用户名: 密码: 验证码:
纳米结构氧化铝纤维的静电纺制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝纤维因其各种优异的物理化学性质而被人们广泛研究,本论文主要是利用溶胶凝胶结合静电纺丝技术制备柔性氧化铝纳米结构纤维,并探讨了氧化铝纤维的形成机制及材料微观结构和性能之间的关系。具体内容包括纳米片组成的柔韧性α-A12O3纤维的制备及其力学性质研究;掺杂CaO-SiO2的α-Al2O3纤维的制备及其隔热性质研究;柔韧性双疏γ-Al2O3纤维毡的制备及其抗腐蚀性质研究。通过调节静电纺丝过程参数(体系参数、工艺参数、环境参数)对氧化铝纤维的尺寸、形貌和微观结构进行了调控,对纤维在不同条件下的形成机理进行了探讨,分析了所合成的氧化铝纤维结构与性能之间的关系。本论文工作不仅丰富了氧化铝纳米结构纤维领域的研究,还为氧化铝纳米结构纤维的潜在应用提供了理论基础和技术支持。本论文的主要工作如下:
     1.纳米片组成的柔韧性α-Al2O3纤维的制备及其力学性质
     以异丙醇铝和硝酸铝为前躯体,硝酸为催化剂,无水硫酸镁为添加剂,乙醇的水溶液为溶剂制备溶胶,利用聚乙烯吡咯烷酮(PVP K90)调节溶胶的粘度。通过溶胶-凝胶结合静电纺丝技术制备了直径在300-400nm之间的α-Al2O3纳米纤维。纤维由厚度在20-50nm之间的α-AI2O3纳米片定向排列而成。MgSO4作为添加剂起初可以稳定γ-A12O3的结构,延迟纤维从γ-Al2O3向α-Al2O3的相转变。然后形成尖晶石MgAl2O4晶界相抑制晶粒的长大,有效的促进烧结。制备的纳米纤维具有较好的热稳定性,经1400℃煅烧12h后仍能保持其微观结构。直径为350nm的单根α-Al2O3纤维的弹性模量为23.8Gpa,说明其具有较好的柔韧性。当纤维在使用过程中受到热环境和机械接触引发的应力和应变时,好的热稳定性和柔韧性有利于延长纤维的使用时间,这有利于纤维在高温催化和过滤方面的应用。
     2.掺杂CaO-SiO2的α-Al2O3纤维的制备及其隔热性质
     以氯化铝和铝粉为原料,添加CaO-SiO2两相添加剂,水为溶剂,90℃下磁力搅拌回流5h形成透明溶液,将回流后得到的透明溶液在80℃水浴中浓缩5h后冷却至室温,加入PVP形成透明溶胶。通过溶胶-凝胶结合静电纺丝技术制备了掺杂CaO-SiO2两相添加剂的柔性α-Al2O3纳米纤维。少量的CaO-SiO2两相添加剂可以延迟γ-Al2O3的形成,抑制γ-Al2O3向α-Al2O3的相转变,并有效抑制烧结中颗粒的长大。经1300℃煅烧后,含CaO/SiO2两相添加剂纤维的组成颗粒比不含添加剂纤维的组成颗粒小,这可能是由于纤维中θ-Al2O3的存在造成的。含CaO/SiO2的摩尔比为1:10的纤维经1300℃煅烧后具有较好的柔韧性和较低的导热系数(0.07329W/m-K),这有利于纤维在隔热领域中的应用。
     3.柔韧性双疏γ-Al2O3纤维毡的制备及其抗腐蚀性质
     以异丙醇铝和硝酸铝为前躯体,硝酸和冰醋酸为催化剂,水为溶剂制备溶胶,利用PVP调节溶胶的粘度。通过溶胶-凝胶结合静电纺丝技术制备了氧化铝凝胶纤维,煅烧后得到γ-Al2O3纤维毡,然后利用十七氟癸基三甲氧基硅烷(FAS)对得到的γ-Al2O3纤维毡进行表面修饰得到了双疏性γ-Al2O3纤维毡。当PVP的加入量为0.3g时,纤维的直径要比加入量为0.4g和0.5g的小,研究表明,纤维毡的双疏性能随着纤维直径的减小而增强,较小的纤维直径使纤维毡具有较大的表面粗糙度,使纤维毡具有较好的双疏性能。同时,经过FAS改性的纤维毡具有-定的抗腐蚀性能,对pH值(1-14)范围的酸碱水溶液均有较好的疏水性。另外,纤维毡还具有较好的柔韧性,将其折到薄的硬纸片上弯曲时,纤维毡无裂痕,这将拓展纤维毡在很多重要的工业领域中的应用。
Alumina fibers have been widely investigated due to their unique physical and chemical properties. This dissertation is focused on the preparation of alumina nano-structured fibers by sol-gel method combined with an electrospinning process. The formation mechanism of the alumina fiber is discussed. The analysis was done on the relationship between the microstructure of electrospun alumina fibers and their properties. The contents comprise fabrication and mechanical properties of flexible a-alumina fibers composed of nanosheets, fabrication and insulation properties of α-alumina fibers with CaO-SiO2additive, and fabrication and anti-corrosion properties of flexible and amphiphobic y-alumina mats. The sizes, morphology and microstructures of alumina fibers can be well controlled by adjusting the electrospinning process parameters (system parameters, process parameters and environment parameters). The formation mechanism of the alumina fiber under different conditions is discussed. The effects of structure of alumina fibers on their properties were investigated. This work is not only enriching the alumina nano-structured fibers investigations, but also providing a theoretical foundation and technical support to alumina fibers potential application. The detailed information of the dissertation is listed as follows:
     1. Fabrication and mechanical properties of flexible a-alumina fibers composed of nanosheets
     a-alumina nanofibers with diameters of300-400nm were fabricated by the sol-gel method combined with an electrospinning process. The sol was prepared with aluminum isopropoxide and aluminum nitrate as the precursors, nitric acid as the catalyst, small amounts of anhydrous magnesium sulfate as additive, and ethanol aqueous solution as the solvent. Polyvinylpyrrolidone (PVP K90) was applied to tune sol viscosity. The fibers are composed of α-Al2O3nanosheets with thickness of20-50nm which stack unidirectionally along the axis. Small amounts of anhydrous magnesium sulfate as additive acted to stabilize the γ-Al2O3structure and retard its conversion to α-Al2O3firstly, and subsequently MgAl2O4was formed at the grain boundaries to inhibit grain growth and effectively promoted sintering. The nanofibers have good thermal stability, for their microstructure can be maintained even after heat treatment at1400℃for12h. For a single α-Al2O3fiber with a diameter of ca.350nm, the elastic modulus was23.8GPa, indicating the good flexibility. The good thermal stability and flexibility may extend the service life even when it is subject to stresses and strains resulting from thermal tensions and mechanical contact, which favors their application in catalysis and filtration at high temperature.
     2. Fabrication and insulation properties of a-alumina fibers with CaO-SiO2additive
     CaO-SiO2two-component doped flexible a-alumina fibers were successfully prepared through the sol-gel method combined with an electrospinning process. The sol was prepared with aluminum chloride hexahydrate and aluminum powder as raw materials, calcium oxide-silica (CaO-SiO2) was applied as two-component additive, and water as the solvent. The mixture was heated to90℃and refluxed for5h with magnetic stirring to form a transparent solution. The resulting transparent solution was condensed for5h using a water bath (80℃). Finally, PVP was added with continuously stirring at ambient temperature to form a transparent sol. Small amounts of CaO-SiO2additive was applied to retard the formation of γ-Al2O3and the phase transformation from γ-Al2O3to α-Al2O3, and control the size of the grains during sintering. With the addition of the CaO-SiO2in the system, the size of the particles composed the fibers calcined at1300℃significantly decreased compared to that without additive, which might due to the formation of6-alumina in the samples. The alumina fiber mat calcined at1300℃with the CaO/SiO2ratio of1:10had good flexibility and low thermal conductivity (0.07329W/m·K), which favored its application in insulation.
     3. Fabrication and anti-corrosion properties of flexible and amphiphobic γ-alumina mats
     Alumina gel fibers were by the sol-gel method combined with an electrospinnin process. The sol was prepared using aluminum isopropoxide and aluminum nitrate as the precursors, nitric acid and acetic acid as catalysts, water as the solvent, and polyvinylpyrrolidone (PVP) was applied to tune sol viscosity. The γ-alumina mats were obtained after calcination of the gel fibers. Amphiphobic γ-alumina mats were fabricated by (fluoroalkyl)silane (FAS) modification of the obtained γ-alumina mats. When the content of PVP was0.3g, the average fiber diameters were smaller than those with0.4and0.5g PVP, and the resulting larger surface roughness endowed the modified alumina mat better amphiphobicity. At the same time, the modified alumina mat exhibited a hydrophobic property in the pH range from1to14, indicating that it had a certain anti-corrosion resistance. Additionally, the modified alumina mat was flexible and would not rapture even folding it on a paper, which may extend the application of fiber mats in many important industrial fields.
     Flexible α-alumina nanofibers were fabricated by the sol-gel method combined with an electrospinning process. The sol was prepared with aluminum isopropoxide and aluminum nitrate as the precursors, nitric acid as the catalyst, and ethanol aqueous solution as the solvent. Small amounts of anhydrous magnesium sulfate as additive acted to stabilize the γ-Al2O3structure and retard its conversion to α-Al2O3firstly, and subsequently MgAl2O4was formed at the grain boundaries to inhibit grain growth. Polyvinylpyrrolidone (PVP) was applied to tune sol viscosity. The fibers with diameters of300-400nm are composed of α-Al2O3nanosheets with thickness of20-50nm which stack along [0001] at the axial direction. The fibers exhibited good flexibility and thermal stability.
     Alumina fibers were fabricated by the sol-gel method combined with an electrospinning process using aluminum chloride hexahydrate (AICl3·6H2O) and aluminum powder as raw materials in water solvent. Calcium oxide-silica (CaO-SiO2) was applied as two-component additive to retard the phase transformation of alumina and control the size of the grains during sintering. With the addition of the CaO-SiO2in the system, the size of the particles that composed the fibers calcined at1300℃significantly decreased compared to that without additive, which might be due to the formation of θ-alumina in the samples. In addition, the fiber had low thermal conductivity and good flexibility, which favored its application in insulation.
引文
1. John, C. S.; Alma, N. C. M.; Hays, G. R. Characterization of transitional alumina by solid-state magic angle spinning aluminum NMR. Appl. Catal.1983,6,341-346.
    2. Zhou, R. S.; Snyder, R. L. Structures and transformation mechanisms of the eta, gamma and theta transition aluminas. Acta. Crystallogr.1991,47,617-630.
    3.尹衍升;张景德 氧化铝陶瓷及其复合材料.化学工业出版社:北京,2001.
    4.徐平坤 刚玉耐火材料.冶金工业出版社:北京,2007.
    5.王零森;黄培云 特种陶瓷 中南大学出版社:长沙,2005.
    6.吕孟凯 固态化学.山东大学出版社:济南,1996.
    7.张金升;张银燕;王美婷 陶瓷材料显微结构与性能.化学工业出版社:北京,2007.
    8.毕见强;赵萍;邵明梁 行种陶瓷工艺与性能.哈尔滨工业大学出版社:哈尔滨,2008.
    9.黄发荣;周燕 先进树脂基复合材料 化学工业出版社:北京,2008.
    10. Wilson, D. M. Statiscal tensile strength of Nextel TM610 and Nextel TM720 fibers. J. Mater. Set 1997,32,2535-2542.
    11. Deleglise, F.; Berger, M. H.; Jeulin, D. Microstructural stability and room temperature mechanical properties of the Nextel 720 fiber. J. Eur. Ceram. Soc.2001, 21,569-580.
    12. Birchall, J. D. The preparation and properties of polycrystalline aluminum oxide fibres. Trans. J. Br. Ceram. Soc.1983,82,143-145.
    13. Symes, W. R.; Rastetter, E. Alumina fiber-a polycrystalline refractory fiber for use up to 1600℃. Proceedings of 24th Int. Col. On Refractories, Aachen 1981. Inter. Ceram.1982,57,215-220.
    14. Dhingra, A. K. Alumina Fibre FP. Phil. Trans. R. Soc.1980, A294,411-417.
    15. Jakus, K.; Tulluri, V. Mechanical behavior of a Sumitomo alumina fiber at room and high temperature. Ceram. Eng. Sci. Proc.1989,10,1338-1349.
    16. Bunsell, A. R.; Berger, M. H. Fine diameter ceramic fibres. J. Eur. Ceram. Soc. 2000,20,2249-2260.
    17.崔之开陶瓷纤维.化学工业出版社:北京,2004.
    18.汪家铭;孔亚琴氧化铝纤维发展现状及应用前景.高技术纤维与应用.2010,35,49-54.
    19.西鹏;高晶;李文刚高技术纤维.化学工业出版社材料科学与工程出版中心:北京,2004,p 457.
    20.工涛平;沈湘黔;刘涛氧化物陶瓷纤维的制备及应用.矿冶工程2004,24,72-76.
    21.白木;顾丽霞氧化铝纤维的生产和应用.江苏陶瓷.2003,36,31-32.
    22. Bunsell. A. R. Oxide fibers for high-temperature reinforcement and insulation. Adv. Eng Mater.2005,57,48-51.
    23. Cheetham, A. K.; Mellot, C. F. In situ studies of the sol-gel synthesis of materials. Chem. Mater.1997,9,2269-2279.
    24. Mann, S.; Burkett, S. L.; Davis, S. A.; Fowler, C. E.; Mendelson, N. H.; Sims, S. D.; Walsh, D.; Whilton, N. T. Sol-gel synthesis of organized matter. Chem. Mater. 1997,9,2300-2310.
    25. Uhlmann, D. R.; Teowee, G.; Boulton, J. The future of sol-gel science and technology.J.Sol-Gel Sci. Techn.1997,5,1083-1091.
    26. Briuker, C. J.; Scherer, G. W. Sol-gel Science:The Physics and Chemistry of Sol-gel Processing. Academic Press, INC,1990.
    27. Geffcken, W.; Berger, E. German Patent,1939,736411.
    28. Dislich, H. New routes to multicomponent oxide glass. Angew. Chem. Int. Ed. 1971,10,363-370.
    29. Yoldas, B. E. Alumina gels that form porous transparent Al2O3. J. Mater. Sci.1975, 10,1856-1860.
    30. Yamare, M.; Shinji, A.; Sakaino, T. Sol-gel transition in simple silicate Ⅱ. J. Mater. Sci.1978,13,856-870.
    31. Mohanan, J. L.; Arachchige, I. U.; Brock, S. L. Porous semiconductor chalcogenide aerogels. Science 2005,307,397-400.
    32. Bag, S.; Trikalitis, P. N.; Chupas, P. J.; Armatas, G. S.; Kanatzidis, M. G. Porous semiconducting gels and aerogels from chalcogenide clusters. Science 2007,317, 490-493.
    33. Baumann, T. F.; Gash, A. E.; Chinn, S. C.; Sawvel, A. M.; Maxwell, R. S.; Satcher, J. H. Synthesis of high-surface-area alumina aerogels without the use of alkoxide precursors. Chem. Mater.2005,17,395-401.
    34. Suh, D. J.; Park, T. J.; Kim, J. H.; Kim, K. L. Fast sol-gel synthetic route to high-surface-area alumina aerogels. Chem. Mater.1997,9,1903-1905.
    35. Flory, P. J. Principles of Polymer Chemistry, Cornell University Press:Ithaca, NY 1953, Chapter IX.
    36. Livage, J.; Henry, M.; Sanchez. C. Sol-gel chemistry of transition metal oxides. Prog. Solid State Chem.1988,18,259-341.
    37. Alain, C. P.;Gerard, M. P. Chemistry of aerogels and their applications. Chem. Rev.2002,102,4243-4265.
    38. Sanderson, R. T. An interpretation of bond lengths and a classification of bonds. Science 1951,114,670-672.
    39. Henry, M.;Jolivet, J. P.; Livage, J. Aqueous chemistry of metal cations: hydrolysis, condensation and complexation. Struct. Bond 1992,77,154-206.
    40. Jitianu, A.; Britchi, A.; Deleanu, C.; Badescu, V.; Zaharescu, M. Comparative study of the sol-gel processes starting with different substituted Si-alkoxides. J. Non-Cryst. Solids 2003,319,263-279.
    41. Sharbatdaran, M.; Amini, M. M.; Majdabadi, A. Effect of aluminium alkoxide with donor-functionalized group on texture and morphology of the alumina prepared by sol-gel processing. Mater. Lett.2010,64,503-505.
    42. Teoh, G. L.; Liew, K. Y.; W. Mahmood, A. K. Synthesis and characterization of sol-gel alumina nanofibers.J. Sol-Gel Sci. Technol.2007,44,177-186.
    43. Li, D.; Yang, H.; Lian, H.; Ge, H.; Zhang, G. The fabrication of the hydrous alumina powders by the sol-gel method. Rare Metal Mater. Engineer.2008,37, 292-294.
    44. Schaefer, D. W. Polymers, fractals, and ceramic materials. Science 1989,243, 1023-1027.
    45. Gesser, H. D.; Goswami, P. C. Aerogels and related porous materials. Chem. Rev. 1989,89,765-788.
    46. Xu, Y.; Wu, D.; Sun, Y.; Chen, W.; Yuan, H.; Deng, F.; Wu, Z. Effect of polyvinylpyrrolidone on the ammonia-catalyzed sol-gel process of TEOS:Study by in situ 29Si-NMR, scattering, and rheology. Colloids Surf., A 2007,305,97-104.
    47. Vogelsberger, W.; Seidel, A.; Fuchs, R. Contribution to the determination of kinetic parameters of the sol-gel Transformation by Rheological Measurements. J. Colloid Interface Sci.2000,230,268-271.
    48. Jing, C.; Xu, X.; Hou, J. Synthesis of sub-micro-sized solid alpha alumina fibers with smooth surfaces by sol-gel method. J. Sol-Gel Sci. Technol.2008,45,109-113.
    49. Doss, C. J.; Zallen, R. Raman studies of sol-gel alumina:Finite-size effects in nanocrystalline AlO(OH). Phys. Rev. B 1993,48,15626-15637.
    50. Wang, J.; Wang, Y.; Qiao, M.; Xie, S.; Fan, K. A novel sol-gel synthetic route to alumina nanofibers via aluminum nitrate and hexamethylenetetramine. Mater. Lett. 2007,61,5074-5077.
    51. Kelts, L. W.; Effinger, N. J.; Melpolder, S. M. Sol-gel chemistry studied by 1H and 29Si nuclear magnetic resonance J. Non-Cryst. Solids 1986,83,353-374.
    52. Yoldas, B. E. Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. J. Mater. Sci.1986,21,1087-1092.
    53. Dwivedi, R. K. Drying behaviour of alumina gels. J. Mater. Sci. Lett.1986,5, 373-376.
    54. Scherer, G. W. Drying gels:I. general theory. J. Non-Cryst. Solids 1986,87, 199-225.
    55. Hench, L. L.; West, J. K. The sol-gel process. Chem. Rev.1990,90,33-72. 56. Susa, K.; Matsuyama, I.; Satoh, S.; Suganuma. T. New optical fibre fabrication method. Electron. Lett.1982,18,499-500.
    57. Rayleigh, L. On the equilibrium of liquid conducting masses charged with electricity. Philos. Mag. A 1882,14,184-186.
    58. Formhals, A. Process and apparatus for preparing artifical threads. US Patent, 1934,1975504.
    59. Simons, H. Process and apparatus for producing patterned non-woven fabrics. US Patent,1966,3280229.
    60. Taylor, G. Disintegration of water drops in an electric field. Pro. Roy. Soc. London A 1964,280,383-397.
    61. Baumgarten, P. K. Electrostatic spinning of acrylic microfibers. J. Colloid Interface Sci.1971,36,71-79.
    62. Martin, G. E. Fibriller product of electrostatically spun organic material. US Patent, 1977,4043331.
    63. Martin, G. E. Fibriller lining for prosthetic device. US Patent,1977,4044404.
    64. Larrondo, L. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J. Polym. Sci., Part B: Polym. Phys. 1981,19,909-920.
    65. Fang, X.; Reneker, D. H. DAN fibers by electrospinning. J. Macromol. Sci., Phys. 1997,36,169-173.
    66. Fong, H.; Reneker, D. H. Elastomeric nanofibers of styrene-butadiene-styrene triblock copolymer. J. Polym. Sci., Part B:Polym. Phys.1999,37,3488-3493.
    67. Kim, J. S.; Reneker, D. H. Polybenzimidazole nanofiber produced by electrospinning. Polym. Eng. Sci.1999,39,849-854.
    68. Zarkoob, S.; Eby, R. K.; Reneker, D. H. Structure and morphology of electrospun silk nanofibers. Polymer 2004,45,3973-3977.
    69. Lin, X. H.; Ding, B.; Yu, J. Y. Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Appl. Mater. Interf.2010,2,521-528.
    70. Demir, M. M.; Yilgor, I.;Yilgor, E. Electrospinning of polyurethane fibers. Polymer 2002,43,3303-3309.
    71. Li, D.;Xia, Y. N. Electrospinning of nanofibers:reinventing the wheel. Adv. Mater.2004,76,1151-1170.
    72. Wang, S. Q.;He, J. H.;Xu, L. Non-ionic surfactants for enhancing electrospinability and for the preparation of electrospun nanofibers. Polym. Int.2008, 57,1079-1082.
    73. Kim, C.; Ngoc, B. T. N.; Yang, K. S. Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride. Adv. Mater.2007,19,2341-2346.
    74. Fridrikh, S. V.; Yu, J. H.; Brenner, M. P. Controlling the fiber diameter during electrospinning. Phys. Rev. Lett.2003,90,144502.
    75. Dai, H. Q.; Gong, J.; Kim, H. Y.; Lee, D. K. A novel method for preparing ultra-fine alumina-borate oxide fibres via an electrospinning technique. Nanotechnology 2002,13,674-677.
    76. Azad, A. M. Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning. Mater. Sci. Eng., A 2006,435,468-473.
    77. Panda, P. K.; Ramakrishna, S. Electrospinning of alumina nanofibers using different precursors. J. Mater. Sci.2007,42,2189-2193.
    78. Turtle, R.W.; Chowdury. A.; Bender, E. T.; Ramsier, R. D.; Rapp, J. L.; Espe; M. P. Electrospun ceramic fibers:Composition, structure and the fate of precursors. Appl. Surf. Sci.2008,254,4925-4929.
    79. Maneeratana, V.; Sigmund, W. M. Continuous hollow alumina gel fibers by direct electrospinning of an alkoxide-based precursor. Chem. Eng. J.2008,137,137-143.
    80. Yang, X. H.; Shao, C. L.; Liu, Y. C. Fabrication of Cr203/Al2O3 composite nanofibers by electrospinning. J. Mater. Sci.2007,42,8470-8472.
    81. Nakata, K.; Watanabe, N.; Yuda, Y.; Tryk, D. A.; Ochiai, T.; Murakami, T.; Koide, Y.; Fujishima, A. Electrospun fibers composed of Al2O3-TiO2 nanocrystals. J. Ceram. Soc. Jpn.2009,117,1203-1207.
    82.何贤昶 陶瓷材料概论.上海科学普及出版社:上海,2005,P12.
    83. Green, D. J. Introduction to the Mechanical Properties of Ceramics. Press Syndicate of the University of Cambridge,1998, Chap.8.
    84. Chen, I. W.; Xue, L. A. Development of superplastic structural ceramics. J. Am. Ceram. Soc.1990,73,2585-2609.
    85. Wakai, F. Superplasticity of ceramics. Ceram. Int.1991,17,153-163.
    86. Wakai, F.; Sakaguchi, S.; Matsuno, Y. Superplasticity of Yttria-Stabilized Tetragonal ZrO2 Polycrystals. Adv. Ceram. Mater.1986,1,259-263.
    87. Park, S. J.; Chase, G. G.; Jeong, K. U.; Kim, H. Y. Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol-gel precursor.J. Sol-Gel Sci. Technol.2010,54,188-194.
    88. Ma, Z. J.; Ji, H. J.; Tan, D. Z.; Teng, Y.; Dong, G. P.; Zhou, J. J.; Qiu, J. R.; Zhang, M. Silver nanoparticles decorated, flexible SiO2 nanofibers with long-term antibacterial effect as reusable wound cover. Colloids Surf., A 2011,357,57-64.
    89. Biswas, A.; Park, H.; Sigmund, W. M. Flexible ceramic nanofibermat electrospun from TiO2-SiO2 aqueous sol. Ceram. Int.2012,55,883-886.
    1. Dinwoodie, J. Alumina fiber for high-temperature furnace insulation. Ceram. Industry 1996,4,58-71.
    2. Chandradass, J.; Balasubramanian, M. Extrusion of alumina fibre using sol-gel precursor. J. Mater. Sci.2006,41,6026-6030.
    3. Jing, C. B.; Zhao, X. J.; Zhang, Y. H. Elimination of a zero-growth in thickness of Al2O3 protective film deposited by cycles of dip-coating method. J. Sol-Gel Sci. Technol.2007,42,151-156.
    4. Chandradass, J.; Balasubramanian, M. Sol-gel based extrusion of alumina fibres. Mater. Manuf. Processes 2006,21,319-323.
    5. Chien, J. C. W.; Yang, Y. S.; Martinez, J. R.; Dong, S. Z.; Telluri, V.; Jakus, K. Polymer precursor synthesis of alumina fibers. J. Polym. Sci. Part A:Polym. Chem. 2003,29,495-503.
    6. Stacey, M. H. Developments in Continuous Alumina-Based Fibres. Br. Ceram. Trans. J.1988,87,168-172.
    7. Towata, A.; Hwang, H. J.; Yasuoka, M. Fabrication of a Fine YAG-Particulate-Dispersed Alumina Fiber. J. Am. Ceram. Soc.1998,57,2469-2472.
    8. Dong, R.; Hirata, Y. Processing of Ceria-Coated Alumina Fiber/Alumina Matrix Composite. J. Ceram. Soc. Jpn.2000,705,823-829.
    9. Morita, H.; Yamane, H.; Kimura, Y. Alumina fibers were obtained from the poly[((3-ethoxypropanoyl)oxy)aloxane]. J. Appl. Polym. Sci.2003,40,753-767.
    10. Gotoh, Y.; Fujimura, K.; Ohkoshi, Y. Preparation of transparent alumina film and fiber from a composite of aluminum polynuclear complex/methyl cellulose. Mater. Chem. Phys.2004,83,54-59.
    11. Tan, E. P. S.; Lim, C. T. Mechanical characterization of nanofibers- Areview. Compos. Sci. Technol.2006,65,1102-1111.
    12. Tan, E. P. S.; Lim, C. Physical properties of a single polymeric nanofiber. Appl. Phys. Lett.2004,84,1603-1605.
    13. Lanti, Y.; Carel, F. C.; Kees, O. W.; Martin, L. B.; Pieter, J. D.; Jan, F. Mechanical properties of single electrospun collagen type I fibers. Biomaterials 2008,29, 955-962.
    14. Fondeur, F.; Mitchell, B. S. Infrared studies of calcia-alumina fibers. J. Am. Ceram. Soc.1996,79,2469-2473.
    15. Aguilar, E.; Drew, R. Melt Extraction Processing of Structural Y2O3-Al2O3 Fibers. J. Eur. Ceram. Soc.2000,20,1091-1098.
    16. Allahverdi, M.; Drew, A. R. L.; Strom-Olsen, J. O. Melt-extracted oxide ceramics fibres—the fundamentals. J. Mater. Sci.1996,31,1035-1042.
    17. Emig, G.; Wirth, R.; Zinmermann, R. Sol/gel-based precursors for manufacturing refractory oxide fibres. J. Mater. Sci.1994,29,4559-4566.
    18. Yogo, T.;Iwahara, H. Synthesis of polycrsystalline alumina fibre with aluminium chelate precursor. J. Mater. Sci.1991,26,5292-5296.
    19. Greiner, A.; Wendorff, J. Electrospinning:a fascinating method for the preparation of ultrathin fibers. Angew. Chem., Int. Ed.2007,46,5670-5703.
    20. Li, D.; Xia, Y N. Electrospinning of Nanofibers:Reinventing the Wheel? Adv. Mater.2004,75,1151-1170.
    21. Mahanta, N.;Valiyaveettil, S. Surface modified electrospun poly(vinyl alcohol) membranes for extracting nanoparticles from water. Nanoscale 2011,3,4625-4631.
    22. Lu, X.; Wang, C.; Wei, Y One-dimensional composite nanomaterials:synthesis by electrospinning and their applications. Small 2009,5,2349-2370.
    23. Chigome, S.; Darko, G.; Torto, N. Electrospun nanofibers as sorbent material for solid phase extraction. Analyst 2011,136,2879-2889.
    24. Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; BeckTan, N. C. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001,42, 261-272.
    25. Nygaard, J. V.; Uyar, T.; Chen, M. L.; Cloetens, P.; Kingshott, P.; Besenbacher, F. Characterisation of internal morphologies in electrospun fibers by X-ray tomographic microscopy. Nanoscale 2011,3,3594-3597.
    26. Guo, M.; Ding, B.; Li, X. H.; Wang, X. L.; Yu, J. Y.; Wang, M. R. Amphiphobic Nanofibrous Silica Mats with Flexible and High-Heat-Resistant Properties. J. Phys. Chem. C 2010,114,916-921.
    27. Jin, Y.; Yang, D. Y;. Kang, D. Y.; Jiang, X. Y Fabrication of Necklace-like Structures via Electrospinning. Langmuir 2010,26,1186-1190.
    28. Li, Z. P.; Fan, Y J.; Zhan, J. H. In2O3 Nanofibers and Nanoribbons:Preparation by Electrospinning and Their Formaldehyde Gas-Sensing Properties. Eur. J. Inorg. Chem. 2010,27,3348-3353.
    29. Gu, Y X.; Chen, D. R.; Jiao, X. L.; Liu, F. F. Linear attachment of Li1+aV3O8 nanosheets to 1-dimensional (1D) arrays:fabrication, characterization, and electrochemical properties. J. Mater. Chem.2006,16,4361-4366.
    30. Azad, A. M.; Noibi, M.; Ramachandran, M. Fabrication and characterization of 1-D alumina (Al2O3) nanofibers in an electric field. Bull. Pol. Acad. Sci. Chem.2007, 55,195-201.
    31. Abdul-Majeed, A. Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning. Mater. Sci. Engineer. A 2006,435,468-473.
    32. Panda, P. K.;Ramakrishna, S. Electrospinning of alumina nanofibers using different precursors. J. Mater. Sci.2007,42,2189-2193.
    33. Dai, H. Q.; Gong, J.; Kim, H.;Lee, D. A novel method for preparing ultra-fine alumina-borate oxide fibres via an electrospinning technique. Nanotechnology 2002, 13,674-677.
    34. Tuttle, R. W.; Chowdury, A.; Bender, E. T.; Ramsier, R. D.; Rapp, J. L.; Espe, M. P. Electrospun ceramic fibers:Composition, structure and the fate of precursors. Appl. Surf. Sci.2008,254,4925-4929.
    35. Xu, S. Y.; Shi, Y.; Kim, S. Fabrication and mechanical property of nano piezoelectric fibres. Nanotechnology 2006,17,4497-4501.
    36. Lee, S.; Tekmen, C.; Sigmund, W. M. Three-point bending of electrospun TiO2 nanofibers. Mater. Sci. Engineer. A 2005,398,77-81.
    37. Ugural, A. C. Mechanics of Materials (New York: McGraw-Hill),1993, pp 168-171.
    38. D'Costa, N. P.; Hoh, J. H. Calibration of optical lever sensitivity for atomic force microscopy. Rev. Sci. Instrum.1995,66,5096-5097.
    39. Xu, Y. Y.; Chen, D. R.; Jiao, X. L. PEG-Assisted Fabrication of Single-Crystalline CuI Nanosheets:A General Route to Two-Dimensional Nanostructured Materials. J. Phys. Chem. C 2007,111,6-9.
    40. Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science 2001,294, 1901-1903.
    41. Gavrish, A. M.; Karyakina, E. L.; Lysak, S. V.; Dergaputskaya, L. A.; Kalinovskaya, I. N. Influence of additives on the phase inversions in alumina fibers. Refract. Ind. Ceram.1988,29,603-611.
    42. Galusek, D.; Brydson, R.; Twigg, P. C.; Riley, F. L.; Atkinson, A.; Zhang, Y. H. Wet erosive wear of alumina densified with magnesium silicate additions. J. Am. Ceram. Soc.2001,84,1767-1776.
    43. Brydson, R. S.; Chen, C.; Riley, F. L.; Milne, S. J.; Pan, X. Q.; Ruhle, M. Microstructure and chemistry of intergranular glassy films in liquid phase sintered alumina. J. Am. Ceram. Soc.1998,81,369-379.
    44. Lee, K. H.; Kim, H. Y.; Khil, M. S. Characterization of nano-structured poly (s-caprolactone) nonwoven mats via electrospinning. Polymer 2003,44,1287-1294.
    45. Lu, P. P.; Xu, Z. L.; Y, H.; W, Y. M.; Xu, H. T. Effects of ethanol and isopropanol on the structures and properties of polyethersulfone/perfluorosulfonic acid nanofibers fabricated via electrospinning. J. Polym. Res.2012,19,9854-9863.
    46. Gutierrez, C. A.; Moreno, R. Interparticle potentials of aqueous Al2O3 suspension. Br. Ceram. Trans.2003,102,219-224.
    47. Chandradass, J.; Balasubramanian, M. Sol-gel processing of alumina fibres. J. Mater. Process Technol.2006,173,275-280.
    48. Venkatesh, R.; Chakrabarty, P. K.; Siladitya, B.; Chatterjee, M.; Ganguli, D. Preparation of alumina fibre mats by a sol-gel spinning technique. Ceram. Int.1999, 25,539-543.
    49. Boumaza, A.; Favaro, L.; Ledion, J.; Sattonnay, G.; Brubach, J. B.; Berthet, P.; Huntz, A. M.; Roy, P.; Tetot, R. Transition alumina phases induced by heat treatment of boehmite:An X-ray diffraction and infrared spectroscopy study. J. Solid State Chem.2009,182,1171-1176.
    50. Mardilovich, P. P.; Trokhimets, A. I. Appearance regions of the stretching vibrations of unperturbed and hydrogen-bonded OH- and od-groups in alumina oxides. J. Appl. Spectrosc.1981,35,1029-1033.
    51. Sato, T.; Ikoma, S.; Ogana, K. Proceedings of the 7th International Conf. on Thermal Analysis. John Wiley & Sons, New York 1982,1,150-154.
    52. Lopez, T.; Marmolejo, R.; Asomoza, M.; Solis, S.; Gomez, R.; Wang, J. A. Bokhimi, O.; Navarrete, J.; Llanos, M. E.; Lopez, E. Preparation of a complete series of single phase homogeneous sol-gels of Al2O3, and MgO for basic catalysts. Mater. Lett.1997,32,325-334.
    53. Jing, C. B.; Xu, X. G.; Hou, J. X. Synthesis of sub-micro-sized solid alpha alumina fibers with smooth surfaces by sol-gel method. J. Sol-Gel Sci. Technol.2008,45, 109-113.
    54. Zhang, Y. F.; Li, Q.; Li, H. L.; Cheng, Y. L.; Zhang, J. F.; Cao, X. Q. Sintering-resistant hollow fibers of LaMgAl11O19 prepared by electrospinning. J. Cryst. Growth 2008,310,3884-3889.
    55. Hartman, P. The attachment energy as a habit controlling factor:III. Application to corundum.J. Cryst. Growth 1980,49,166-170.
    56. Vanherpe, L.; Moelans, N.; Blanpain, B.; Vandewalle, S. Pinning effect of spheroid second-phase particles on grain growth studied by three-dimensional phase-field simulations. Comput. Mater. Sci.2010,49,340-350.
    57. Moelans, N.; Blanpain, B. B.; Wollants, P. Pinning effect of second-phase particles on grain growth in thin films studied by 3D phase field simulations. Acta Mater.2007, 55,2173-2182.
    58. Watanabe, K.;Sunagawa, I. Effects of trivalent rare-earth ions upon the morphology of corundum crystals. J. Cryst. Growth 1983,65,568-575.
    59. Mackrodt, W. C; Davey, R. J.; Black, S. N. The morphology of α-Al2O3 and a-Fe2O3:The importance of surface relaxation. J. Cryst. Growth 1987,80,441-446.
    60. Calleja, A.; Granados, X.; Ricart, S.; Oro, J.; Arbiol, J.; Mestres, N.; Carrillo, A. E.; Palmer, X.; Tornero, J. A.; Puig, T.; Obradors, X. High temperature transformation of electrospun BaZrO3 nanotubes into nanoparticle chains. CrystEngComm.2011,13, 7224-7230.
    61. Kurosaki, K.; Setoyama, D.; Matsunaga, J.; Yamanaka, S. Nanoindentation tests for TiO2, MgO, and YSZ single crystals. J. Alloys Compels.2005,386,261-264.
    62. Mishra, R. S.; McFadden, S. X.; Valiev, R. Z.; Mukherjee, A. K. Deformation mechanisms and Tensile superplasticity in Nanocrystalline. J. Mater. Min. Soc.1999, 51,37-40.
    1. Briuker, C. J.; Scherer, G. W. Sol-gel Science:The Physics and Chemistry of Sol-gel Processing. Academic Press, INC,1990, P59-77.
    2. Chien, J. C. W.; Yang, Y. S.; Martinez, J. R.; Dong, S. Z.; Telluri, V.; Jakus, K. Polymer precursor synthesis of alumina fibers. J. Polym. Sci. Part A:Polym. Chem. 2003,29,495-503.
    3. Chatterjee, M.; Naskar, M. K.; Chakrabarthy, P. K.; Ganguli, D. Sol-gel alumina fibre mats for high-temperature applications. Mater. Lett.2002,57,87-93.
    4. Dinwoodie, J. Alumina fiber for high-temperature furnace insulation. Ceram. Industry 1996,4,58-71.
    5. Chandradass, J.; Balasubramanian, M. Extrusion of alumina fibre using sol-gel precursor. J. Mater. Sci.2006,41,6026-6030.
    6. Chandradass, J.; Balasubramanian, M. Sol-gel based extrusion of alumina fibres. Mater. Manuf. Processes 2006,21,319-323.
    7. Stacey, M. H. Developments in Continuous Alumina-Based Fibres. Br. Ceram. Trans. J.1988,87,168-172.
    8. Dong, R.; Hirata, Y. Processing of Ceria-Coated Alumina Fiber/Alumina Matrix Composite. J. Ceram. Soc. Jpn.2000,108,823-829.
    9. Morita, H.; Yamane, H.; Kimura, Y Alumina fibers were obtained from the poly[((3-ethoxypropanoyl)oxy)aloxane]. J. Appl. Polym. Sci.2003,40,753-767.
    10. Gotoh, Y.; Fujimura, K.; Ohkoshi, Y. Preparation of transparent alumina film and fiber from a composite of aluminum polynuclear complex/methyl cellulose. Mater. Chem. Phys.2004,83,54-59.
    11. Venkatesh, R.; Ramanan, S. R. Influence of processing variables on the microstructure of sol-gel spun alumina fibres. Mater. Lett.2002,55,189-195.
    12. Turtle, R. W.; Chowdury, A.; Bender, E. T.; Ramsier, R. D.; Rapp, J. L.; Espe, M. P. Electrospun ceramic fibers:Composition, structure and the fate of precursors. Appl. Surf. Sci.2008,254,4925-4929.
    13. Venkatesh, R.; Chakrabarty, P. K.; Siladitya, B.; Chatterjee, M.; Ganguli, D. Preparation of alumina fibre mats by a sol-gel spinning technique. Ceram. Int.1999, 25,539-543.
    14. Chandradass, J.; Balasubramanian, M. Effect of magnesium oxide on sol-gel spun alumina and alumina-zirconia fibres. J. Eur. Ceram. Soc.2006,26,2611-2617.
    15. Shojaie-Bahaabad, M.;Taheri-Nassaj, E.; Naghizadeh, R. Effect of yttria on crystallization and microstructure of an alumina-YAG fiber prepared by aqueous sol-gel process. Ceram. Int.2009,35,391-396.
    16. Wang, J.; Raj, R. Interface effects in superplastic deformation of alumina containing zircinia, titania or hafnia as a second phase. Acta Metall. Mater.1991,39, 2909-2919.
    17.刘维良 先进陶瓷工艺学 武汉理工大学出版社:武汉,2006.
    18. Gontier-Moya, E. G.; Erdelyi, G.; Moya, F. Solubility and diffusion of cobalt in alumina. Philos. Mag. A 2001,81,2665-2673.
    19. Bunsell, A. R.; Berger, M. H. Fine diameter ceramic fibres. J. Eur. Ceram. Soc. 2000,20,2249-2260.
    20. Sathiyakumar, M.; Gnanam, F. D. Influence of additives on density, microstructure and mechanical properties of alumina. J. Mater. Process. Tech.2003, 133,282-286.
    21. Erkalfa, H.; Misirli, Z.; Baykara, T. The effect of TiO2 and MnO2 on densification and microstructural development of alumina. Ceram. Int.1998,24,81-90.
    22. Svancarek, P.; Galusek, D.; Calvert, C. A comparison of the microstructure and mechanical properties of two liquid phase sintered aluminas containing different molar ratios of calcia-silica sintering additives. J. Eur. Ceram. Soc.2004,24, 3453-3463.
    23. Li, D.; Xia, Y. N. Electrospinning of Nanofibers:Reinventing the Wheel? Adv. Mater.2004,16,1151-1170.
    24. Greiner, A.; Wendorff, J. Electrospinning:a fascinating method for the preparation of ultrathin fibers. Angew. Chem., Int. Ed.2007,46,5670-5703.
    25. Lu, X.; Wang, C.; Wei, Y. One-dimensional composite nanomaterials:synthesis by electrospinning and their applications. Small 2009,5,2349-2370.
    26. Mahanta, N.; Valiyaveettil, S. Surface modified electrospun poly(vinyl alcohol) membranes for extracting nanoparticles from water. Nanoscale 2011,3,4625-4631.
    27. Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; BeckTan, N. C. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001,42, 261-272.
    28. Chigome, S.; Darko, G.; Torto, N. Electrospun nanofibers as sorbent material for solid phase extraction. Analyst 2011,136,2879-2889.
    29. Guo, M.; Ding, B.; Li, X. H.; Wang, X. L.; Yu, J. Y.; Wang, M. R. Amphiphobic Nanofibrous Silica Mats with Flexible and High-Heat-Resistant Properties. J. Phys. Chem. C 2010,114,916-921.
    30. Nygaard, J. V.; Uyar, T.; Chen, M. L.; Cloetens, P.; Kingshott, P.; Besenbacher, F. Characterisation of internal morphologies in electrospun fibers by X-ray tomographic microscopy. Nanoscale 2011,3,3594-3597.
    31. Li, Z. P.; Fan, Y J.; Zhan, J. H. In2O3 Nanofibers and Nanoribbons:Preparation by Electrospinning and Their Formaldehyde Gas-Sensing Properties. Eur. J. Inorg. Chem. 2010,21,3348-3353.
    32. Jin, Y.; Yang, D. Y.; Kang, D. Y.; Jiang, X. Y. Fabrication of Necklace-like Structures via Electrospinning. Langmuir 2010,26,1186-1190.
    33. Gu, Y X.; Chen, D. R.; Jiao, X. L.; Liu, F. F. Linear attachment of Li1+aV3O8 nanosheets to 1-dimensional (1D) arrays:fabrication, characterization, and electrochemical properties. J. Mater. Chem.2006,16,4361-4366.
    34. Chigome, S.; Darko, G.; Torto, N. Electrospun nanofibers as sorbent material for solid phase extraction. Analyst 2011,136,2879-2889.
    35. Lu, C. H.; Tsai, C. C. A new sol-gel route using inorganic salts for synthesizing barium magnesium tantalate ceramics. Mater. Lett.1997,31,271-274.
    36. Azad, A. M.; Noibi, M.; Ramachandran, M. Fabrication and characterization of 1-D alumina (Al2O3) nanofibers in an electric field. Bull. Pol. Acad. Sci. Chem.2007, 55,195-201.
    37. Abdul-Majeed, A. Fabrication of transparent alumina (Al2O3) nanofibers by electrospinning. Mater. Sci. Engineer. A 2006,435,468-473.
    38. Panda, P. K.; Ramakrishna, S. Electrospinning of alumina nanofibers using different precursors. J. Mater. Sci.2007,42,2189-2193.
    39. Dai, H. Q.; Gong, J.; Kim, H.; Lee, D. A novel method for preparing ultra-fine alumina-borate oxide fibres via an electrospinning technique. Nanotechnology 2002, 13,674-677.
    40. Nakata, K.; Watanabe, N.; Yuda, Y.; Tryk, D. A.; Ochiai, T.; Murakami, T.; Koide, Y; Fujishima, A. Electrospun fibers composed of Al2O3-TiO2 nanocrystals. J. Ceram. Soc. Jpn.2009,117,1203-1207.
    41. Yang, X. H.; Shao, C. L.; Liu, Y. C. Fabrication of Cr2O3/Al2O3 composite nanofibers by electrospinning. J. Mater. Sci.2007,42,8470-8472.
    42. Tang, H. J.; Sun, H. Y.; Chen, D. R.; Jiao, X. L. Fabrication and characterization of nanostructured La2Zr207 fibers. Mater. Lett.2010,70,48-50.
    43. Mardilovich, P. P.; Trokhimets, A. I. Appearance regions of the stretching vibrations of unperturbed and hydrogen-bonded OH- and od-groups in alumina oxides. J. Appl. Spectrosc.1981,35,1029-1033.
    44. Zhang, Z. Y.; Li, X. H.; Wang, C. H.; Wei, L. M.; Liu, Y. C.; Shao, C. L. ZnO hollow nanofibers:fabrication from facile single capillary electrospinning and application in gas sensors. J. Phys. Chem. C 2009,113,19397-19403.
    45. Boumaza, A.; Favaro, L.; Ledion, J.; Sattonnay, G.; Brubach, J. B.; Berthet, P.; Huntz, A. M.; Roy, P.; Tetot, R. Transition alumina phases induced by heat treatment of boehmite:An X-ray diffraction and infrared spectroscopy study. J. Solid State Chem.2009,752,1171-1176.
    46. Wang, Z. L.; Liu, X. J.; Lv, M. F.; Chai, P.; Liu, Y.; Meng, J. Preparation of Ferrite MFe2O4 (M=Co, Ni) Ribbons with Nanoporous Structure and Their Magnetic Properties. J. Phys. Chem. B 2008,112,11292-11297.
    47. Lopez, T.; Marmolejo, R.; Asomoza, M.; Solis, S.; Gomez, R.; Wang, J. A.; Bokhimi, O.; Navarrete, J.; Llanos, M. E.; Lopez, E. Preparation of a complete series of single phase homogeneous sol-gels of Al2O3, and MgO for basic catalysts. Mater. Lett.1997,32,325-334.
    48. Venkatesh, R.; Ramanan, S. R. Effect of Organic Additives on the Properties of Sol-gel Spun Alumina Fibres. J. Europ. Ceram. Soc.2000,20,2543-2549.
    49. Souza Santos, P.; Souza Santos, H.; Toledo, S. P. Standard Transition Aluminas Electron Microscopy Studies. Materials research 2000,3,104-114.
    50. Slawomir, B.; Stephen H, G. Molecular Dynamics Study of Silica-Alumina Interfaces. J. Phys. Chem.1996,100,2201-2205.
    51. Tan, E. P. S.; Lim, C. Physical properties of a single polymeric nanofiber. Appl. Phys. Lett.2004,84,1603-1605.
    52.陈祖熊;王坚 精细陶瓷-理论与实践.化学工业出版社:北京,2005.
    53. Wang, C.; Hsu, C. H.; Lin, J. H. Scaling laws in electrospinning of polystyrene solutions. Macromolecules.2006,39,7662-7672.
    54. Pai, C. L.; Boyce, M. C.; Rutledge, G. C. Morphology of porous and wrinkled fibers of polystyrene electrospun from dimethylformamide. Macromolecules.2009, 42,2102-2114.
    55. Koski, A.; Yom, K.; Shivkumar, S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater. Lett.2004,58,493-497.
    56. Wang, S. Q.; He, J. H.; Xu, L. Non-ionic surfactants for enhancing electrospinability and for the preparation of electrospun nanofibers. Polym. Int.2008, 57.1079-1082.
    57. Kim, C.; Ngoc, B. T. N.; Yang, K. S. Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride. Adv. Mater.2007,19,2341-2346.
    58. Son, W. K.; Youk, J. H.; Lee, T. S. The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers. Polymer, 2004,45,2959-2966.
    59. Fridrikh, S. V.; Yu, J. H.; Brenner, M. P. Controlling the fiber diameter during electrospinning. Phys. Rev. Lett.2003,90,144502.
    60. Baker, S. C.; Atkin, N.; Gunning, P. A. Characterisation of electrospun polystyrene Scaffolds for three-dimensional in vitro biological studies. Biomaterials 2006,27, 3136-3146.
    61. Munir, M. M.; Suryamas, A. B.; Iskandar, F. Scaling law on particle-to-fiber formation during electrospinning. Polymer 2009,50,4935-4943.
    62. Kong, C. S.; Lee, T. H.; Lee, K. H. Interference between the charged jets in electrospinning of polyvinyl alcohol. J. Macromol. Sci., Phys.2009,48,77-91.
    63. Deitzel, J. M.; Kleinmeyer, J.; Harris, D. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001,42,261-272.
    64.罗民华多孔陶瓷实用技术.中国建材工业出版社:北京,2006,p162.
    65. Lee, O. J.; Lee, K. H.; Yim, T. J.; Kim, S. Y.; Yoo, K. P. Determination of Mesopore size of Aerogels from Thermal Conductivity Measurement. J. Non-Cryst. Solids 2002,298,287-292.
    66.杨世铭;陶文铨 传热学.高等教育出版社:北京,2008.
    67. Luikov A.V. Heat and Mass Transfer. MIR Publishers: Moscow,1980.
    68. Xia, D.; Guo, S.; Ren, L. Fractal structure reconstruction for alumina-silicate refractory fiber and simulation of the thermal conductivity. J. Therm. Sci.2010,19, 80-86.
    69.张娜;张玉军;田庭艳;刘超.高温低热导率隔热材料的研究现状及进展.中国陶瓷 2006,42,16-18.
    1. Li, H. J.; Wang, X. B.; Song, Y. L.; Liu, Y. Q.; Li, Q. S.; Jiang, L. Super-"Amphiphobic" Aligned Carbon Nanotube Films. Angew. Chem. Int. Ed.2001,40, 1743-1746.
    2. Xie, Q. D.; Xu, J.; Feng, L.; Jiang, L.; Tang, W. H.; Luo, X. D.; Han, C. C. Facile Creation of a Super-Amphiphobic Coating Surface with Bionic Microstructure. Adv. Mater.2004,16,302-305.
    3. Tian, Y.; Liu, H. Q.; Deng, Z. F. Electrochemical Growth of Gold Pyramidal Nanostructures:Toward Super-Amphiphobic Surfaces. Chem. Mater.2006,18, 5820-5822.
    4. Lafuma, A.; Quere, D. Superhydrophobic states. Nat. Mater.2003,2,457-460.
    5. Erbil, H. Y.; Demirel, A. L.; Avci, Y.; Mert, O. Transformation of a Simple Plastic into a Superhydrophobic Surface. Science 2003,299,1377-1380.
    6. Tsujii, K.; Yamamoto, T.; Onda, T.; Shibuichi, S. Super oil-repellent surfaces. Angew. Chem. Int. Ed.1997,36,1011-1012.
    7. Lau, K. K. S.; Bico, J.; Teo, K. B. K.; Chhowalla, M.; Amaratunga, G. A. J.; Milne, W. I.; Mckinley, G. H.; Gleason, K. K. Superhydrophobic Carbon Nanotube Forests. Nano. Lett.2003,3,1701-1705.
    8. Genzer, J.; Efimenko, K. Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers. Science 2000,290,2130-2133.
    9. Nicolas, M.; Guittard, F.; Geribaldi, S. Synthesis of Stable Super Water-and Oil-Repellent Polythiophene Films. Angew. Chem. Int. Ed.2006,45,2251-2254.
    10. Li. J.; Fu, J.; Cong, Y.; Wu, Y.; Xue, L. J.; Han, Y. C. Macroporous fluoropolymeric films templated by silica colloidal assembly: A possible route to super-hydrophobic surfaces. Appl. Surf. Sci.2006,252,2229-2234.
    11. Onda, T.; Shibuichi, S.; Satoh, N. Super-water-repellent fractal surfaces. Langmuir 1996,12,2125-2127.
    12. oner, D.; McCarthy, T. J. Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability. Langmuir 2000,16, 7777-7782.
    13. Erbil, H. Y.; Demirel, A. L.; Avci, Y.; Mert, O. Transformation of a Simple Plastic into a Superhydrophobic Surface. Science 2003,299,1377-1380.
    14. Xie, Q. D.; Fan, G. Q.; Zhao, N.; Guo, X. L.; Xu, J.; Dong, J. Y.; Zhang, L. Y.; Zhang, Y. J.; Han, C. C. Facile Creation of a Bionic Super-Hydrophobic Block Copolymer Sueface. Adv. Mater.2004,16,1830-1833.
    15. Wang, L. F.; Yang, S. Y.; Wang, J.; Wang, C. F.; Chen, L. Fabrication of superhydrophobic TPU film for oil-water separation based on electrospinning route. Mater. Lett.2011,65,869-872.
    16. Jiang, L.; Zhao, Y.; Zhai, J. A Lotus-Leaf-like Superhydrophobic Surface:A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics. Angew. Chem. Int. Ed.2004,43,4338-4341.
    17. Chigome, S.; Darko, G.; Torto, N. Electrospun nanofibers as sorbent material for solid phase extraction. Analyst 2011,136,2879-2889.
    18. Nygaard, J. V.; Uyar, T.; Chen, M. L.; Cloetens, P.; Kingshott, P.; Besenbacher, F. Characterisation of internal morphologies in electrospun fibers by X-ray tomographic microscopy. Nanoscale 2011,3,3594-3597.
    19. Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; BeckTan, N. C. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001,42, 261-272.
    20. Jin, Y.; Yang, D. Y.; Kang, D. Y.; Jiang, X. Y. Fabrication of Necklace-like Structures via Electrospinning. Langmuir 2010,26,1186-1190.
    21. Guo, M.; Ding, B.; Li, X. H.; Wang, X. L.; Yu, J. Y.; Wang, M. R. Amphiphobic Nanofibrous Silica Mats with Flexible and High-Heat-Resistant Properties. J. Phys. Chem. C 2010,114,916-921.
    22. Li, Z. P.; Fan, Y. J.; Zhan, J. H. In2O3 Nanofibers and Nanoribbons:Preparation by Electrospinning and Their Formaldehyde Gas-Sensing Properties. Eur. J. Inorg. Chem. 2010,27,3348-3353.
    23. Gu, Y. X.; Chen, D. R.; Jiao, X. L.; Liu, F. F. Linear attachment of Lit+aV3O8 nanosheets to 1-dimensional (1D) arrays:fabrication, characterization, and electrochemical properties. J. Mater. Chem.2006,16,4361-4366.
    24. Teo, W. E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006,17,89-106.
    25. Li, M.; Zhai, J.; Liu, H.; Song, Y L.; Jiang, L.; Zhu, D. Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films. J. Phys. Chem.B 2003,707,9954-9957.
    26. Bartell, F.; Shepard, J. Surface roughness as related to hysteresis of contact angles: I. the system paraffin-water-air. J. Phys. Chem.1953,57,211-215.
    27. Miyauchi, Y.; Ding, B.; Shiratori, S. Fabrication of a Silver-ragwort-leaf-like Super-hydrophobic micro/nanoporous fibrous mat surface by electrospinning. Nanotechnology 2006,17,5151-5156.
    28. Ma, M.; Hill, R. M.; Lowery, J. L.; Fridrikh, S. V.; Rutledge, G. C. Electrospun Poly(Styrene-block-dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity. Langmuir 2005,21,5549-5554.
    29. Singh, A.; Steely, L.; Allcock, H. Poly[bis(2,2,2,-trifluoroethoxy)phosphazene] superhydrophobic nanofibers. Langmuir 2005,21,11604-11607.
    30. Han, D.; Steckl, A. J. Superhydrophobic and Oleophobic Fibers by Coaxial Electrospinning. Langmuir 2009,25,9454-9462.
    31.朱长乐膜科学技术.高等教育出版社:北京,2004.
    32. Ding, B.; Ogawa, T.; Kim, J.; Fujimoto, K.; Shiratori, S. Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning. Thin Solid Films 2008,516,2495-2501.
    33. Tang H, Wang H, He J. Superhydrophobic Titania Membranes of Different Adhesive Forces Fabricated by Electrospinning. J. Phys. Chem. C 2009,113, 14220-14224.
    34. Sarkar, S.; Chunder, A.; Fei, W. F.; An, L.; Zhai, L. Superhydrophobic Mats of Polymer-Derived Ceramic Fibers. J. Am. Ceram. Soc.2008,91,2751-2755.
    35. Guo, M.; Ding, B.; Li, X. H.; Wang, X. L.; Yu, J. Y.; Wang, M. R. Amphiphobic Nanofibrous Silica Mats with Flexible and High-Heat-Resistant Properties. J. Phys. Chem. C 2010,774,916-921.
    36. Marci, G.; Augugliaro, V.; Lopez-Munoz, M. J.; Martin, C.; Palmisano, L.; Rives, V.; Schiavello, M.; Tilley, R. J. D.; Venezia, A. M. Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems.1. Surface and Bulk Characterization,J. Phys. Chem.B 2001,105,1026-1032.
    37. Wang, Z. L.; Liu, X. J.; Lv, M. F.; Chai, P.; Liu, Y.; Meng, J. Preparation of Ferrite MFe2O4 (M=Co, Ni) Ribbons with Nanoporous Structure and Their Magnetic Properties. J. Phys. Chem. B 2008,112,11292-11297.
    38. Mardilovich, P. P.; Trokhimets, A. I. Appearance regions of the stretching vibrations of unperturbed and hydrogen-bonded OH- and od-groups in alumina oxides. J. Appl. Spectrose.1981,35,1029-1033.
    39. Zhang, Y B.;Ding, Y P.;Li, Y; Gao, J. Q.; Yang, J. F. Synthesis and characterization of polyvinyl butyral-Al(NO3)3 composite sol used for alumina based fibers. J. Sol-Gel Sci. Technol.2009,49,385-390.
    40. Boumaza, A.; Favaro, L.; Ledion, J.; Sattonnay, G.; Brubach, J. B.; Berthet, P.; Huntz, A. M.; Roy, P.; Tetot, R. Transition alumina phases induced by heat treatment of boehmite:An X-ray diffraction and infrared spectroscopy study. J. Solid State Chem.2009,182,1171-1176
    41. Tantirungrotechai, J.; Chotmongkolsap, P.;Pohmakotr, Manat. Synthesis, characterization, and activity in transesterification of mesoporous Mg-Al mixed-metal oxides. Microporous Mesoporous Mater.2010,128,41-47.
    47. Lopez, T.; Marmolejo, R.; Asomoza, M.; Solis, S.; Gomez, R.;Wang, J. A.; Bokhimi, O.; Navarrete, J.; Llanos, M. E.; Lopez, E. Preparation of a complete series of single phase homogeneous sol-gels of Al2O3, and MgO for basic catalysts. Mater. Lett.1997,32,325-334.
    43. Schonherr, H.;Ringsdorf, H. Self-Assembled Monolayers of Symmetrical and Mixed Alkyl Fluoroalkyl Disulfides on Gold.1. Synthesis of Disulfides and Investigation of Monolayer Properties. Langmuir 1996,12,3891-3897.
    44. Kloprogge, J, T.;Frost, R. L. Infrared emission spectroscopy of Al-pillared beidellite. Appl. Clay Sci 1999,15,431-445.
    45. Gupta, P.; Elkins, C.; Long, T. E.; Wilkes, G. Electrospinning of linear homopolymers of poly(methyl methacrylate):exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 2005,46,4799-4810.
    46. Zong, X. H.; Kim, K.; Fang, D. F.; Ran, S. F.; Hsiao, B. S.; Chu, B. Structure and process relationships of electrospun bioabsorbable nanofiber membranes. Polymer 2002,43,4403-4412.
    47. Lin, J. Y.; Ding, B.; Yu, J. Y.; Hsieh, Y Direct fabrication of highly nanoporous polystyrene fibers via electrospinning. ACS Applied Materials & Interfaces 2010,2, 521-528.
    48. Gogotsi, Y. nanotubes and nanofibers. Taylor & Francis:USA,2006.
    49. Demir, M. M.;Yilgor, I.; Yilgor, E.; Erman, B. Electrospinning of polyurethane fibers. Polymer,2002,43,3303-3309.
    50. Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Tan, N. C. B. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001,42, 261-272.
    51. Fadeev, A. Y.; McCarthy, T. J. Self-assembly is not the only reaction possible between alkyltrichlorosilanes and surfaces:monomolecular and oligomeric covalently attached layers of dichloro-and trichloroalkylsilanes on silicon, Langmuir 2000,16, 7268-7274.
    52. Lu, J.; Yu, Y.; Zhou, J.; Song, L. X.; Hu, X. F.; Larbot, A. FAS grafted superhydrophobic ceramic membrane. Appl. Surf. Sci.2009,255,9092-9099.
    53. Fang, H.; Gao, J. F.; Wang, H. T.; Chen, C. S. Hydrophobic porous alumina hollow fiber for water desalination via membrane distillation process. J. Membr. Sci. 2012,403-404,41-46.
    54. Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T. Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces. Langmuir 2000,16,5754-5760.
    55. Feng, L.; Li, S. H.; Li, H. J.; Zhai, J.; Song, Y. L.; Jiang, L.; Zhu, D. B. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew. Chem. Int. Ed.2002,41,1221-1223.
    56. Wu, H.; Zhang, R.; Sun, Y.; Lin, D. D.; Sun, Z. Q.; Pan, W.; Downs, P. Biomimetic nanofiber patterns with controlled wettability. Soft Matter 2008,4, 2429-2433.
    57. Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Tran. Faraday Soc. 1944,40,546-551.
    [1]J. Dinwoodie, Ceram. Industry 1996,4,58-71.
    [2]J. Chandradass, M. Balasubramanian, J. Mater. Sci.2006,41,6026-6030.
    [3]C. Jing, J. Zhao, H. Zhang, J. Sol-Gel Sci. Technol 2007,42,151-156.
    [4]J. Chandradass, M. Balasubramanian, Mater. Manuf. Process 2006,21,319-323.
    [5]J. Chien, Y. Yang, J. Martinez, S. Dong, V. Telluri, K. Jakus, J. Polym. Sci. Part A: Polym. Chem.2003,29,495-503.
    [6]M. H. Stacey, Br. Ceram. Trans. J.1988,87,168-172.
    [7]A. Towata, H. J. Hwang, M. Yasuoka, J. Am. Ceram. Soc.1998,81,2469-2472.
    [8]R. Dong, Y. Hirata, J. Ceram. Soc. Jpn.2000,108,823-829.
    [9]H. Morita, H. Yamane, Y. Kimura,J.Appl Polym. Sci.2003,40,753-767.
    [10]Y. Gotoh, K. Fujimura, Y. Ohkoshi, Mater. Chem. Phys.2004,83,54-59.
    [11]E. P. S. Tan, C. T. Lim, Compos. Sci. Technol.2006,66,1102-1111.
    [12]E. P. S. Tan. C.Lim, Appl. Phys. Lett.2004,84,1603-1605.
    [13]Y. Lanti, F. C. Carel, O. W. Kees, L. B. Martin, J. D. Pieter, F. Jan, Biomaterials 2008,29,955-962.
    [14]F. Fondeur, B. Mitchell,J.Am. Ceram. Soc.1996,79,2469-2473.
    [15]E. Aguilar, R. Drew, J. Eur. Ceram. Soc.2000,20,1091-1098.
    [16]M. Allahverdi, R. Drew, J. O. Strom-Olsen, J. Mater. Sci.1996,31,1035-1042.
    [17]G. Emig, R. Wirth, R. Zimmermann, J. Mater. Sci.1994,29,4559-4566.
    [18]T. Yogo, H. Iwahara, J. Mater. Sci.1991,26,5292-5296.
    [19]A. Greiner, J. Wendorff, Angew. Chem. Int. Ed.2007,46,5670-5703.
    [20]D. Li, Y. N. Xia, Adv. Mater.2004,16,1151-1170.
    [21]N. Mahanta, S. Valiyaveettil, Nanoscale 2011,3,4625-4631.
    [22]X. Lu, C. Wang, Y. Wei, Small 2009,5,2349-2370.
    [23]S. Chigome, G. Darko, N. Torto, Analyst 2011,136,2879-2889.
    [24]J. Deitzel, J. Kleinmeyer, D. Harris, N. C. BeckTan, Polymer 2001,42,261-272.
    [25]J. V. Nygaard, T. Uyar, M. L. Chen, P. Cloetens, P. Kingshott, F. Besenbacher,
    Nanoscale 2011,3,3594-3597.
    [26]M. Guo, B. Ding, X. H. Li, X. L. Wang, J. Y. Yu, M. R. Wang, J. Phys. Chem. C 2010,114,916-921.
    [27]Y. Jin, D. Y. Yang, D. Kang, X. Y. Jiang, Langmuir 2010,26,1186-1190.
    [28]Z. P. Li, Y. J. Fan, J. H. Zhan, Eur. J. Inorg. Chem.2010,21,3348-3353.
    [29]Y. X. Gu, D. R. Chen, X. L. Jiao, F. Liu,J. Mater. Chem.2006,16,4361-4366.
    [30]A. M. Azad, M. Noibi, M. Ramachandran, Bull. Pol. Acad. Sci. Chem.2007,55, 195-201.
    [31]A. Abdul-Majeed, Mater. Sci. Engineer. A 2006,435,468-473.
    [32]P. K. Panda, S. Ramakrishna, J. Mater. Sci.2007,42,2189-2193.
    [33]H. Dai, J. Gong, H. Kim, D. Lee, Nanotechnology 2002,13,674-671.
    [34]R. W. Tuttle, A. Chowdury, E. T. Bender, R. D. Ramsier, J. L. Rapp, M. P. Espe, Appl. Surf. Sci.2008,254,4925-4929.
    [35]Y. Y. Xu, D. R. Chen, X. L. Jiao, J. Phys. Chem. C2007,111,6-9.
    [36]R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Science 2001.294,1901-1903.
    [37]A. M. Gavrish, E. L. Karyakina, S. V. Lysak, L. A. Dergaputskaya, I. N. Kalinovskaya, Refract. Ind. Ceram.1988,29,603-611.
    [38]D. Galusek, R. Brydson, P. C. Twigg, F. L. Riley, A. Atkinson, Y. H. Zhang,J. Am. Ceram. Soc.2001,84,1767-1776.
    [39]R. Brydson, S. C. Chen, F. L. Riley, S. J. Milne, X. Q. Pan, M. Ruhle, J. Am. Ceram. Soc.1998,81,369-379.
    [40]K. H. Lee, H. Y. Kim, M. S. Khil, Polymer 2003,44,1287-1294.
    [41]P. P. Lu, Z. L. Xu, H. Yang, Y. M. Wei, H. T. Xu, J. Polym. Res.2012,19, 9854-9863.
    [42]C. A. Gutierrez, R. Moreno, Br. Ceram. Trans.2003,102,219-224.
    [43]J. Chandradass, M. Balasubramanian, J. Mater. Process Technol.2006,173, 275-280.
    [44]R. Venkatesh, P. K. Chakrabarty, B. Siladitya, M. Chatterjee, D. Ganguli, Ceram. Int.1999,25,539-543.
    [45]A. Boumaza, L. Favaro, J. Ledion, G. Sattonnay, J. B. Brubach, P. Berthet, A. M. Huntz, P. Roy, R. Tetot, J. Solid State Chem.2009,182,1171-1176.
    [46]P. P. Mardilovich, A. I. Trokhimets, J. Appl. Spectrosc.1981,35,1029-1033.
    [47]T. Sato, S. Ikoma, K. Ogana, Proceedings of the 7th International Conf. on Thermal Analysis, John Wiley & Sons, New York,1982,1,150-154.
    [48]T. Lopez, R. Marmolejo, M. Asomoza, S. Solis, R. Gomez, J. A. Wang, O. Bokhimi, J. Navarrete, M. E. Llanos, E. Lopez, Mater. Lett.1997,32,325-334.
    [49]C. B. Jing, X. G. Xu, J. X. Hou, J. Sol-Gel Sci. Technol.2008,45,109-113.
    [50]Y. F. Zhang, Q. Li, H. L. Li, Y. L. Cheng, J. F. Zhang, X. Q. Cao, J. Cryst. Growth 2008,310,3884-3889.
    [51]P. Hartman, J. Cryst. Growth 1980,49,166-170.
    [52]L. Vanherpe, N. Moelans, B. Blanpain, S. Vandewalle, Acta Mater.2010,49, 340-350.
    [53]N. Moelans, B. B. Blanpain, P. Wollants, Acta Mater.2007,55,2173-2182.
    [54]K. Watanabe, I. Sunagawa,J.Cryst. Growth 1983,65,568-575.
    [55]W. C. Mackrodt R. J. Davey, S. N. Black,J.Cryst. Growth 1987,80,441-446.
    [56]A. Calleja, X. Granados, S. Ricart, J. Oro, J. Arbiol, N. Mestres, A. E. Carrillo, X. Palmer, J. A. Tornero, T. Puig, X. Obradors, CrystEngComm 2011,13,7224-7230.
    [57]S. Xu, Y. Shi, S. Kim, Nanotechnology 2006,17,4497-4501.
    [58]K. Kurosaki, D. Setoyama, J. Matsunaga, S. Yamanaka, J. Alloys Compd.2005, 386,261-264.
    [59]R. S. Mishra, S. X. McFadden, R. Z. Valiev, A. K. Mukherjee,J.Mater. Min. Soc.1999,51,37-40.
    [60]S. Lee, C. Tekmen, W. M. Sigmund, Mater. Sci. Engineer. A 2005,398,77-81.
    [61]A. C. Ugural, Mechanics of Materials, McGraw-Hill, New York,2008, pp 168-171.
    [62]N. P. D'Costa, J. H. Hoh, Rev. Sci. Instrum.1995,66,5096-5097.
    [1]Brinker CJ, Scherer GW. Sol-Gel Science Academic Press, San Diego, CA,1990, p.59-77.
    [2]Chien C, Yang Y, Martinez JR. J Polym Sci Pol Chem 2003;29:495-503.
    [3]Chatterjee M, Naskar MK, Chakrabarthy PK, Ganguli D. Mater Lett 2002;57: 87-93.
    [4]Tuttle RW, Chowdury A, Bender ET, Ramsier RD, Rapp JL, Espe MP. Appl Surf Sci 2008;254:4925-4929.
    [5]Venkatesh R, Chakrabarty PK, Siladitya B, Chatterjee M, Ganguli D. Ceram Int 1999; 25:539-543.
    [6]Chandradass J, Balasubramanian M. J Eur Ceram Soc 2006; 26:2611-2617.
    [7]Shojaie-Bahaabad M, Taheri-Nassaj E, Naghizadeh R. Ceram Int 2009; 35: 391-396.
    [8]Singh VK, J Am Ceram Soc 1981; 64:133-136.
    [9]Lu X, Wang C, Wei Y. Small 2009; 5:2349-2370.
    [10]Chigome S, Darko G, Torto N. Analyst 2011; 136:2879-2889.
    [11]Lu CH, Tsai CC. Mater Lett 1997;31:271-274.
    [12]Tang HJ, Sun HY, Chen DR, Jiao XL. Mater Lett 2012;70:48-50.
    [13]Souza Santos P, Souza Santos H, Toledo SP. Materials research 2000;3: 104-114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700