用户名: 密码: 验证码:
基于溶液前驱体浸渗调控陶瓷组成和性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液相前驱体浸渗(liquid precursor infiltration)是一种可以实现高均匀度掺杂、表面改性、制备复合材料及梯度材料的工艺。将具有开口气孔的坯体置入液相前驱体中,含有改性组元的液相会沿孔隙结构渗入坯体内部,使材料的组成和性能得以改变。本文通过将浸渗工艺应用于之前涉及不多的几个材料体系,制备出了组织、性能具有明显优势的陶瓷材料,并详细地对比了浸渗与传统工艺的优缺点。
     本文首先使用含有致色离子的水溶液浸渗水萃取脱脂的注射成型氧化锆坯体,从而制备了彩色氧化锆陶瓷部件,提供了一种普适性的方法。制备的材料具有厚度可控的宏观芯-壳结构。此外,萃取脱脂后的干燥制度影响传质机理,并导致了浸渗速率的明显变化。通过使用水-酒精混合溶液,解决了浸渗工艺在憎水型坯体上使用的问题。
     使用循环浸渗-原位沉淀工艺向氧化铝坯体中引入了含量可控、尺寸细小、分布均匀的ZrO_2晶粒,制备了ZTA材料。浸渗在很低的ZrO_2添加量下(2.3vol%)成功地抑制了晶粒的异常长大,而传统上认为至少需要5vol%才能实现该目标。通过调整浸渗后的干燥温度,可以调节含锆沉淀物的分解行为,从而调控引入的ZrO_2的量。
     接下来探索了几个工艺参数对浸渗效果的影响。发现降低溶液浓度、减小坯体尺寸,施加促进气体排出的辅助机制等方法有助于提高浸渗填充率并实现良好的均匀性。使用浸渗工艺对小尺寸陶瓷坯体进行低浓度掺杂,可以达到良好的分布均匀性和较为精确的添加剂引入量。
     最后以浸渗硝酸盐水溶液的形式向氧化铝坯体中引入了添加剂,通过高温氢气气氛烧结制备了半透明氧化铝陶瓷。与传统球磨工艺相比,浸渗制备的样品添加剂分布均匀性更优,显微组织也更为细小。添加500ppm MgO制备的样品其平均晶粒尺寸仅有7μm,三点抗弯强度达到300MPa,综合性能明显优于球磨对照样。浸渗三种添加剂共掺杂可以实现更优的透光率。
Liquid precursor infiltration technique is capable of introducing dopants with highhomogeneity, realizing surface modification, manufacturing of composite and gradientmaterials. By immersing green body with open porosities in the liquid containingmodifying components, the liquid would migrate along the interconnected porousstructure into the inerior part of the preform, achieving manipulation of thecomposition and properties of the material. This study is mainly focused onapplication of infiltration technique in several materials. Various ceramic materialswith obviously improved microstructure and properties have been fabricated. Theadvantages and disadvantages of both infiltration and the conventional ceramicprocessing technologies have also been contrastively studied.
     Firstly, ceramic parts have been developed by infiltrating aqueous solutionscontaining coloring ions into the water-debound green bodies prepared by ceramicinjection molding. Our strategy provided a general approach to the preparation ofcolored ceramics. The fabricated colored zirconia ceramics exhibits a macroscopiccore-shell structure with tunable thickness. Besides, the drying process influences theinfiltration rate by controlling the mass transferring mechanism. By adding ethanol tothe aqueous solution, the problem of applying infiltration to the hydrophobic greenbodies has been solved.
     ZTA composites have been prepared by cyclic infiltration and in-situ precipitationtechnique. The fabricated material contains fine-sized, well-distributed ZrO_2grainsthroughout the bulk matrix. Compared with the conventional ball-milling approach,infiltration prepared material successfully inhibits the abnormal grain growthphenomenon at a ZrO_2content (2.3vol%) lower than the previously reported criticalvalue (5vol%). By adjusting the drying temperature after precipitation, thedecomposition behavior of zirconium-containing precipitates could be controlled,thereby adjusting the ZrO_2content introduced via infiltration.
     The next section investigates factors influencing the amount of exotic components,distribution profiles and so forth. It is found that reducing the solution concentration,diminishing the size of green body and imposing assisting mechanisms which favor the evacuation of entrapped gas within the green compact is beneficial for achieving ahigh infiltration efficiency and enhanced homogeneity. The results indicate thatinfiltration is especially suitable for doping small-sized ceramic green bodies withlow-content exotic elements, achieving good distribution homogeneity and precisecontrol of the introduced amount.
     The last part is focused on preparing translucent alumina ceramics via infiltrationand H2sintering. Different from the conventional strategies of introducing dopants inthe ball-milling stage, pure alumina preforms were infiltrated using aqueous nitratesolutions. Infiltration prepared composites exhibit much improved homogneity ofintroduced sintering additives and finer microstructure. The sample containing500ppm MgO has an average grain size of only approximately7μm, flexural strengthof about300MPa, exhibiting much enhanced optical properties over the ball-millingprepared counterpart. Triple doping proved to be more beneficial for achieving highertransmission properties.
引文
[1]谢志鹏.结构陶瓷.北京:清华大学出版社,2011.
    [2] Krell A, Blank P, Ma H W, et al. Transparent sintered corundum with high hardness andstrength. J. Am. Ceram. Soc.2003,86:12-18.
    [3] Lange F F and Hirlinger M M. Hindrance of grain-growth in Al2O3by ZrO2inclusions. J.Am. Ceram. Soc.1984,67:164-168.
    [4] Tian Z B, Wang X H, Shu L K, et al. Preparation of nano BaTiO3-based ceramics formultilayer ceramic capacitor application by chemical coating method. J. Am. Ceram. Soc.2009,92:830-833.
    [5] Chen Z Z, Shi E W, Zheng Y Q, et al. Hydrothermal synthesis of nanosized CoAl2O4onZnAl2O4seed crystallites. J. Am. Ceram. Soc.2003,86:1058-1060.
    [6] Lakeman C D E and Payne D A. Processing effects in the sol–gel preparation of PZT driedgels, powders, and ferroelectric thin layers. J. Am. Ceram. Soc.1992,75:3091-3096.
    [7] HoneymanColvin P and Lange F F. Infiltration of porous alumina bodies with solutionprecursors: Strengthening via compositional grading, grain size control, and transformationtoughening. J. Am. Ceram. Soc.1996,79:1810-1814.
    [8] Tu W C and Lange F F. Liquid precursor infiltration processing of powder compacts.1.Kinetic studies and microstructure development. J. Am. Ceram. Soc.1995,78:3277-3282.
    [9] Marple B R and Green D J. Mullite alumina particulate composites by infiltration processing.J. Am. Ceram. Soc.1989,72:2043-2048.
    [10] Marple B R and Green D J. Graded compositions and microstructures by infiltrationprocessing. Journal of Materials Science1993,28:4637-4643.
    [11] Darby R J, Farnan I, and Kumar R V. Method for making minor dopant additions to porousceramics. Advances in Applied Ceramics2009,108:506-508.
    [12] Ho P W, Li Q F, and Fuh J Y H. Evaluation of W-Cu metal matrix composites produced bypowder injection molding and liquid infiltration. Materials Science and EngineeringA-Structural Materials Properties Microstructure and Processing2008,485:657-663.
    [13] Glass S J and Green D J. Mechanical properties of infiltrated alumina-Y-TZP composites. J.Am. Ceram. Soc.1996,79:2227-2236.
    [14] Defriend K A and Barron A R. Surface repair of porous and damaged alumina bodies usingcarboxylate-alumoxane nanoparticles. Journal of Materials Science2002,37:2909-2916.
    [15] Lan W H and Xiao P. Fabrication of yttria-stabilized-zirconia thick coatings via slurryprocess with pressure infiltration. J. Eur. Ceram. Soc.2009,29:391-401.
    [16] Lin Y J and Chen Y C. Cyclic infiltration of porous zirconia preforms with a liquid solutionof mullite precursor. J. Am. Ceram. Soc.2001,84:71-78.
    [17] Zhang L L and Verweij H. Homogeneous doping of ceramics by infiltration-gelation. J. Eur.Ceram. Soc.2010,30:3035-3039.
    [18] Washburn E W. The dynamics of capillary flowed: Am. Phys. Soc.,1921.
    [19] Einset E O. Capillary infiltration rates into porous media with applications to silcompprocessing. J. Am. Ceram. Soc.1996,79:333-338.
    [20] Adam K M, Bloomsbu G L, and Corey A T. Diffusion of trapped gas from porous media.Water Resources Research1969,5:840-849.
    [21] Constantz J, Herkelrath W N, and Murphy F. Air encapsulation during infiltration. SoilScience Society of America Journal1988,52:10-16.
    [22] Neirinck B, van Deursen J, Van der Biest O, et al. Wettability assessment of submicrometeralumina powder using a modified washburn method. J. Am. Ceram. Soc.2010,93:2515-2518.
    [23] Teipel U and Mikonsaari I. Determining contact angles of powders by liquid penetration.Particle&Particle Systems Characterization2004,21:255-260.
    [24] Glass S J and Green D J. Permeability and infiltration of partially sintered ceramics. J. Am.Ceram. Soc.1999,82:2745-2752.
    [25] Michaud V J, Compton L M, and Mortensen A. Capillarity in isothermal infiltration of.Alumina fiber preforms with aluminum. Metallurgical and Materials TransactionsA-Physical Metallurgy and Materials Science1994,25:2145-2152.
    [26] Galusek D and Majling J. Preparation of Al2O3-ZrO2ceramics by infiltration processing.Ceramics International1995,21:101-107.
    [27] Tu W C and Lange F F. Liquid precursor infiltration processing of powder compacts: II,fracture toughness and strength. J. Am. Ceram. Soc.1995,78:3283-3289.
    [28] Mogilevsky P, Kerans R J, Lee H D, et al. On densification of porous materials usingprecursor solutions. J. Am. Ceram. Soc.2007,90:3073-3084.
    [29] Liu G W, Xie Z P, Wang W, et al. Fabrication of coloured zirconia ceramics by infiltratingwater debound injection moulded green body. Advances in Applied Ceramics2011,110:58-62.
    [30] Mazdiyasni K S, West R, and David L D. Characterization of organosilicon-infiltratedporous reaction-sintered Si3N4. J. Am. Ceram. Soc.1978,61:504-508.
    [31] Zhang H B and Jiang S L. Effect of repeated composite sol infiltrations on the dielectric andpiezoelectric properties of a Bi0.5(Na0.82K0.18)0.5TiO3lead free thick film. J. Eur. Ceram. Soc.2009,29:717-723.
    [32] Meng B, He X D, Sun Y, et al. Preparation of YSZ electrolyte coatings for SOFC byelectron beam physical vapor deposition combined with a sol infiltration treatment.Materials Science and Engineering B-Advanced Functional Solid-State Materials2008,150:83-88.
    [33] Balakrishnan A, Panigrahi B B, Sanosh K P, et al. Effect of high thermal expansion glassinfiltration on mechanical properties of alumina-zirconia composite. Bulletin of MaterialsScience2009,32:393-399.
    [34] Balakrishnan A, Panigrahi B B, Sanosh K P, et al. Mechanical properties ofMgo-Al2O3-SiO2glass-infiltrated Al2O3-ZrO2composite. Journal of Materials ProcessingTechnology2009,209:5271-5275.
    [35] Fischer H, Weiss R, and Telle R. Crack healing in alumina bioceramics. Dental Materials2008,24:328-332.
    [36] Liu G W, Xie Z P, and Wu Y. Effectively inhibiting abnormal grain growth of alumina inzta with low-content fine-sized ZrO2inclusions introduced by infiltration and in-situprecipitation. J. Am. Ceram. Soc.2010,93:4001-4004.
    [37] Rambo C R and Sieber H. Novel synthetic route to biomorphic Al2O3ceramics. AdvancedMaterials2005,17:1088-1091.
    [38] Kostova M H, Zollfrank C, Batentschuk M, et al. Bioinspired design of SrAl2O4:Eu2+phosphor. Advanced Functional Materials2009,19:599-603.
    [39] Imasu J, Fudouzi H, and Sakka Y. Micro-scale patterning of ceramic colloidal suspension bymicro molding in capillaries (mimic) with assistance of highly infiltrating liquid. Journal ofthe Ceramic Society of Japan2006,114:725-728.
    [40] Soykan H S and Karakas Y. Injection moulding of thin walled zirconia tubes for oxygensensors. Advances in Applied Ceramics2005,104:285-290.
    [41] Yang W W, Yang K Y, Wang M C, et al. Solvent debinding mechanism for aluminainjection molded compacts with water-soluble binders. Ceramics International2003,29:745-756.
    [42] Yang X F, Xie Z P, Liu G W, et al. Dynamics of water debinding in ceramic injectionmoulding. Advances in Applied Ceramics2009,108:295-300.
    [43] Yang W W and Hon M H. In situ evaluation of dimensional variations during waterextraction from alumina injection-moulded parts. J. Eur. Ceram. Soc.2000,20:851-858.
    [44] Liu D M and Tseng W J. Influence of debinding rate, solid loading and binder formulationon the green microstructure and sintering behaviour of ceramic injection mouldings.Ceramics International1998,24:471-481.
    [45] Ye H Z, Liu X Y, and Hong H P. Fabrication of metal matrix composites by metal injectionmolding-a review. Journal of Materials Processing Technology2008,200:12-24.
    [46] Bakan H I. Injection moulding of alumina with partially water soluble binder system andsolvent debinding kinetics. Materials Science and Technology2007,23:787-791.
    [47] Park S J, Wu Y X, Heaney D F, et al. Rheological and thermal debinding behaviors intitanium powder injection molding. Metallurgical and Materials Transactions A-PhysicalMetallurgy and Materials Science2009,40A:215-222.
    [48] Moballegh L, Morshedian J, and Esfandeh M. Copper injection molding using athermoplastic binder based on paraffin wax. Materials Letters2005,59:2832-2837.
    [49] Song J H, Edirisinghe M J, Evans J R G, et al. Modeling the effect of gas transport on theformation of defects during thermolysis of powder moldings. Journal of Materials Research1996,11:830-840.
    [50] Huzzard R J and Blackburn S. Influence of solids loading on aqueous injection mouldingpaste. British Ceramic Transactions1999,98:49-56.
    [51] Song J H and Evans J R G. The injection-molding of fine and ultra-fine zirconia powders.Ceramics International1995,21:325-333.
    [52] Shaw H M and Edirisinghe M J. Porosity development during removal of organic vehiclefrom ceramic injection moldings. J. Eur. Ceram. Soc.1994,13:135-142.
    [53] Krauss V A, Oliveira A A M, Klein A N, et al. A model for PEG removal from aluminainjection moulded parts by solvent debinding. Journal of Materials Processing Technology2007,182:268-273.
    [54] Chiou Y H and Lin S T. Influence of CoO and Al2O3on the phase partitioning of ZrO2-3mol%Y2O3. Ceramics International1996,22:249-256.
    [55] Pittayachawan P, McDonald A, Petrie A, et al. The biaxial flexural strength and fatigueproperty of lava (tm) Y-TZP dental ceramic. Dental Materials2007,23:1018-1029.
    [56] Schabbach L M, Bondioli F, Ferrari A M, et al. Color in ceramic glazes: Analysis ofpigment and opacifier grain size distribution effect by spectrophotometer. J. Eur. Ceram.Soc.2008,28:1777-1781.
    [57] Tena M A, Meseguer S, Gargori C, et al. Study of Cr-SnO2ceramic pigment and of Ti/Snratio on formation and coloration of these materials. J. Eur. Ceram. Soc.2007,27:215-221.
    [58] Shah K, Holloway J A, and Denry I L. Effect of coloring with various metal oxides on themicrostructure, color, and flexural strength of3Y-TZP. Journal of Biomedical MaterialsResearch Part B-Applied Biomaterials2008,87B:329-337.
    [59] Wang W, Xie Z P, Liu G W, et al. Fabrication of blue-colored zirconia ceramics viaheterogeneous nucleation method. Cryst. Growth Des.2009,9:4373-4377.
    [60] Tsai D S and Chen W W. Solvent debinding kinetics of alumina green bodies by powderinjection-molding. Ceramics International1995,21:257-264.
    [61] CIE. Colorimetry.2nd edn ed. Vienna: Central Bureau of the Commission Internationale del'Eclairage,1986.
    [62] Aboushelib M N, Kleverlaan C J, and Feilzer A J. Effect of zirconia type on its bondstrength with different veneer ceramics. J Prosthodont2008,17:401-408.
    [63] Fan Y L, Hwang K S, and Su S C. Improvement of the dimensional stability of powderinjection molded compacts by adding swelling inhibitor into the debinding solvent.Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science2008,39A:395-401.
    [64] Unsal E, Dane J H, and Schwartz P. Effect of liquid characteristics on the wetting, capillarymigration, and retention properties of fibrous polymer networks. Journal of AppliedPolymer Science2005,97:282-292.
    [65] Ahn S, Park S J, Lee S, et al. Effect of powders and binders on material properties andmolding parameters in iron and stainless steel powder injection molding process. PowderTechnology2009,193:162-169.
    [66] Aggarwal G, Smid I, Park S J, et al. Development of niobium powder injection molding.Part II: Debinding and sintering. International Journal of Refractory Metals&HardMaterials2007,25:226-236.
    [67] Becher P F, Alexander K B, Bleier A, et al. Influence of ZrO2grain size and content on thetransformation response in the Al2O3-ZrO2(12mol.%CeO2) system. J. Am. Ceram. Soc.1993,76:657-663.
    [68] Bach J P and Thevenot F. Fabrication and characterization of zirconia-toughened aluminaobtained by inorganic and organic precursors. Journal of Materials Science1989,24:2711-2721.
    [69] Green D J. Critical microstructures for microcracking in Al2O3-ZrO2composites. J. Am.Ceram. Soc.1982,65:610-614.
    [70] Bae I J and Baik S. Abnormal grain growth of alumina. J. Am. Ceram. Soc.1997,80:1149-1156.
    [71] Borsa C E, Ferreira H S, and Kiminami R. Liquid phase sintering of Al2O3/SiCnanocomposites. J. Eur. Ceram. Soc.1999,19:615-621.
    [72] Coble R L. Sintering crystalline solids. II. Experimental test of diffusion models in powdercompacts. Journal of Applied Physics1961,32:793-799.
    [73] Wang J and Stevens R. Zirconia-toughened alumina (ZTA) ceramics. Journal of MaterialsScience1989,24:3421-3440.
    [74] Sun X D, Li J G, Guo S W, et al. Intragranular particle residual stress strengthening ofAl2O3-SiC nanocomposites. J. Am. Ceram. Soc.2005,88:1536-1543.
    [75] Bartolome J F, De Aza A H, Martin A, et al. Alumina/zirconia micro/nanocomposites: Anew material for biomedical applications with superior sliding wear resistance. J. Am.Ceram. Soc.2007,90:3177-3184.
    [76] Shi J L, Li B S, and Yen T S. Mechanical properties of Al2O3particle-Y-YZP matrixcomposite and its toughening mechanism. Journal of Materials Science1993,28:4019-4022.
    [77] Rao P G, Iwasa M, Tanaka T, et al. Preparation and mechanical properties ofAl2O3-15wt.%ZrO2composites. Scripta Materialia2003,48:437-441.
    [78] Heuer A H, Claussen N, Kriven W M, et al. The stability of tetragonal ZrO2particles inceramic matrices. J. Am. Ceram. Soc.1982,65:642-650.
    [79] Alexander K B, Becher P F, Waters S B, et al. Grain growth kinetics in alumina-zirconia(CeZTA) composites. J. Am. Ceram. Soc.1994,77:939-946.
    [80] Anstis G R, Chantikul P, Lawn B R, et al. A critical evaluation of indentation techniques formeasuring. Fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc.1981,64:533-538.
    [81] Ohji T, Jeong Y K, Choa Y H, et al. Strengthening and toughening mechanisms of ceramicnanocomposites. J. Am. Ceram. Soc.1998,81:1453-1460.
    [82] Trombini V, Pallonea E, Anselmi-Tamburini U, et al. Characterization of alumina matrixnanocomposite with ZrO2inclusions densified by spark plasma sintering. Materials Scienceand Engineering A-Structural Materials Properties Microstructure and Processing2009,501:26-29.
    [83] Krell A and Blank P. Grain-size dependence of hardness in dense submicrometer alumina. J.Am. Ceram. Soc.1995,78:1118-1120.
    [84] Hori S, Yoshimura M, and Somiya S. Strength-toughness relations in sintered andisostatically hot-pressed ZrO2-toughened Al2O3. J. Am. Ceram. Soc.1986,69:169-172.
    [85] Albano M P and Scian A N. Mullite/sialon/alumina composites by infiltration processing. J.Am. Ceram. Soc.1997,80:117-124.
    [86] Denesuk M, Zelinski B J J, Kreidl N J, et al. Dynamics of incomplete wetting on porousmaterials. Journal of Colloid and Interface Science1994,168:142-151.
    [87] Kibbel B and Heuer A H. Exaggerated grain growth in ZrO2-toughened Al2O3. J. Am.Ceram. Soc.1986,69:231-236.
    [88] Ren F, Ishida S, and Takeuchi N. Color and vanadium valency in V-doped ZrO2. J. Am.Ceram. Soc.1993,76:1825-1831.
    [89] Sato E and Carry C. Yttria doping and sintering of submicrometer-grained alpha-alumina. J.Am. Ceram. Soc.1996,79:2156-2160.
    [90] Yao G F, Wang X H, Yang Y, et al. Effects of Bi2O3and Yb2O3on the curie temperature inBaTiO3-based ceramics. J. Am. Ceram. Soc.2010,93:1697-1701.
    [91] West G D, Perkins J M, and Lewis M H. The effect of rare earth dopants on grain boundarycohesion in alumina. J. Eur. Ceram. Soc.2007,27:1913-1918.
    [92] Scott C, Kaliszewski M, Greskovich C, et al. Conversion of polycrystalline Al2O3intosingle-crystal sapphire by abnormal grain growth. J. Am. Ceram. Soc.2002,85:1275-1280.
    [93] Krell A, Blank P, Ma H W, et al. Processing of high-density submicrometer Al2O3for newapplications. J. Am. Ceram. Soc.2003,86:546-553.
    [94] Zhang H B, Kim B N, Morita K, et al. Effect of sintering temperature on optical propertiesand microstructure of translucent zirconia prepared by high-pressure spark plasma sintering.Sci. Technol. Adv. Mater.2011,12:6.
    [95] Mao X J, Shimai S Z, Dong M J, et al. Gelcasting and pressureless sintering of translucentalumina ceramics. J. Am. Ceram. Soc.2008,91:1700-1702.
    [96] Stuer M, Zhao Z, Aschauer U, et al. Transparent polycrystalline alumina using spark plasmasintering: Effect of Mg, Y and La doping. J. Eur. Ceram. Soc.2010,30:1335-1343.
    [97] Yoshimura H N and Goldenstein H. Light scattering in polycrystalline alumina withbi-dimensionally large surface grains. J. Eur. Ceram. Soc.2009,29:293-303.
    [98] Yamashita I, Nagayama H, Shinozaki N, et al. Toughening and strengthening of translucentalumina. Journal of the Ceramic Society of Japan2009,117:1052-1054.
    [99] Mao X J, Wang S W, Shimai S, et al. Transparent polycrystalline alumina ceramics withorientated optical axes. J. Am. Ceram. Soc.2008,91:3431-3433.
    [100] O Y T, Koo J B, Hong K J, et al. Effect of grain size on transmittance and mechanicalstrength of sintered alumina. Materials Science and Engineering A-Structural MaterialsProperties Microstructure and Processing2004,374:191-195.
    [101] Kim B N, Hiraga K, Morita K, et al. Light scattering in MgO-doped alumina fabricated byspark plasma sintering. Acta Mater.2010,58:4527-4535.
    [102] Wei G C and Rhodes W H. Sintering of translucent alumina in a nitrogen-hydrogen gasatmosphere. J. Am. Ceram. Soc.2000,83:1641-1648.
    [103] Liu W, Xie Z P, Liu G W, et al. Novel preparation of translucent alumina ceramics inducedby doping additives via chemical precipitation method. J. Am. Ceram. Soc.2011,94:3211-3215.
    [104] Ganesh I, Sundararajan G, Olhero S M, et al. A novel colloidal processing route to aluminaceramics. Ceramics International2010,36:1357-1364.
    [105] Miller L, Avishai A, and Kaplan W D. Solubility limit of MgO in Al2O3at1600degrees c. J.Am. Ceram. Soc.2006,89:350-353.
    [106] Kim B K, Hong S H, Lee S H, et al. Alternative explanation for the role of magnesia in thesintering of alumina containing small amounts of a liquid phase. J. Am. Ceram. Soc.2003,86:634-639.
    [107] Soni K K, Thompson A M, Harmer M P, et al. Solute segregation to grain boundaries inMgO-doped alumina. Applied Physics Letters1995,66:2795-2797.
    [108] Voytovych R, MacLaren I, Gulgun M A, et al. The effect of yttrium on densification andgrain growth in alpha-alumina. Acta Mater.2002,50:3453-3463.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700