-水体系[J].高等学校化学学报,1983,4(5):605~609.
    [172] 周国伟.AOT油包水微乳液核的结构和AOT分子构象的FT-IR研究[D].山东大学博士学位论文
    [173] Okuyama K, Sugiyama J, NagahatR a, Asai M, Ueda M, Takeuchi K. Oxidative Carbonylation of Phenol to Diphenyl Carbonate Catalyzed by Pd-Carbene Complexes [J]. J Mole Cat A: Chemical, 2003, 203: 21~27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700