用户名: 密码: 验证码:
TiO_2纳米管光电催化降解有机污染物耦合制氢研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业化和城镇化进程的加快,环境问题和能源危机日益严重。由于氢能具有清洁高效、能量密度高、导热性好等特点必将成为人类未来能源发展的一个主要方向。利用太阳能为驱动,光催化剂为光电极来降解有机污染物制取氢,将光能、电能进行有机结合,实现了光能和电能到化学能(氢能)的转换,不但解决了严重的环境污染问题而且也为缓解能源危机提供有效途径。
     作为该技术的关键,研制出具有光转化效率高的光电催化材料是重要的研究方向。本文利用电化学阳极氧化法成功制备出二氧化钛纳米管(TNT)并对其进行改性。探索了制备的主要影响因素对二氧化钛纳米管结构特征及其光电催化活性的影响。
     探索二氧化钛纳米管阵列光电催化产氢性能的影响因素、掺杂改性及其光电催化降解有机污染物同时产氢的应用,并在此基础上对其光电催化降解有机污染物同时产氢的机理进行了初步探索,为开发高效能的二氧化钛纳米管阵列及其复合光催化剂提供了技术支持。主要结果如下:
     1.在相同的氧化时间条件下,随着氧化电压(20V、30V、45V、60V)的升高,二氧化钛纳米管的管长、孔径、长径比、粗糙系数、生长速率逐渐增大,管壁厚度逐渐降低。在相同的氧化电压下,随着氧化时间(3h、4h、5h、6h)的延长,二氧化钛纳米管的管长、长径比和粗糙系数逐渐增大,孔径和壁厚基本不变。总之,氧化电压对二氧化钛纳米管阵列的形貌结构特征起着决定性影响,尤其是对其长径比。在氧化电压为60V,氧化时间为6h的条件下制备的二氧化钛纳米管具有最佳的长径比结构特征,其长径比为178,表现出优异的光电催化降解有机污染物同时产氢的性能,其光电流密度和光电催化降解甲基橙的动力学常数分别达到最大,其值分别为48×10-3mA/cm2和2.26×10-3min-1;在外加偏压为0.45V时表现出的最大光电流密度约为0.05mA/cm2。二氧化钛纳米管阵列经450℃煅烧后,其表现出锐钛矿和金红石的混合相;XPS测试表明,其含有一定量的C、N元素,成功实现了C、N元素的原位掺杂。
     2.利用两步电化学氧化法制备的二氧化钛纳米管表现出较高的长径比和较薄的管壁厚度,其值分别为104.83和16.36nm,相比于一步阳极氧化制备的二氧化钛纳米管表现出更高的光电催化性能。一步阳极氧化和两步阳极氧化合成的二氧化钛纳米管的光电流密度和及其光-氢转化效率分别为0.2mA/cm2和0.4mA/cm2、0.14%和0.36%。当加入乙二醇作为有机电子供体时,一步阳极氧化和两步阳极氧化合成的二氧化钛纳米管的瞬时光电流密度分别为0.022mA/cm2和0.026mA/cm2。
     3.以氧化电压分别为20V、30V、45V,氧化时间为1h的条件下制备二氧化钛纳米管为基体,利用电化学沉积法制备了ZnFe2O4/TiO2纳米管复合光电极,在氧化电压45V、氧化时间1h条件下制备的二氧化钛纳米管表现出最大光-氢转化效率为0.1%,而在氧化电压30V、氧化时间1h条件下制备的二氧化钛纳米管复合光电极znFe2O4/TiO2表现出的最大光-氢转化效率为0.18%。
     4.以氧化电压45V、氧化时间5h制备的二氧化钛纳米管为基体,利用提拉-浸渍法合成的Pt/TiO2纳米管复合电极,其光-氢转化效率是YiO2纳米管的2.1倍。甲基橙光电催化降解实验表明,Pt/TNT的光电催化降解速率为TNT的2.7倍,且具有较好的的机械强度和化学稳定性,是一种极具应用潜力的环境友好材料。
     5.采用三电极体系,在外加偏压为0.45V时,分别以0.1mol/L的KOH、 Na2SO4、Na2CO3溶液为支持电解质溶液,以0.5mol/L的乙二醇为目标污染物时,以KOH为电解质溶液的光电流密度最大;在pH值分别为2、6.8、10的条件下,以pH值为6.8时光电流最大。光电流密度随着乙二醇浓度的增大而增大。草酸作为目标污染物时的光电流密度最大。
With the rapid development of industrial and urbanization, environmental problems and energy crisis have been becoming increasingly serious. Because hydrogen energy possesses the characteristic with clear, high energy density, better heat conduction, it will become a main direction of energy for people in the near future. Photocatalyst was used as the photoanode to degrade organic pollutants and simultaneously produce hydrogen using solar energy as a drive, and combine optical energy and electrical energy, realize the conversion of optical energy and electrical energy into chemical energy(hydrogen energy), which not only solve serious environment pollution problems, but also provide an effective method to relieve energy cnsis.
     As the key of photocatalytic technology, developing the photocatalytic materials with high photoconversion efficiency is the key study direction. Titania nanotube arrays (TNT) were fabricated by anodization method, and they were also modified to improve their photoelectrocatalytic performance. The main factors affecting preparation of TNT on its structural features and photoelectrocatalytic activity were investigated.
     Effecting factors of TNT for the photoelectrocatalytic hydrogen generation performance, its modification and application in photoelectrocatalytic degradation of organic pollutants degradation and simultaneous hydrogen generation were also studied, and its mechanism of photoelectrocatalytic degradation organic pollutants and simultaneous hydrogen generation for TNT were preliminarily investigated, and provided a technical support to develop a high efficiency titania nanotube arrays and its multiplex photocatalyst. The main study results were listed as following:
     Firstly, under the same conditions of anodization time, the tube length, pore size, aspect ratio, roughness factor, growth rate of TNT increased and the wall thickness decreased with the increase of anodization voltages (20V,30V,45V,60V). Under the same conditions of anodization voltages, the tube length, aspect ratio, roughness factor of TNT increased, and the wall thickness and pore size did not change with the increase of anodization time (3h,4h,5h,6h). In a word, anodization voltages decided the structural features of TNT, especially, it decisively affected the aspect ratio of TNT. TNT fabricated at60V for6h has an optimum aspect ratio, when the aspect ratio was178, TNT exhibited the maximum capacity for the photoelectrocatalytic degradation and simultaneous hydrogen generation. TNT that was annealed at450℃showed the mixture of anatase and rutile, and its XPS test indicated that TNT contained C, N, and successfully the in-situ modification of C, N. The aspect ratio of TNT has a decisive effect on its performance for the photoelectrocatalytic degradation and hydrogen generation. When TNT with the aspect ratio of178showed the maximum degradation kinetic constant of2.26x10-3min-1and the maximum photocurrent density of48×10-3mA/cm2. TNT showed the maximum photocurrent density of0.05mA/cm2under the bias potential of0.45V.
     Secondly, TNT fabricated by two-step anodization demonstrated the higher aspect and thin wall thickness, which were104.83and16.36nm. TNT fabricated by two-step anodization showed higher photoelectrocatalytic activity than those prepared by one-step anodization, their photocurrent density and photo-hydrogen conversion efficiency were0.2mA/cm2and0.4mA/cm2,0.14%and0.36%. When ethylene glycol was used as organic electron donor, the photocurrent density of TNT fabricated by two-step anodization and one-step anodization were0.026mA/cm2and0.022mA/cm2.
     Thirdly, TNT fabricated by anodization at20V,30V,45V for1h was used to dope ZnFe2O4nanoparticles using electrochemical deposition, and the results indicated that TNT prepared by anodization at45V for1h showed the maximum photo-hydrogen cinversion efficiency of0.18%.
     Fourthly, TNT fabricated by anodization at45V for5h was utilized to prepare Pt/TiO2electrode using dipping-pulling method, the results indicate that the uniform dispersion of platinum successfully broadens the absorption spectrum of TiO2nanotube arrays to visible light region and the photocurrent density of Pt/TNT is18times that of TNT. The degradation of methyl orange on Pt/TNT conforms to pseudo first-order kinetics and the reaction rate constant is about3times that of TNT. The photo-hydrogen conversion efficiency of Pt/TiO2photoelectrode is2.1times that of TNT, it also demonstrates the highest mechanical and chemical stability.
     Fifth, Using three-electrode system,0.1mol/L KOH, Na2SO4, Na2CO3solution were used as supporting electrolyte solution under the condition of bias potential of0.45V, TNT shows the highest photocurrent density in KOH solution. Na2SO4solution of0.1mol/L was used as supporting electrolyte solution under the condition of bias potential of0.45V, pH was2,6.8,10, TNT exhibits the maximum photocurrent density when pH of Na2SO4solution is6.8. Under the conditions of ethylene glycol of0mol/L,0.1mol/L,0.25mol/L,0.5mol/L, the photocurrent density increases with the increase of concentration of ethylene glycol. At the presence of ethylene glycol and oxalic acid, TNT in the electrolyte of ethylene glycol shows the higher photocurrent density than oxalic acid without the bias potential. And TNT in the electrolyte of oxalic acid demonstrates the higher photocurrent with the increase of the bias potential from0V to0.9V.
引文
[1]汤桂兰,孙振钧.生物制氢技术的研究现状与发展.生物技术,2007,16(1):93-98
    [2]张全国,尤希凤,张军合.生物制氢技术研究现状及其进展.生物质化学工程,2006,40(1):27-31
    [3]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238(5358):37-38
    [4]Allam N K, Grimes C A. Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented TiO2 nanotube arrays. Sol Energy Mater Sol Cells,2008,92(11):1468-1475
    [5]Ghicov A, Schmuki P. Self-ordering electrochemistry:a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem Commun,2009,20: 2791-2808
    [6]Wang J, Lin Z Q. Anodic formation of ordered TiO2 nanotube arrays:Effects of electrolyte temperature and anodization potential. J Phys Chem C,2009,113(10):4026-4030
    [7]Allam N K, Shankar K, Grimes C A. Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HC1 electrolytes. J Mater Chem,2008,18(20):2341-2348
    [8]Beranek R, Tsuchiya H, Sugishima T, et al. Enhancement and limits of the photoelectrochemical response from anodic TiO2 nanotubes. Appl Phys Lett,2005,87: 2431-2443
    [9]Mor G K, Shankar K, Paulose M, et al. Enhanced photocleavage of water using titania nanotubes. Nano Lett,2005,5(1):191-195
    [10]Paulose M, Mor G K, Varghese O K, et al. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays. J Photochem Photobiol A,2006, 178(1):8-15
    [11]Kim E Y, Park J H, Han G Y, et al. Design of TiO2 nanotube array-based water-splitting reactor for hydrogen generation. J Power Sources,2008,184(1):284-287
    [12]李敦钫,郑菁,陈新益,等.光催化分解水体系和材料研究.化学进展,2007,19(4):464-477
    [13]Jakob M, Levanon H. Charge distribution between UV-Irradiated TiO2 and gold nanoparticles: Determination of shift in the fermi level. Nano Lett,2003,3(3):353-358
    [14]Ni M, Leung M K H, Leung D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev, 2007,11(3):401-425
    [15]Karn R K, Misra M, Srivastava O N. Semiconductor-septum photoelectrochemical solar cell for hydrogen production. Int J Hydrogen Energy,2000,25(6):495-503
    [16]Ruan C M, Paulose M, Varghese O K, et al. Enhanced photoelectrochemical-response in highly ordered TiO2 nanotube arrays anodized in boric acid containing electrolyte. Sol Energy Mater Sol Cells,2006,90(9):1283-1295
    [17]Allam N K, Shankar K, Grimes C A. Photoelectrochemical and water photoelectrolysis properties of ordered TiO2 nanotubes fabricated by Ti anodization in fluoride-free HC1 electrolytes. J Mater Chem,2008,18(20):2341-2348
    [18]Cai Q, Paulose M, Varghese O K, et al. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation. J Mater Res, 2005,20(1):230-236
    [19]Cao F, Oskam G, Meyer G J, et al. Electron transport properties in porous nanocrystalline TiO2 photoelectrochemical cells. J Phys Chem.,1996,100:17021-17027
    [20]Shankar K, Mor G K, Prakasam H E, et al. Highly-ordered TiO2 nanotube arrays up to 220 μm in length:use in water photoelectrolysis and dye-sensitized solar cells. Nanotech,2007, 18(6):065707/1-065707/11
    [21]Zhu K, Neale N R, Miedaner A, et al. Enhanced charge-collection efficiencies and light scattering in dyesensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett,2007, 7(1):69-74.
    [22]Zhang H M, Liu P R, Liu X L, et al. Fabrication of highly ordered TiO2 nanorod/nanotube adjacent arrays for photoelectrochemical applications. Langmuir,2010,26(13):11226-11232
    [23]Das P P, Mohapatra S K, Misra M. Photoelectrolysis of water using heterostructural composite of TiO2 nanotubes and nanoparticles. J Phys D Appl Phys,2008,41: 245103-245109
    [24]Zhang J, Li M J, Feng Z C. UV raman spectroscopic study on TiO2.Ⅰ. phase transformation at the surface and in the bulk. J Phys Chem B,2006,110(2):927-935
    [25]Zhang J, Xu Q, Li M J, et al. UV raman spectroscopic study on TiO2 Ⅱ. effect of nanoparticle size on the outer/inner phase transformations. J Phys Chem C,2009,113(5):1698-1704
    [26]Yamamoto J, Tan A, Shiratsuchi R S, et al. A 4% efficient dye-sensitized solar cell fabricated from cathodically electrosynthesized composite titania films. Adv Mater,2003,15: 1823-1825
    [27]Song X M, Wu J M, Tang M Z, et al. Enhanced photoelectrochernical response of a composite titania thin film with single-crystalline rutile nanorods embedded in anatase aggregates. J Phys Chem C,2008,112(49):19484-19492
    [28]Eder D, Kinloch I A, Windle A H. Pure rutile nanotubes. Chem Commun,2006,2006(13): 1448-1450
    [29]Sun J, Iwasa M, Gao L, et al. Single-walled carbon nanotubes coated with titania nanoparticles. Carbon,2004,42(4):895-899
    [30]Yu H T, Quan X, Chen S, et al. Aligned TiO2-multiwalled carbon nanotube heterojunction arrays and their charge separation capability. J Phys Chem C,2007,111(35):12987-12991
    [31]Wang D A, Liu L F, Zhang F X, et al. Spontaneous phase and morphology transformations of anodized titania nanotubes induced by water at room temperature. Nano Lett,2011,11(9): 3649-3655
    [32]Kim S, Choi W. Dual photocatalytic pathways of trichloroacetate degradation on TiO2: effects of nano-sized Pt deposits on kinetics and mechanism. J Phys Chem B,2002,106(51): 13311-13317
    [33]Jin S, Shiraishi F. Photocatalytic activities enhanced for decompositions of organic compounds over metal-photodepositing titanium dioxide. Chem Eng J,2004,97(2-3): 203-211
    [34]Linsebigler A L, Lu G X, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results. Chem Rev,1995,95(3):735-758
    [35]Kim D, Fujimoto S, Schmuki P, et al. Gravity assisted growth of self-organized anodic oxide nanotubes on titanium. Electrochem Commun,2008,10(7):910-913
    [36]Beranek R, Macak J M, Gartner M, et al. Enhanced visible light photocurrent generation at surface-modified TiO2 nanotubes. Electrochim Acta,2009,54(9):2640-2646
    [37]Quan X, Li J Y, Chen S, et al. Fabrication of boron-doped TiO2 nanotube array electrode and investigation of its photoelectrochemical capability. J Phys Chem C,2007,111(32): 11836-11842
    [38]Mohapatra S K, Misra M, Mahajan V K, et al. Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting:Application of TiO2-xCx nanotubes as a photoanode and Pt/TiO2 nanotubes as a cathode. J Phys Chem C,2007,111:8677-8685
    [39]Guo Y G, Hu J S, Liang H P, et al. TiO2-based composite nanotube arrays prepared via layer-by-layer assembly. Adv Funct Mater,2005,15(2):196-202
    [40]Vijayan B K, Dimitrijevic N M, Wu J S, et al. The effects of Pt doping on the structure and visible light photoactivity of titania nanotubes. J Phys Chem C,2010,114:21262-21269
    [41]Xie K P, Sun L, Wang C L, et al. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition. Electrochim Acta,2010,55(24): 7211-7218
    [42]Sun W T, Yu Y, Pan H Y, et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. J Am Chem Soc,2008,130(4):1124-1125
    [43]Seabold J A, Shankar K, Wilke R H T, et al. Photoelectrochemical properties of heterojunction CdTe/TiO2 electrodes constructed using highly ordered TiO2 nanotube arrays. Chem Mater,2008,20(16):5266-5273
    [44]张建灵,张兴旺,雷乐成.CdS修饰TiO2纳米管阵列制备及其光电催化产氢性能.科学通报,2008,53(12):1471-1474
    [45]Paramasivam I, Nah Y C, Das C, et al. WO3/TiO2 nanotubes with strongly enhanced photocatalytic activity. Chem Eur J,2010,16(30):8993-8997
    [46]Bae S, Shim E, Yoon J, et al. Enzymatic hydrogen production by light-sensitized anodized tubular TiO2 photoanode. Sol Energy Mater Sol Cells,2008,92(4):402-409
    [47]Bae S, Kang J, Shim E, et al. Correlation of electrical and physical properties of photoanode with hydrogen evolution in enzymatic photo-electrochemical cell. J Power Sources,2008, 179(2):863-869
    [48]Bae S, Kang J, Shim E, et al. Photoanodic and cathodic role of anodized tubular titania in light-sensitized enzymatic hydrogen production. J Power Sources,2008,185(1):439-444
    [49]Joo H, Bae S, Kim C, et al. Sol Energy Mater Sol Cells,2009,93:1555-1561
    [50]Mor G K, Varghese O K, Grimes C A, et al. p-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett, 2008,8(7):1906-1911
    [51]Shkrob I A, Sauer M C, Gosztola D, et al. Efficient, rapid photooxidation of chemisorbed polyhydroxyl alcohols and carbohydrates by TiO2 nanoparticles in an aqueous solution. J Phys Chem B,2004,108(33):12512-12517
    [52]Chen X, Mao S S. Titanium dioxide nanomaterials:synthesis, properties, modifications and applications. Chem Rev,2007,107(7):2891-2959
    [53]袁坚,陈恺,陈铭夏,等.层间插入CdS/ZnS的K4Nb6O17的制备及其光解水制氢研究.太阳能学报,2005,26(6):811-814
    [54]Uchida S, Yamamoto Y, Fujishiro Y, et al. Intercalation of titanium oxide in layered H2Ti4O9 and H4Nb6O17 and photocatalytic water cleavage with H2Ti4O9(TiO2, Pt) and H4Nb6O17/(TiO2, Pt) nanocomposites. J Chem Soc Faraday Trans,1997,93(17):3229-3234
    [55]Jang J S, Km H G, Reddy V R, et al. Photocatalytic water splitting over iron oxide nanoparticles intercalated in HTiNb(Ta)O5 layered compounds. J Catal,2005,231(1): 213-222
    [56]Yin S, Maeda D, Ishitsuka M, et al. Synthesis of HTaWO6(Pt, TiO2) nano-composite with high photocatalytic activities for hydrogen evolution and nitrogen monoxide destruction. Solid State Ionics,2002,151(1-4):377-383
    [57]Shangguan W F, Yoshida A. Photocatalytic hydrogen evolution from water on nanocomposites incorporating cadmium sulfide into the interlayer. J Phys Chem B,2002, 106(47):12227-12230
    [58]Wu J H, Lin J M, Yin S, et al. Synthesis and photocatalytic properties of layered HNbWO6/(Pt, Cd0.8Zn0.2S)nanocomposites. J Mater Chem,2001,11(12):3343-3347
    [59]Wei W, Dai Y, Guo M, et al. Density functional characterization of the electronic structure and optical properties of N-doped, La-doped and N/La-Codoped SrTiO3. J Phys Chem C, 2009,113(33):15046-15050
    [60]Ikuma Y, Bessho H. Effect of Pt concentration on the production of hydrogen by a TiO2 photocatalyst. Int J Hydrogen Energy,2007,32(14):2689-2692
    [61]Asahi R, Morikawa T, Ohwaki T. Visible light photocatalysis in nitrogen doped titanium oxides. Science,2001,293(5528):269-271
    [62]Rane K S, Mhalsiker R, Yin S, et al. Visible light-sensitive yellow TiO2-xNx, and Fe-N Co-doped.Ti1-yFeyO2-xNxanatase photoeatalysts. J Solid State Chem,2006,179:3033-3044
    [63]Hao H Y, Zhang J L. The study of Iron (III) and nitrogen co-doped mesoporous TiO2 photocatalysts:synthesis, characterization and activity. Microporous Mesoporous Mater, 2009,121(1-3):52-57
    [64]Nakajima K, Lu D, Hara M, et al. Synthesis and application of thermally stable mesoporous Ta2O5 photocatalyst for overall water decomposition. Stud Surf Sci Catal,2005,158: 1477-1484
    [65]Zhu Z F, Yu F, Man Y, et al. Preparation and performances of nanosized Ta2Os powder photocatalyst. J Solid State Chem,2005,178(1):224-229
    [66]Kato H, Kudo A. New tantalate photocatalysts for water decomposition into H2 and O2. Chem Phys Lett,1998,295(5-6):487-492
    [67]Kato H, Kudo A. Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts. Catal Lett,1999,58(2-3):153-155
    [68]Wang D F, Zou Z G, Ye J H. Photocatalytic water splitting with the Cr-doped Ba2In2O5/In2O3 composite oxide semiconductors. Chem Mater,2005,17(12):3255-3261
    [69]Sun X, Maeda K, Le F M, et al. Preparation of (Ga1-xZnx) (N1-xOx) solid-solution from ZnGaO4 and ZnO as a photo-catalyst for overall water splitting under visible light. Appl Catal, A,2007,327(1):114-121
    [70]Sato J, Saito N, Nishiyama H, et al. Photocatalytic activities for water decomposition of RuO2-loaded AInO2 (A= Li, Na) with d10 configuration. J Photochem Photobiol, A,2002, 148(1-3):85-89
    [71]Sato J, Saito N, Nishiyama H, et al. New photocatalyst group for water decomposition of Ru02-Loaded p-Block metal (In, Sn, and Sb) oxides with d10 configuration. J Phys Chem B, 2001,105(26):6061-6063
    [72]Reber J F, Meier K. Photochemical production of hydrogen with zinc-sulfide suspensions. J Phys Chem,1984,88(24):5903-5913
    [73]Kudo A, Sekizawa M. Photocatalytic H2 evolution under visible light irradiation on Zn1-xCuxS solution photocatalysts. Catal Lett,1999,58(4):241-243
    [74]Kudo A, Sekizawa M. Photocatalytic H2 evolution under visible light irradiation on Ni-doped ZnS photocatalyst. Chem Commun,2000, (15):1371-1372
    [75]Tsuji I, Kudo A. H2 evolution from aqueous sulfite solutions under visible light irradiation over Pb and halogen-codoped ZnS photocatalysts. J Photochem Photobiol, A,2003,156(1-3): 249-252.
    [76]李晓红,张校刚,力虎林.TiO2纳米管的模板法制备及表征.高等学校化学学报,2001,22(1):130-132
    [77]Huang C M, Liu X Q, Liu Y P. Room temperature ferromagnetism of Co-doped TiO2 nanotube arrays prepared by sol-gel template synthesis. Chem Phys Lett,2006,432(4-6): 468-472
    [78]田玉明,徐明霞,刘祥志,等.糖葫芦状二氧化钛纳米线阵列的制备及其光催化性能.催化学报.2006,27(8):703-707
    [79]Miyauchi M, Dome H T. Super-hydrophilic and transparent thin films of TiO2 nanotube arrays by ahydrothermal reaction. J Mater Chem,2007,20(17):2095-2100
    [80]Premchand Y D, Djenizian T, Vacandio F. Fabrication of self-organized TiO2 nanorubes from columnar titanium thin films sputtered on semiconductor surfaces. Electrochem Commun,2006(8):1840-1844
    [81]赖跃坤,孙岚,左娟,等.氧化钛纳米管阵列制备及形成机理.物理化学学报,2004,20(9):1063-1066
    [82]Zhuang H F, Lin Ch J, Lai Y K, et al. Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environ Sci Technol,2007,41(13):4735-4740
    [83]徐璐璐,王玲,陶海军,等.不同电解液组成对TiO2纳米管形成的影响.材料科学与工程学报,2007,25(3):406-410
    [84]Fang D, Huang K L, Liu S Q. Electrochemical properties of ordered TiO2 nanotube loaded with Ag nanoparticles for lithium anode material. J Alloys Compd,2008,464(1-2):L5-L9
    [85]王周成,黄龙门,唐毅.钛表面制备多孔氧化膜的研究.厦门大学学报(自然科学版),2006,45(5):677-682
    [86]刘素琴,方东,李朝建,等.阳极氧化法制备二氧化钛纳米管及其荧光性质.无机化学学报,2007,23(5):827-832
    [87]Kaneco S, Chen Y S, Westerhoff P. Fabrication of uniform size titanium oxide nanotubes: Impact of current density and solution conditions. Scripta Mater,2007,56(5):373-376
    [88]Paulose M, Shankar K, Yoriya S, et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J Phys Chem B,2006,110(33):16179-16184
    [89]Shankar K, Mor G P, Prakasam H E, et al. Highly-ordered TiO2 nanotube arrays up to 220 μm in length:use in water photoelectrolysis and dyesensitized solar cell. Nanotechnol,2007, 18(6):1-11
    [90]Paulose M, Prakasam H E, Varghese O K, et al. TiO2 nanotube arrays of 1000μm length by anodization of titanium foil:phenol red diffusion. J Phys Chem C,2007,111(41): 14992-14997
    [91]Hu X, Zhang T, Jin J, et al. Fabrication of carbon-modified TiO2 nanotubes arrays and their photocatalytic activity. Mater Lett,2008,62(60):4579-4581
    [92]Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotubes arrays with high aspect ratios for efficient solar water splitting. Nano Lett,2006,6(1):24-28
    [93]Liu Z, Pesic B, Raja K S, et al. Hydrogen generation under sunlight by self-ordered TiO2 nanotube arrays. Int J Hydrogen Energy,2009,34(8):3250-3257
    [94]Mohapatra S K, Misra M, Mahajan V K, et al. Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting:application of TiO2-xCx nanotubes as photoanode and Pt/TiO2 nanotubes as a cathode. J Phys Chem C,2007,111(24):8677-8685
    [95]Hoffman M R, Martin S T, Wonyong C, et al. Environmental application of semiconductor photocatalysis. Chem Rev,1995,95(1):69-96
    [96]Rodr S J, Gmez M, Lindquist S E, et al. Photoelectrocatalytic degradation of 4-chlorophenol over sputter deposited Ti oxide films. Thin Solid Films,2000,360:250
    [97]冷文华,张昭,成少安,等.光电催化降解苯胺的研究-外加电压的影响.环境科学学报,2001,21(6):710-714
    [98]冷文华,童少平,成少安,等.附载型二氧化钛光电催化降解苯胺机理.环境科学学报,2000,20(6):781-784
    [99]Chih C S, Tse C C. Kinetics and mechanism of photoelectrochemical oxidation of nitrite ion by using the rutile form of a TiO2/Ti photoelectrode with high electric field enhancement. Ind Eng Chem Res,1998,37(11):4027
    [100]Chen L C, Chou T C. Photodecolorization of methyl orange using silver ion modified TiO2 as photocatalyst. Ind Eng Chem Res,1994,33(6):1436-1443
    [101]Oregan B, Moser J, Anderson M, et al. Vectorial electron injection into transparent semiconductor membranesand electric field effects on the dynamics of light-induced charge separation. J Phys Chem,1990,94(24):8720-8726
    [102]Byrne J A, Eggins B R. Photoelectrochemistry of oxalate on particulate TiO2 electrodes. J Electroanal Chem,1998,457(1-2):61-72
    [103]Walker S A, Christensen P A, Shaw K E. Photoelectrochemical oxidation of aqueous phenol using titanium dioxide aerogel. J Electroanal Chem,1995,393(1-2):137-140
    [104]An T C, Xiong Y, Li G Y, et al. Synergetic effect in degradation of formic acid using a new photoelectrochemical reactor. J Photochem Photobiol, A,2002,151(1-2):155-165
    [105]Pelegrini R, Perqlta-Zamora P, Andrade A R. Electrochemically assisted photocatalytic degradation of reactive dyes. Appl Catal, B,1999,22(2):83-90
    [106]汪青,尚静,宋寒.影响TiO2纳米管光电催化还原Cr(Ⅵ)的因素探讨.催化学报,2011,32(9):1525-1530
    [107]曾谨言.量子力学.Beijing:Sciences Press,1990:97
    [108]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238(5358):37-38.
    [109]Fujishima A, Rao T N, Trky D A. Titanium dioxide photocatalysis. Photochem Photobiol, 2000,1(1):1-21
    [110]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 powder. J Am Chem Soc,1977,99(1977):303-304
    [111]Fujishima A., Zhang X.T. Titanium dioxide photocatalysis:present situation and future approaches. C R Chim,2006,9(5-6):750-760
    [112]Sopyan I, Watanabew M, Murasawa S, et al. An efficient TiO2 thin-film photocatalyst: photocatalytic properties in gas-phase acetaldehyde degradation. Photochem Photobiol, 1996,98(1-2):79-86
    [113]Arabatzis I M, Stergiopoulos T, Bernard M C, et al. Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Appl Catal, B,2003,42(15): 187-201
    [114]Wang D I, Liu Y, Yu B, et al. TiO2 nanotubes with tunable morphology, diameter, and length:synthesis and photo-electricalcatalytic performance. Chem Mater,2009,21(7): 1198-1206
    [115]Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett,2006,6(2):215-218
    [116]Zhu K, Neale N R, Miedaner A, et al. Enhanced charge-collection efficiencies and light scattering in dey-sensitized solar cells using oriented TiO2 nanorubes arrays. Nano Lett, 2007,7(1):69-74
    [117]Zhuang H F, Lin C J, Lai Y K, et al. Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environ Sci Technol,2007,41(13): 4735-4740
    [118]Wu H J, Zhang Z H. Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO2 nanotube arrays. J Solid State Chem,2011,184(12):3202-3207
    [119]Tayirjan T, Sohrab R, Ajayk R. Photoelectrochemical water splitting for hydrogen generation on highly ordered TiO2 nanotubes fabricated by using Ti as cathode. Int J Hydrogen Energy,2012,37(1):103-108
    [120]Wang H, Li H Y, Wang J S, et al. High aspect-ratio transparent highly ordered titanium dioxide nanotube arrays and their performance in dye sensitized solar cells. Mater Lett, 2012,80:99-102
    [121]Sun Y, Wang G X, Yan K P. TiO2 nanotubes for hydrogen generation by photocatalytic water splitting in a two-compartment photoelectrochemical cell. Int J Hydrogen Energy, 2011,36(24):15502-15508
    [122]Abe R, Sayama K, Arakawa H. Sign ificant effect of iodide addition on water splitting into H2 and O2 over Pt-loaded TiO2 photocatalyst:suppression of backwardreaction. Chem Phys Lett,2003,371(3-4):360-364
    [123]Lee K, Nam W S, Han G Y. Photocatalytic water splitting in a lkaline solution using redox mediator.1:parameter study. Int J Hydrogen Energy,2004,29(13):1343-1347
    [124]Li Y X, Lu G X, Li S B. Photocatalytic production of hydrogen in single com ponent and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy. Chemosphere,2003,52(5):843-850
    [125]姜巧娟,于梅艳,付永,郑先君Pt/TiO2的制备及其光催化正丙醇产氢的研究.河南化工,2012,29(2):37-39
    [126]Li J Q, Li L P, Zheng L, et al. Photoelectrocatalytic degradation of Rhodamine B using Ti/TiO2 electrode prepared by layser calcination method. Electrochim Acta,2006, 51(23):4942-4949
    [127]Shang J, Zhao F W, Zhu T, et al. Electric-agitation-enhanced photodegradation of rhodamine B over planar photoelectrocatalytic devices using a TiO2 nanosized layer. Appl Catal, B,2010,96(1-2):185-189
    [128]Macedo L C, Zaia D A M, Moore G J, et al. Degradation of leather dye on TiO2:a study of applied experimental parameters on photoelectrocatalysis. J Photochem Photobiol, A,2007, 185(1):86-93
    [129]方建章,李浩.光电催化结合氧化降解碱性品红的研究.环境科学,2005,24(2):200-204
    [130]周菊枚,闫康平,朱忠志.光电催化制氢研究进展.四川化工,2005,5(8):12-15
    [131]Habibi M H, Talebian N, Choi J H. Characterization and photocatalytic activity of nanostructured indium tin oxide thin film electrode for azo-dye degradation. Thin Solid Films,2006,515(4):1461-1469
    [132]倪君,冷文华,施晶莹等.光电协同催化降解水杨酸和苯胺:二氧化钛晶型的影响.环境科学学报,2005,25(6):756-760
    [133]李明玉,熊林,陈芸芸等.光/电/化学催化降解水中酸性大红3R染料的研究.中国科学:B辑(化学),2005,35(2):144-150
    [134]He C, Li X Z, Graham N, et al. Preparation of Ti/ITO and TiO2/Ti photoelectrodes by magnetron sputtering for photocatalytic application. Appl Catal, A,2006,305(1):54-63
    [135]程沧沧,邓南圣,吴峰等.光电催化降解邻苯二甲酸二乙酯的研究.分子催化,2005,19(4):241-245
    [136]Jorge S M A, Sene J J, Oliveira F A. Photoelectrocatalytic treatment of p-Nitrophenol using Ti/TiO2 thin-film electrode. J Photochem Photobiol, A,2005,174(1):71-75
    [137]Li J Q, Li L P, Zheng L, et al. Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcinations method. Electrochim Acta,2006,51(23): 4942-4949.
    [138]Ohi J. Hydrogen energy cycle:an overview. J. Mater. Res.,2005,20(12):3167-3179
    [139]Daskalaki V M, Antoniadou M, Puma G L, et al. Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater. Environ Sci Technol,2010,44(19):7200-7205
    [140]Gratzel M. Photoelectrochemical cells. Nature,2001,414(6861):338-344
    [141]Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 2009,38(1):253-278
    [142]Park H G, Holt J K, Recent advances in nanoelectrode architecture for photochemical hydrogen production. Energy Environ Sci,2010,3(8):1028-1036.
    [143]Fujishima A, Tao T N, Tryk D A. Titanium dioxide photocatalysis. J Photochem Photobiol, C,2000,1(1):1-21
    [144]Yang X Y, Wolcott A, Wang G M, et al. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett,2009,9(6):2331-2336
    [145]Hong S J, Jun H, Borse P H, et al. Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. Int J Hydrogen Energy,2009,34(8):3234-3242
    [146]Zhang Z H, Hossain M F, Takahashi T. Self-assembled hematite (alpha-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation. Appl Catal, B,2010,95(3-4):423-429
    [147]Shankar K, Basham J I, Allam N K, et al. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C,2009,113(16): 6327-6359
    [148]Zhang Z H, Yuan Y, Shi G Y, et al. Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation. Environ Sci Technol,2007,41(17): 6259-6263
    [149]Richter C, Schmuttenmaer C A. Exciton-like trap states limit electron mobility in TiO2 nanotubes. Nat Nanotechnol,2010,5(11):769-772
    [150]Macak J M, Tsuchiya H, Taveira L, et al. Smooth anodic TiO2 nanotubes. Angew Chem Int Ed,2005,44(45):7463-7465
    [151]Ou H H, Lo S L. Review of titania nanotubes synthesized via the hydrothermal treatment: fabrication, modification, and application. Sep Purif Technol,2007,58(1):179-191.
    [152]Na S I, Kim S S, Hong W K, et al. Fabrication of TiO2 nanotubes by using electrodeposited ZnO nanorod template and their application to hybrid solar cells. Electrochim Acta,2007, 53(2008):2560-2566
    [153]Yang S G, Liu Y Z, Sun C. Preparation of anatase TiO2/Ti nanotube-like electrodes and their photoelectrocatalytic activity for the degradation of PCP in aqueous solution. Appl Catal, A,2006,301(2):284-291
    [154]Wu X, Jiang Q Z, Ma Z F, et al. Synthesis of titania nanotubes by microwave irradiation. Solid State Commun,2005,136(9-10):513-517
    [155]Zhang Z H, Yuan Y, Shi G Y, et al. Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation. Environ Sci Technol,2007,41(17): 6259-6263.
    [156]Zwilling V, Darque C E, Boutry F A, et al. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal,1999,27(7):629-637
    [157]Varghese O K, Paulose M, Shankar K, et al. Water-photolysis properties of micron-length highly ordered titania nanotube arrays. J Nanosci Nanotechnol,2005,5(7):1158-1165
    [158]Paulose M, Shankar K, Yoriya S, et al. Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J Phys Chem B,2006,110(33):16179-16184
    [159]Prakasam H E, Shankar K, Paulose M, et al. A new benchmark for TiO2 nanotube array growth by anodization. J Phys Chem C,2007,111(20):7235-7241
    [160]Albu S P, Kim D, Schmuki P. Growth of aligned TiO2 bambootype nanotubes and highly ordered nanolace. Angew Chem Int Ed,2008,47(10):1916-1919
    [161]Shanar K, Basham J I, Allam N K, et al. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C,2009,113(16): 6327-6359
    [162]Li S Q, Zhang G M, Guo D Z, et al. Anodization fabrication of highly ordered TiO2 nanotubes. J Phys Chem C,2009,113(29):12759-12765
    [163]Shin Y, Lee S. Self-organized regular arrays of anodic TiO2 nanotubes. Nano Lett,2008, 8(10):3171-3173
    [164]Cullity B D. Elements of X-ray Diffraction,2nd ed, Addison-Wesley, Reading, MA,1978, p. 283.
    [165]Korosi L, Dekany I. Preparation and investigation of structural and photocatalytic properties of phosphate modified titanium dioxide. Colloids Surf, A,2006,280(1-3),146-154
    [166]Tayirjan T I, Sohrab R, Ajay K. R. Photoelectrochemical water splitting for hydrogen generation on highly ordered TiO2 nanotubes fabricated by using Ti as cathode. Int J Hydrogen Energy,2012,37(1):103-108
    [167]Parkinson B. On the efficiency and stability of photoelectrochemical devices. Ace Chem Res,1984,17(12):431-437
    [168]Warapong K, Srimala S, Ahmad-Fauzi M N, et al. Carbon-incorporated TiO2 photoelectrodes prepared via rapid-anodic oxidation for efficient visible-light hydrogen generation. Int J Hydrogen Energy,2012,37(13):10046-10056
    [169]Mohapatra S K, Misra M, Mahajan V K, et al. Design of a highly efficient photoelectrolytic cell for hydrogen generation by water splitting:application of TiO2-xCx nanotubes as photoanode and Pt/TiO2 nanotubes as a cathode. J Phys Chem C,2007,111(24):8677-8685
    [170]Ruan C, Paulose M, Varghese O K, et al. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J Phys Chem B,2005,109(33):15754-15759
    [171]Nozik A J, Memming R. Physical chemistry of semiconductor-liquid interfaces. J Phys Chem,1996,100(31):13061-13078
    [172]Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotubes arrays with high aspect ratios for efficient solar water splitting. Nano Lett,2006,6(1):24-28
    [173]Sun Y, Yan K, Wang G, et al. Effect of annealing temperature on the hydrogen production of TiO2 nanotube arrays in a two-compartment photoelectrochemical cell. J Phys Chem C, 2011,115(26):12844-12849
    [174]Wan J, Yan X, Ding J, et al. Self-organized highly ordered TiO2 nanotubes in organic aqueous system. Mater Charact,2009,60(12):1534-1540
    [175]Zhang Z, Hossain M F, Takahashi T. Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int J Hydrogen Energy,2010, 35(16):8528-8535
    [176]Wu H J, Zhang Z H. Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO2 nanotube arrays. J Solid State Chem,2011,184(12):3202-3207
    [177]Kar A, Smith Y R, Subramanian V. Improved photocatalytic degradation of textile dye using titanium dioxide nanotubes formed over titanium wires. Environ Sci Technol,2009, 43(9):3260-3265
    [178]Shankar K, Basham J I, Allam N K, et al. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C,2009,113(16): 6327-6359
    [179]Singh M, Salvadoo-Estivill I, Puma G L. Radiation field optimization in photocatalytic monolith reactors for air treatment. AIChE Journal,2007,53(3):678-686
    [180]Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results. Chem Rev,1995,95(3):735-758
    [181]Morikawa T, Ohwaki T, Suzuki K, et al. Visible-light-induced photocatalytic oxidation of carboxylic acids and aldehydes over N-doped TiO2 loaded with Fe, Cu or Pt. Appl Catal, B, 2008,83(1-2):56-62
    [182]Mitoraj D, Kisch H. The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. Angew Chem Int Ed,2008,47(51):9975-9978
    [183]Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293(5528):269-271
    [184]Baker D R, Kamat P V. Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures. Adv Funct Mater,2009,19(5):805-811
    [185]Cheng P, Deng C S, Gu M Y, et al. Visible-light responsive zinc ferrite doped titania photocatalyst for methyl orange degradation. J Mater Sci,2007,42,9239-9244
    [186]Yuan Z H, Zhang L D. Synthesis, characterization and photocatalytic activity of ZnFe2O4/TiO2 nanocomposite. J Mater Chem,2001,11(4):1265-1268
    [187]Xu S H, Feng D L, Shangguan W F. Preparations and photocatalytic properties of visible-light-active zinc ferrite doped TiO2 photocatalyst. J Phys Chem C,2009,113(6), 2463-2467
    [188]Yin J, Bie L J, Yuan Z H. Photoelectrochemical property of ZnFe2O4/TiO2 double-layered films. Mater Res Bull,2007,42(8):1402-1406
    [189]Li S B, Lu G X. Hydrogen production by H2S photocatalytic decomposition. New J Chem, 1992,16(4):517-519
    [190]Choi W Y, Termin A, Hoffmamm M R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem,1994,98(51),13669-13679
    [191]Gratzel M, Russell F H. Electron paramagnetic resonance studies of doped TiO2 colloids. J Phys Chem,1990,94(6):2566-2572
    [192]Yuan Z H, You W, Jia J H. et al. Optical absorption red shift of capped ZnFe2O4 nanoparticles. Chin Phys Lett,1998,15(7):535-536
    [193]Deharrt L G J, Blasse G J. Photoelectrochemical properties of ferrites with the spinel structure. J Electrochem Soc,1985,132(12):2933-2938
    [194]Yuan Z H, Zhang L D. Synthesis, characterization and photocatalytic activity of ZnFe2O4/TiO2 nanocomposite. J Mater Chem,2001,11(4):1265-1268
    [195]Hou Y, Li X Y, Zou X J, Quan X, Chen G H. Photoeletrocatalytic activity of Cu2O loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chloropehenol for degradation. Environ Sci Technol,2009,43(3):858-863
    [196]Yuan H Z, Jia J H, Zhang L D. Influence of co-doping of Zn(II)+Fe(III)on the photocatalytic activity of TiO2 for phenol degradation. Mater Chem Phys,2002,73(2-3): 323-326
    [197]Zheng X J, Zheng Y M, Yu H Q. Influence of NaCl on biological hydrogen production from glucose by anaerobic cultures. Environ Technol,2005,26(10):1073-1080
    [198]Zheng X J, Wei L F, Zhang Z H, et al. Research on photocatalytic H2 production from acetic acid solution by Pt/TiO2 nanoparticles under UV irradiation. Int J Hydrogen Energy,2009, 34(22):9033-9041.
    [199]Ni M, Michael K H L, Dennis Y C L, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev, 2007,11(3):401-425.
    [200]Fu X L, Long J L, Wang X X, et al. Photocatalytic reforming of biomass:a systematic study of hydrogen evolution from glucose solution. Int J Hydrogen Energy,2008,33(22): 6484-6491.
    [201]Bao N Z, Shen L M, Takata T, et al. Highly ordered Pt-loaded CdS nanowire arrays for photocatalytic hydrogen production under visible light. Chem Lett,2006,35(3):318-319
    [202]Yu J G, Qi L F, Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed(001)facets. J Phys Chem C,2010,114(30):13118-13125
    [203]Li Y X, Lu G X, Li S B. Photocatalytic transformation of rhodamine B and its effect on hydrogen evolution over Pt/TiO2 in the presence of electron donors. J Photochem Photobiol A,2002,152(1-3):219-228
    [204]Kim S, Hwang S J, Choi W Y. Visible light active platinum-ion-doped T1O2 photocatalyst. J Phys Chem B,2005,109(51):24260-24267
    [205]Wang H Q, Wu Z B, Liu Y, et al. Influences of various Pt dopants over surface platinized TiO2 on the photocatalytic oxidation of nitric oxide. Chemosphere,2009,74(6):773-778
    [206]Kulesza P J, Grzybowska B, Malik M A, et al. Oxidation of methanol at an electrocatalytic film containing platinum and polynuclear oxocyanoruthenium microcenters dispersed within tungsten oxide matrix. J Electroanal Chem,2001,512(1-2):110-118
    [207]郭孟狮,杨靖华,周心艳.TiO2纳米管的研究进展.材料导报,2006,20(6):108-110
    [208]雷斌,薛建军,秦亮.Pt-TiO2纳米管电极的制备及电催化性能.材料科学与工程,2007,25(6):950-953
    [209]Wagner C D, Riggs W M, Davis L E, et al. Handbook of X-ray photoelectron spectroscopy. USA, Perkin-Elmer Corp, Physical Electronics Division,1979
    [210]Ou H H, Liao C H, Liou Y H, et al. Photocatalytic oxidation of aqueous ammonia over microwave-induced titanate nanotubes. Environ Sci Technol,2008,42(12):4507-4512
    [211]Schneider W D, Laubschat C. Actinide-Noble-Metal Systems-an X-Ray Photoelectron Spectroscopy study of Thorium-Platinum, Uranium-Platinum, and Uranium-Gold Intermetallics. Phys Rev B Condens Matter,1981,23(3):997-1005
    [212]Kim K S, Winograd N, Davis R E. Electron spectroscopy of platinum-oxygen surface and application to electrochemical studies. J Amer Chem Soc,1971,93(23):6296-6297
    [213]Contour J P, Mouvier G, Hoogewijs M, et al. X-ray photoelectron spectroscopy and electron microscopy of Pt-Rh gauzes used for catalytic oxidation of ammonia. J Catal,1977,48(1-3): 217-228
    [214]Alam K M, Shaheer A M, Woo S I, et al. Enhanced photoresponse under visible light in Pt ionized TiO2 nanotube for the photocatalytic splitting of water. Catal Commun,2008,10: 1-5
    [215]陈秀琴.二元非金属掺杂TiO2纳米管的阳极氧化法制备及其可见光催化性能研究:[博士学位论文],浙江,浙江大学,2008
    [216]Banks C E, Crossley A, Salter C, et al. Carbon nanotubes contain metal impurities which are responsible for the electrocatalysis seen at some nanotube-modified electrodes. Angew Chem Int Ed,2006,45(16):2533-2537
    [217]Zhang Z H, Hossain M F, Takahashi T. Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation. Int J Hydrogen Energy, 2010,35(16):8528-8535
    [218]Krengvirat W, Sreekantan S, Noor A M, et al. Carbon-incorporated TiO2 photoelectrodes prepared via rapid-anodic oxidation for efficient visible-light hydrogen generation. Int J Hydrogen Energy,2012,37(14):10046-10056
    [219]Zheng H R, Cui Y J, Zhang J S, et al. Influence of Pt promoter on the visible light photocatalytic properties of N-doped TiO2. Chin J Catal,2011,32(1):100-105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700