用户名: 密码: 验证码:
球形活性炭负载镍基催化剂制备和性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球形活性炭是一种新型高档活性炭,在各种形状的活性炭材料中,因其具有球形度好、装填密度均匀、比表面积较大、强度高等一系列优点,越来越受到人们的关注。
     本文以市售大孔弱酸性阳离子交换树脂(D152)为载体,负载镍和其他过渡金属,其中镍为活性组分,其他过渡金属为助剂,经高温炭化-还原制备球形炭化树脂负载镍基催化剂。研究结果表明,影响球形活性炭负载金属催化剂活性的主要因素是金属离子负载量、炭化温度和活性组分的还原时间。同时对树脂的炭化过程进行了差热分析,得到了最佳炭化温度,通过考察其对异丙醇脱氢反应的催化活性,确定了催化剂活化还原时间。实验结果为:炭化温度773K,炭化时间30min,氢气流还原时间70min。
     为了考察镍在离子交换树脂上负载反应的条件,本文采用matlab软件编程计算,得出了不同pH下镍-氨配合物的分布曲线,从而进一步说明镍离子在不同pH下形成镍-氨配合物的情况,为其在树脂上交换负载提供理论依据。
     本文首次较详细地探讨了炭化树脂负载Ni基催化剂对异丙醇脱氢和大豆油加氢的反应,对催化剂进行了活性评价,找出了反应温度、压力、时间对催化剂活性影响的规律,考察了催化剂用量对异丙醇脱氢和大豆油加氢反应产物的影响以及催化剂的使用寿命,并分别确定了本实验条件下异丙醇脱氢和大豆油加氢反应的工艺条件。
     (1)Ni/炭化树脂催化异丙醇脱氢的工艺条件为:对100mL异丙醇,当催化剂上的镍负载量为35.2wt%,催化剂用量为1.5g,反应温度220℃,反应时间1h时,丙酮产率达到12.5%,其选择性为100%。
     (2)Ni/炭化树脂催化大豆油加氢的工艺条件为:对100g大豆油,当催化剂上的镍负载量为21wt%,催化剂用量为1.5g,反应温度200℃,反应时间2h,反应压力1.5MPa时,大豆油碘值从130.0降低至81.7。
     (3)Ni-Ce/炭化树脂催化大豆油加氢的工艺条件为:对于100g大豆油,当催化剂上的镍负载量为21wt%,Ni与Ce的原子比为5:1,催化剂用量为0.5g,反应温度200℃,反应时间1h,反应压力1.5MPa时,大豆油碘值从130.0降低至18.8。采用不同过渡金属作为助剂,对催化剂活性的影响大小顺序为:
     Ce>La>Cr>Ag>Cu>Fe>Co>Cd>Zn。
The sphere active carbon is a kind of new upscale product that receives people's attention more and more. It has been attached many merits as a new type active carbon with the good sphere activity, the even loading density, the big surface area and the high intensity, ets.
     Sphere carbonized resin supported nickel and transition metal was prepared by the carbonization and the reduced process by H-2 gas flow. D152 large pore cation exchange resin was the carrier. Nickel was the active constituent. Transition metal was the assistant. The results showed us that the key factors in preparation of sphere carbonized resin supported metal catalyst were metallic ion exchange, carbonization temperature and reduced time of active constituent. Meanwhile, Carbonizing process of resin was analyzed by DSC, obtaining the best carbonization temperature. The production rate of 2-propanol dehydrogenation as a simulation reaction was used to determine reduced time of active constituent. Its experimental result were given as follows:carbonization temperature was 773K, carbonization time was 30min, reduction process by H_2 gas flow was 70min.
     In order to inspect the reaction condition of nickel supported on the resin, this article was used the matlab software programming computation, obtaining the distribution curve of nickel - ammonia compound under different pH, thus further explained that the nickel ion formed the nickel - ammonia compound under different pH, and provided the theory basis for ion exchange.
     This thesis dealed with the study on the 2-propanol dehydrogenation and soybean oil hydrogenation reaction using nickel or nickel-cerium supported on carbonized resin as the catalyst to evaluate catalyst activity in details.Effects of reaction temperature, pressure, time on the activity of catalyst, different atom ratio supported on the catalyst, catalyst dosage and stability were investigated. The conditions on the 2-propanol dehydrogenation and soybean oil hydrogenation reaction had been determined.
     (1)The preparation parameters of the 2-propanol dehydrogenation using nickel supported on carbonized resin as a catalyst were obtained as follows: the dosage of 2-propanol was 100mL, the capacity of nickel supported on catalyst was 35.2wt%, the catalyst was 1.5g, the reaction temperature was 773K, and the reaction time was 1h, the yields of acetone could be up to 12.5%, the selectivity of acetone was 100%.
     (2) The preparation parameters of the soybean oil hydrogenation using nickel supported on carbonized resin as a catalyst were obtained as follows : the dosage of soybean oil was 100g, the capacity of nickel on catalyst was 21wt%, the catalyst was 1.5g, the reaction temperature was 773K, the reaction time was 2h, and the reaction pressure was 1.5MPa, soybean oil's iodine value was decreased from 130.0 to 81.7.
     (3) The preparation parameters of soybean oil hydrogenation using nickel-cerium supported on carbonized resin as a catalyst were obtained as follows : the dosage of soybean oil was 100g, the capacity of nickel on catalyst was 21wt%, The atomic ratio of nickel and cerium was 5:1,the catalyst was 0.5g, the reaction temperature was 773K, the reaction time was 1h, and reaction pressure was 1.5MPa, soybean oil iodine value was decreased from 130.0 to 18.8. Different transition metal were used as the catalyst's assistant and their active influence rule were obtained: Ce >La> Cr> Ag> Cu>Fe> Co>Cd>Zn.
引文
[01]沈曾民,张文辉,张学军.活性炭材料的制备与应用[M].北京:化学工业出版社,2006.
    [02]Takahivo kasuh,Patent Gunji morino.Active carbon and its preparation from mesophase microbeads[P],U S 5143889.1992.
    [03]I.C.Lewis,R.A.Greinks,S.L.Strong.Active carbon for natural gas storage.21st Biennial Conference on Carbon.New York[J]:ACS,1993,490.
    [04]C.Ishii,K.Kaneko.Ferromagnetic properties of super surface mesocarbon microbeads[J].22nd Biennial Conference on Carbon.New York:ACS,1995,240.
    [05]许斌,陈鹏.中间相碳微珠(MCMB)的开发、性质和应用[J].新型炭材料.1996,11(3):4.
    [06]Lyubchik S.B.,Benoit R.,Bguin F.Influence of chemical modification,of anthracite on the porosity of the resulting activated carbons[J].Carbon,2002,(4):1827.
    [07]王克温,乔文明,刘植昌,凌立成,刘朗,周承泽,董文荣,郑斌.沥青球空气氧化不熔化的研究[J].炭素技术,1996,(2):5.
    [08]何炳林,王补森,丁泽仁,阎怀兰.新型吸附剂一球形炭化树脂的研究[J].离子交换与吸附,1986,4:36-42.
    [09]薛锐生.中间相炭微球的制备及其应用的研究[D].北京:北京化工大学,2002.
    [10]李伏虎.中间相炭微球的制备及其应用的研究[D]一匕京:北京化工大学,2004.
    [11]Yoon S H,Park Y D,Mochida I.Preparation of carbonaceous spheres from suspensions of pitch materials[J].Carbon,1992,30(5):781-786
    [12]杨国华主编.碳素材料[M].北京:中国物资出版社,1999:411.
    [13]张永刚,王成杨,闫裴.沥青基球形活性炭的制备及其应用进展[J].材料报,2002,16(2):46-48.
    [14]刘生.球形活性炭的研制[D].北京:北京化工大学材料科学与工程学院,2005.
    [15]Robert A D.The production of active carbon from brown coal in high yields[J].Fuel,1979,58(6):472.
    [16]Jankowska Ann et al.Porous structure of steam activated chars from flame coal,orthocoking coal and anthracite,preoxidized in different particle sizes[J].coal science,1995,1:1137-1140.
    [17]Jankowska H,Matciak M,Nowacki J.Relationship between reflectance and structure of high surface areas carbon[J].Active carbon,1991,34(3):31-38.
    [18]Pis J J,Ceteon Teress A,Mahamud manual.Preparation of active carbons from coal partⅢ:Activation of Char[J].Fuel processing technology,,1996,47(1):119-124.
    [19]Parra J B,Pi J J,Sousa T C.Development of Macro porosity in activated carbons by effect of coal preoxidation and bum-off[J].carbon,1996,34(6):783-789.
    [20]Qiao Wen-ruing,Song Yah Ling Li-cheng Liu Lang.23rd Biennial International Conference on Carbon,State College,USA,ACS,1997,7,
    [21]Hisatsugu Kaji and Kazuhiro Watanabe.Compiler:US,4420443[P/OL].1982-12-9.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fne tahtmL%2 FPTO%2Fsrchnum.htm&r=1&f=-G&1=50&s1=4420443.PN.&OS=PN/4420443 &RS=PN /4420443.
    [22]Hubert Von Blucher,Hasso Von Blucher.Compiler:US,4857243[P/OL].1987-12-24.http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fne tahtmL%2FPTO%2Fsrchnum.htm&r=1&f=-G&1=50&s1=4420443.PN.&OS=PN/4420443&RS=PN /4857243.
    [23]杨国华.炭素材料[M].北京:中国物资出版社,1999,275-287.
    [24]裴伟征,尹华强,刘勇军.球形活性炭及其应用新进展,第六届全国新型碳材料学术研讨会论文集[C],昆明,2003,10:145-147.
    [25]杨骏兵,康飞宇.球形活性炭及其应用[J].材料学报,2002,16(5):59-61.
    [26]Botha F D,McEnaney B.煤制活性炭对氰化金的吸附[J].包一译.活性炭,1993,3:39-42.
    [27]张文辉,梁大明.活性炭生产新技术及新产品.第18届炭石墨材料学术会议论文集[C],中国电工学会炭石墨材料专业委员会.西安,200,10:21-25.
    [28]杨骏兵,凌立成,刘朗周化和炭化条件对酚醛树脂基球形活性炭机械强度与吸附性能的影响[J].炭素技术,1999(4):7.
    [29]杨骏兵,凌立成,吕春祥,刘朗.二茂铁的添加对酚醛树脂基球形活性炭活化特性以及孔径分布的影响[J],离子交换与吸附,2000,16(2):155-161.
    [30]何炳林,于燕生,钱庭宝,王补森.新型吸附剂.球形碳化树脂的研究II[J].高分子学报,1982,(5):338.
    [31]何炳林,于燕生,钱庭宝,宗建超,史作清.新型吸附剂.球形碳化树脂的研究Ⅲ[J].高分子学报,1984,(4):283.
    [32]何炳林,于燕生,宋福云,郭贤权,童明容.新型吸附剂.球形碳化树脂的研究Ⅳ[J].高分子学报,1985,(2):10.
    [33]何炳林,王补森,李树军,孙学增.新型吸附剂一球形碳化树脂的研究Ⅵ[J].离子交换与吸附,1987,(2):14-19.
    [34]Bratek W,Bratek K,Kulazynski M.The utilization of waste ion exchange resin in environmental protection[J].Fuel processing technology,2002,77-78:43-436.
    [35]Nakagawa H,Watanabe K,Harada Y,miura K.Control of micropore formation in the carbonized ion exchange resin by utilizing pillar effect[J].Carbon,1999,37:1455-1461.
    [36]南京林产工业学院土并.林产化学工业手册(下册)[M].中国林业出版社,1981,北京,1293-1373.
    [37]王鹏,张海禄.表面化学改性吸附用活性碳的研究进展[J].炭素技术,2003,3:23-29.
    [38]宋燕,乔文明,凌立成.球形活性炭及其应用进展[J].炭素,1999,1:3-7.
    [39]Nakashima M,Inagaki M,Shimada S,etal.On the adsorption of CO_2 by molecular sieve carbons-volumetric and gravimetric studies[J].Carbon.1995,33(9):1301-1306.
    [40]范广裕.黑索金废水的处理[J].化工环保,1996,16(3):156-160.
    [41]Kureha Kagabushiki Kaisha.Japan,Compiler:US Patent:5562901,1996-10-8.http://patft.uspto.gov/netacgi/nph-Parser?TERM1=http%3A%2F%2Fwww.uspto.gov%2Fpatft%2Fi ndex.htmL& Sect1=PTO1& Sect2=HITOFF&d=PALL&p=1&u=%2FnetahtmL%2FPTO%2Fsrchnu m.htm&r=0&f=S&1=50.
    [42]Amano I.Artificial kidney,artificial liver and artificial cell[J],Plenum Press,New York,1978,89.
    [43]陈再彬.碳肾抢救例中毒患者的临床观察[J].新型炭材料,1998.13(3)52-57.
    [44]日本炭素材料学会(编).中国金属学会碳素材料专业委员会(编译).新炭素材料入门[M],1999,215.
    [45]何炳林,张克胜.交联聚乙烯醇水凝胶对胆红素的吸附性能[J].离子交换与吸附,1998,14(4):204-209.
    [46]项启贤.俄罗斯炭.石墨制品生产概况[J].新型炭材料,1996,2.
    [47]Valladares D,Manzi S,Riccarda J L,Marchese J,Zgrablich G.Carbon'94,International Conference on Carbon,Extended Abstracts,Granada,Spain,1994:408.
    [48]埃勒夫阿托化学有限公司.Compiler:EP055169[P].1999-2-24.http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=CN 1079416&F=0&QPN=US5414116&RPN=US5414116&DOC=dcb65d04a b6722da954d05c28a42e9b960.
    [49]Shao Xiaohong,Wang Wenchun,Xue Ruisheng,Shen Zengming.Adsorption of Methane and Hydrogen on Mesocarbons Mierobeads by Experiment and Molecular Simulation,J.Phys.Chem.B 2004,108:2970-2978.
    [50]Petrochemical handbook issue[J],Hydroearbon Processing,1977,56(11):121.
    [51]Petrochemical handbook issue[J],Hydrocarbon Processing,1989,68(11):105.
    [52]马友山.仲醇脱氢制酮技术现状及进展[J].精细石油化工,1998,5:46-49.
    [53]张明慧,李伟,陶克毅,王忠秋,李晓惠,山力赤.环己醇脱氢新型催化剂的研究[J].石油化工,2000,12(29):903-906.
    [54]高会元,周卓华,张报安.Cu-ZnO-P/SiO_2.xK_2O催化剂对仲丁醇脱氢的催化性能[J].石油化工,1995,11(24):767-771.
    [55]N.Lingaiah,Md.A.Uddin,A.Muto,T.Iwamoto,YusakuSakata,Y.Kusano.Vapou.phasecatalytic hydrodechlorination of chlorobenzene over Ni-carbon composite catalysts[J].Molecular Catalysis,2000,161:157-162.
    [56]P.C.L'ArgentieAre,E.A.Cagnola,D.A.Liprandi,M.C.Roma,An-Martnez,C.Salinas-MartoAnez de Lecea.Carbon-supported Pd complex as catalyst for cyclohexene hydrogenation[J].Applied Catalysis,1998:41-48.
    [57]Saito Y,Kameyama H,Yoshida K.catalyst-assisted chemical heat pump with reaction couple of aetone hydrogenation/2-propanol dehydrogenation for up geading low level thermal energy:proposal and evaluation[J].Int J Energy Res,1987;11:549.
    [58]N.Meng,S.shiNoda and ~.Saito.improvements on thermal efficiency of chemical heat pump involving the reaction couple of 2-propanol dehydrogenation and acetone hydrogenation[J],Int.J.hydrogen Energy,1997,22(4):36-367.
    [59]Yamashita M,Dai F,SuzukiM etal.mechanison of 2-propanol dehydrogenation with suspended nickel fine-partick catalyst[J].Bull Chem Soc Jpn,1991;64:628.
    [60]龚磊,石秋杰,康念铅,吴苏琴.非晶态合金催化剂的制备及其用于油脂加氢反应的研究[J].江西化工,2007,(4):26-28.
    [61]师玉荣,刘寿长.油脂催化加氢催化剂的研究进展[J].河南化工,2002,(11):6-8.
    [62]张玉军,艾宏韬,黄道惠.油脂氢化进展[J].郑州粮食学院学报,1991,(4):45-51.
    [63]张玉军,陈杰珞.油脂氢化化学与工艺学[M].北京,化学工业出版社,2004,4-5.
    [64]食用油脂及其加工[M].译文集.商业部油脂科技所,1983.
    [65]Andrew Streitwiser Jr.Clyton.Introduction to organic Chemistry[M].new York:Wiley-Interscience Publication John Wiley &Son,1972:276.
    [66]艾宏韬,黄道惠,张玉军,王水兴.油脂氢化动力学模型[J].物理化学学报,1992,8(6):792-798.
    [67]张玉军,胡静波.油脂的传统氢化与电化学催化氢化[J].郑州工程学院学报,2002,23(1):55-57.
    [68]陈凌霞.油脂和脂肪酸加氢高活性催化剂的研究[D],郑州大学,2001.
    [69]张玉军,陈杰,王容.油脂加氢催化剂研究现状及发展趋势[J].工业化,2002,10(6):23-26.
    [70]Sambasivara Koritala,Butterfield R O,Dutton H J.Selective hydrogenation with copper catalysts:kintics[J].J Am Oil Chemists Soc,1970,47:266-268.
    [71]刘寿长,刘永红,陈凌霞,王海荣,张洪权,吴予明.食用油脂加氢改性催化剂的研究[J].中国油脂,2000,25(6):102-105.
    [72]杜书,胡椒叶,吴荣安,YK-1新型油脂氢化催化剂[J].日用化学工业,1990,(5):1-3.
    [73]熊贵志,宋影泉,储伟.CIM26单元镍油脂氢化催化剂的研制[J].精细加工,2000,(6):349-352.
    [74]Cecchi G,Dennis R P.Hrdrogenation of new rape oil.Ⅲ.Catalysis by palladium on carbon at room temperature and effect of solvents[J].Rev Fr Corps Gras,1984,31(6):243-246.
    [75]Ray J D,Carr B I.Empirical Modeling of Soybean Oil Hydrogenation[J].J Am Oil Chemists' Soc,1985,62:1218-1222.
    [76]胡元贞,刘莹,张风英,焦庆影,孙宇光.豆油选择性氢化催化剂[J].中国粮油学报,1990,5(2):54-57.
    [77]Johansson L E.Copper Catalysts in the Selective Hydrogenation of Soybean and Rapeseed Oils:Ⅲ.The Effect of Pressure When Using Copper Chromite Catalysts[J].J Am Oil Chemists' Soc,1979,56:987-991.
    [78]于岚,王华,张风英.食用油氢化稀土催化剂的研制[J].中国油脂,1993,2:14-15.
    [79]Karl J.Moulton,Robert E.Bral.Nickel/Copper Chromite Catalysts for Hydrogenating Edible Oils[P].US:3856710,1974-12-24.
    [80]Giuseppe Gubitosa,Maurizio Giampietri,Giuliano Vecchiato.Supported Metal Catalyst for Hydrogenating Organic Compounds and Process for Preparing It[P].US:5492877,1996-2-20.
    [81]熊贵志,陶毅,宋影泉.CIM油脂加氢催化剂的研制和开发[J].中国油脂,1997,22(1):42-45.
    [82]刘寿长,李利民.脂肪酸甲酯加氢催化剂制造方法及该催化剂载体制备方法[P].N:1467035A,2004-1-14.
    [83]赵建国,高振江,崔广华.氢化分提法生产硬黄油的研究[J].中国油脂,1988,2:14-18.
    [84]张玉军,阎向阳,杨喜平,艾宏韬.油脂氢化三元金属催化剂制备及性能研究[J],工业催化,2000,8(4):34-37.
    [85]张玉军,艾宏韬,谷克仁,阎向阳,毕艳兰.油脂氢化三元金属催化剂制备及性能研究(Ⅰ)-金属助剂及金属配比的研究[J].中国油脂,2000,25(4):22-25.
    [86]张玉军,谷克仁,艾宏涛,阎向阳.油脂氢化三元金属催化剂制备及性能研究(Ⅱ)-制备条件的研究[J].中国油脂,2000,25(5):57-60.
    [87]陈凌霞,刘寿长,霍胜娟.新型油脂加氢催化剂Ni-B/SiO_2非晶态和金的研究[J].中国油脂,2003,28(8):66-68.
    [88]秦振平,郭红霞,樊世科.Ni-B超细非晶态合金催化剂的油脂氢化活性研究[J].中国油脂,2003,28(10):52-54.
    [89]Berglund Mats,Andersson Carlaxel.Hydrogenation of Soybean Oil with Cationic Ru(Ⅰ)-phosphine Complex as Catalysts-Para-Toluene Sulfonate and Sulfonateed Styrene Resins as Counterion[J].J Am Oil Chemists'Soc,1984,61(8):1351-1353.
    [90]Koritala S.Homogenous Catalytic Hydrogenation of Soybean Oil:Palladium Acetylacetonate[J].J Am Oil Chemists'Soc,1985,62(3):517-520.
    [91]Frankel,R.A.Awl,J.P.Friedrich.Cis-Unsaturated Fatty Acid Products by Hydrogenation with Chromium Hexacarbonyl[J].J.Am.Oil Chemists' Soc.1979,56(12):965-969.
    [92]Marwan.Chemical modification of crude palm oil by palladium catalyzed hydrogenation[J].Indonesian Journal of Agricultural Sciences.Green Digital Press.2001,(1):5-10.
    [93]祝洪杰,贺红军,郭清华,安立敦.不饱和油脂加氢催化剂的研究[J].工业催化,2003,11(6):31-33.
    [94]何新秀,刘华,许清淮.油脂加氢催化剂镍晶粒度与活性的关系研究[J].化学通报,1998,(8):32-34.
    [95]谭胜,陈学军.制备方法对油脂加氢催化剂活性的影响[J].河北化工,2005,(1):23-25.
    [96]Beckmann H J.Hydrogenation practice[J].J.Am.Oil Chem.Soc.,1983,60(2):282.
    [97]艾宏韬,张玉军,黄道惠,王水兴.油脂氢化反应速率常数与碘值的定量关系[J].中国油脂,1992
    [98]黄道惠,艾宏韬,张玉军等.油脂氢化反应速率常数的解析计算法[J].中国粮油学报,1991,6(2):22.
    [99]艾宏韬,王水兴,张玉军等.油脂氢化反应活化能测定原理[J].中国油脂(增刊),1992,17:161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700