用户名: 密码: 验证码:
纳米半导体氧化物和热敏聚合物微凝胶的可控制备及光电应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源的可利用性在很大程度上决定了人们的生活质量。然而,随着全球经济的飞速发展,能源短缺、环境污染和气候变化已经成为制约人类社会可持续发展的重要问题。太阳能取之不尽、用之不竭、节能环保,是最具发展潜力的可再生能源,其研究吸引了众多科学研究工作者。太阳能开发和利用的主要手段是将其转化为其它形式的能量,如电能和化学能等。近几年来,对太阳能的应用已经涉及到太阳能电池、光催化、光存储、光电开关和建筑节能等各个领域。
     本文主要研究了具有特殊光电性能的纳米半导体氧化物和聚合物微凝胶的可控制备及其在节能环保领域的应用。纳米半导体氧化物,二氧化锡(SnO2)和二氧化钒(VO2),由于其特殊的能带结构,可以用于光催化降解有机染料、太阳能电池的透明电极,也可以被用作热致变色材料,通过元素掺杂等工艺改进可以有效调控其光电性能。而具有最低临界溶解温度(LCST)的聚N-异丙基丙烯酰胺(PNIPAm)微凝胶,随温度变化会发生可逆的相变行为,并伴随着光学性能的变化,是制备热致变色型智能窗的理想材料。本文研究了纳米SnO2和PNIPAm微凝胶的可控制备,探索了它们在光催化、透明导电和智能窗领域的应用。为了进一步提高PNIPAm型热致变色智能窗的节能效果,本文还通过原位聚合反应将纳米VO2和PNIPAm复合,制备出无机-有机复合微凝胶,研究了复合微凝胶的复合机理和相变行为,并探索了其在智能窗领域的应用。具体工作如下:
     1.分别以聚乙烯吡咯烷酮(PVP)、十二烷基磺酸钠(SDS)、十六烷基三甲基溴化铵(CTAB)和四丙基溴化铵(TPAB)作为表面活性剂,利用180℃水热反应实现了不同形貌Sn02纳米粉体的可控制备。产物Sn02均为四方晶系,通过改变有机表面活性剂的种类和浓度,成功合成出纳米立方体、纳米棒、纳米片、纳米带和纳米颗粒等。水热反应过程中,表面活性剂可以通过静电作用和范德华力改变Sn02纳米晶的生长取向,使其长成不同的形貌。其作用效果取决于溶剂类型是水系还是醇系。一方面,相同溶剂条件下,加入适量的阴离子表面活性剂(SDS)或阳离子表面活性剂(CTAB和TPAB),均可以从很大程度上改变SnO2纳米晶的形貌,但二者的作用效果明显不同;另一方面,不同溶剂条件下,同一表面活性剂对产物形貌的影响亦不相同。非离子表面活性剂(PVP)对产物形貌的影响与SDS类似,但其作用效果弱很多。
     2.利用不含表面活性剂和模板的水热反应合成出具有不同三维微观结构(如花状和球状)的金红石相SnO2纳米粒子。研究了醇含量对SnO2纳米粒子形貌的影响及花状和球状微观结构的形成机理,并探索了不同微观形貌对纳米SnO2光催化性能的影响。结果显示,产物SnO2纳米粉体的吸附性能和光催化活性主要取决于其比表面积的大小并在一定程度上受其光学带隙的影响,而这两者均随SnO2微观结构的改变发生变化。改变醇添加剂的含量可以调控SnO2纳米晶的生长取向和尺寸大小,形成不同的生长模式。与花状结构相比,纳米SnO2微球对酸性品红的吸附性能和光催化活性均较高。当溶剂的醇水比为3:1时,产物形貌是破损的空心微球,比表面积为58.2m2/g。它对酸性品红的光催化降解速率约为0.073min-1,35min内其脱除效率即超过80%,且循环使用性能良好,可用作高效净水材料。
     3.以无机盐为原料,聚乙烯醇为成膜促进剂制备出稳定的前驱体溶液,通过旋涂技术在石英玻璃基板上涂覆了不同厚度(60-600±10nm)的透明导电钨(W)掺杂Sn02薄膜。研究了W掺杂浓度、旋涂速率和退火温度对薄膜形貌、电学性能和光学性能的影响。结果显示,所有膜层均由粒径十几个纳米的颗粒组成,分布均一,表面光滑无裂纹,且薄膜能级带隙较宽(3.93-4.31eV),透光性良好。W掺杂可以从很大程度上改变Sn02基薄膜的微观结构和电导率。当前驱体溶液中W含量为Sn原子的3at%时,经3000rpm旋涂,800℃空气退火后,薄膜的电阻率低至2.8×10-3Ω·cm,经八次涂覆后,膜层的厚度可达606nm,面电阻仅有60Ω,可见光(400-760m)透过率仍然超过80%,适用于太阳能电池的透明电极。
     4.利用简单的乳液聚合法实现了对热敏性PNIPAm微凝胶的可控制备,探索了各因素对PNIPAm微凝胶形貌的影响,计算了产物的太阳光调控能力,并组装了实验室规模的模型房间以评估PNIPAm型智能窗的节能效果。结果显示,单体浓度、交联剂种类和用量、表面活性剂类型可以从很大程度上改变PNIPAm微凝胶的尺寸大小、网络致密度和太阳光调控能力(最高可达80%),但对其LCST几乎没有影响。而通过添加共溶剂,可以制备出相变温度可调(20.4-32.2℃)、冰点可调(-32~-18.1℃)的PNIPAm微凝胶,其太阳光调控能力仍然高于60%、光学响应时间较短(50~150s)、循环使用性能良好、粘度适中、挥发性低。通过模拟房间测试发现,在150W光照条件下,相对于普通玻璃,PNIPAm微凝胶可以带来超过20℃的温降,是理想的热致变色型智能窗功能材料。
     5.通过水热法合成了VO2(M)纳米粒子,并采用原位乳液聚合法首次制备出纳米粒子填充型和核壳型VO2-PNIPAm复合微凝胶。研究了无机纳米粒子对PNIPAm型微凝胶网络结构和光学性能的影响,并探索了无机纳米粒子与聚合物微凝胶的复合机理。无机-有机复合微凝胶体系光学性能的改变主要归因于无机纳米粒子对聚合物微凝胶网络结构的影响。当V02含量适当时,将太阳光调控能力为13%的V02纳米粉体和太阳光调控能力为35%的PNIPAm微凝胶体系复合后,所制备VO2-PNIPAm复合微凝胶的太阳光调控能力可以达到88%。
The quality of human life depends to a large degree on the availability of energy. However, with the rapid development of the global economy, energy crisis, environmental pollution and climate change have become the most serious problems, which will restrict the sustainable development of human society. As a kind of energy saving and environment friendly energy, solar energy is really inexhaustible and natural renewable, which makes it one of the most attractive research fields. The utilization of solar energy is mainly concentrated on transforming into other forms of energy, such as electrical energy and chemical energy. In the last few years, research fields in solar energy have been developed, such as solar cells, photocatalysis, optical storage, photoelectric switch, and building energy conservation.
     The controllable synthesis of semiconductive metal-oxides and thermosensitive polymer microgels with special photoelectric properties, and their applications in energy conservation and environmental protection, were studied in this thesis. Because of their special band structures, semiconductive metal-oxides can be applied as photocatalysts for the degradation of organic dyes and transparent electrodes for solar cells. Their photoelectric properties can be effectively regulated by element doping and process improvement. Poly(N-isopropylamide) microgels, which possess the lower critical solution temperature (LCST), undergo a reversible swelling-deswelling process upon heating and cooling. The great change of their optical properties during the phase transition makes them potential materials for thermochromic smart windows. Due to the synergistic effect, inorganic-organic composite materials usually exhibit better performance than that of a single material. Thus, at the last charpter of this thesis, inorganic-organic composite microgels were synthesized from thermochromic materials. Their phase transition behavior, composite mechanism and the application in smart windows were also investigated. Details of this thesis are outlined as follows:
     1. Nanosized SnO2with different morphologies were synthesized via a simple hydrothermal process at180℃, using polyvinylpyrrolidone (PVP), sodium dodecyl sulfonate (SDS), cetyl trimethyl ammonium bromide (CTAB) or tetrapropyl ammonium bromide (TPAB) as surfactant. All the prepared SnO2are of a tetragonal crystal structure, and nanocubes, nanorods, nanosheets, nanobelts and nanoparticles were prepared when changing the type and dosage of organic surfactants. The effect of surfactants on the morphology of SnO2is probably attributed to the electrostatic interactions and Van der Waals'forces, which can change the growth oriention of SnO2nanocrystals during the hydrothermal process. So the effect of surfactant on the morphology of SnO2is significantly dependent on the solvent type:water or alcohol. With the same solvent, the addition of anionic surfactant (SDS) and cationic surfactant (CTAB or TPAB) can both largely affect the morphology of SnO2nanocrystals, but showing really different results. While, with the same kind of surfactant, resulting morphologies of SnO2were also different under different solvents. The non-ionic surfactant (PVP) can also change the morphology of SnO2like SDS, but showing less obvious impact.
     2. Pure rutile-phase SnO2nanoparticles with different3D microstructures (e.g., flower-like architectures and microspheres) were prepared via a feasible surfactant-free hydrothermal process. These microstructures were composed of nanosheets, nanocubes or nanopyramids. By changing the amount of ethanol additives, the growth orientation and size of the SnO2nanocrystals were changed, which resulted in the formation of different growth patterns. The effect of ethanol content on the morphological evolution of the SnO2nanoparticles, and the formation mechanism of the flower-like architectures and microspheres were explored. Furthermore, the microstructure morphology of SnO2showed great effect on its surface area. Both the adsorption and photocatalytic properties are mainly dependent on the surface area of SnO2and slightly influenced by the band gap energy. Compared to the flower-like architectures, the SnO2microspheres exhibited higher adsorption capacity and photocatalytic activity toward the degradation of acid fuchsine. When the ratio of ethanol/water in the solvent was3:1, the products were broken SnO2microspheres with a surface area of58.2m/g and a photocatalytic activity of0.073min-1. They showed a removal efficiency of acid fuchsine over80%in35min. With excellent recycling performance, these microspheres can be used as efficient water treatment materials.
     3. Transparent and conductive tungsten-doped tin oxide (SnO2:W) thin films with different thickness (from60to600±10nm) were fabricated on quartz glass substrates by a spin-coating method. A stable precursor solution was prepared from tin chloride and ammonium tungstate, together with polyvinyl alcohol as a film-forming promoter. It was found that all the synthesized films showed homogeneous composition, smooth surface with no cracks and high transparency with an optical band gap ranging from3.93to4.31eV. The effect of tungsten concentration, spin rate and annealing temperature on the morphological, electrical and optical properties of the films were investigated. W doping had a strong impact on the microstructure and the conductivity of SnO2thin films. The lowest resistivity of2.8×10-3Ω·cm was obtained for a SnO2:3at%W film, which was prepared at3000rpm and annealed at800℃in air. An eight-layer film with a sheet resistance of60Ω and a thickness of606nm was fabricated by multiple coating operation, which exhibited an optical transmittance over80%in the visible region from400to760nm, suitable for transparent electrodes of solar cells.
     4. Thermosensitive poly(N-isopropylacrylamide)(PNIPAm) microgel colloids were prepared by a simple emulsion polymerization method, and a model house was made to test their energy-saving performance for smart windows. The solar modulation ability of PNIPAm microgels can be largely influenced by the monomer concentration, the crosslinker type and dose, and emulsifiers, which showed no obvious effect on the LCST. While, the addition of cosolvent could effectively change the LCST of PNIPAm microgels. By using glycerol as cosolvent, PNIPAm microgel colloids with a LCST between20.4and32.2℃, a freezing point between-18.1and-32℃, were obtained. And they displayed an excellent solar modulation ability (more than60%), resulting in a temperature reduction of20℃compared to float glass, under irradiation. More importantly, the prepared PNIPAm microgel colloids also exhibited high response rate (less than150s), suitable viscosity, restrained evaporation rate, which make them ideal candidates for smart windows.
     5. Thermochromic VO2(M) nanopowders were prepared via a hydrothermal route, and nanoparticles filled or core-shell VO2-NIPAm composite microgels were synthesized for the first time by in-situ emulsion polymerization. The influences of inorganic nanoparticles on the polymer network structure and the optical properties of PNIPAm-based microgels were studied, and the composite mechanism was investigated. The solar modulation ability of VO2-PNIPAm composite microgels was dependent on the control of PNIPAm network structure by VO2nanoparticles. With appropriate amount of VO2, VO2-PNIPAm composite microgels with a solar modulation ability of88%can be obtained by the combination of VO2nanoparticles with a solar modulation abilty of13%and PNIPAm microgels with a solar modulation of35%.
引文
[1]Sharma B, Rabinal M. Ambient synthesis and optoelectronic properties of copper iodide semiconductor nanoparticles. Journal of Alloys and Compounds.2013,556: 198-202.
    [2]Lightcap I V, Kosel T H, Kamat P V. Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst materials storing and shuttling electrons with reduced graphene oxide. Nano Letters.2010,10(2):577-583.
    [3]Burkett S, Qiao X, Temple D, et al. Advanced processing techniques for through-wafer interconnects. Journal of Vacuum Science & Technology B.2004,22(1):248-256.
    [4]Chang P L,Tsai C T. Evolution of technology development strategies for Taiwan's semiconductor industry:formation of research consortia. Industry and Innovation.2000, 7(2):185-197.
    [5]Roco M C. The US national nanotechnology initiative after 3 years (2001-2003). Journal of Nanoparticle Research.2004,6(1):1-10.
    [6]Sharma P, Ganti S, Bhate N. Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Applied Physics Letters.2003,82(4):535-537.
    [7]Pradhan N, Sarma D. Advances in light-emitting doped semiconductor nanocrystals. The Journal of Physical Chemistry Letters.2011,2(21):2818-2826.
    [8]Mocatta D, Cohen G, Schattner J, et al. Heavily doped semiconductor nanocrystal quantum dots. Science.2011,332(6025):77-81.
    [9]Lee E J, Ribeiro C, Giraldi T R, et al. Photoluminescence in quantum-confined SnO2 nanocrystals:evidence of free exciton decay. Applied Physics Letters.2004,84(10): 1745-1747.
    [10]Li L, Yang Y, Huang X, et al. Fabrication and characterization of single-crystalline ZnTe nanowire arrays. The Journal of Physical Chemistry B.2005,109(25): 12394-12398.
    [11]Takagahara T. Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots. Physical Review B.1993,47(8): 4569-4584.
    [12]Chen X, Shen S, Guo L, et al. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews.2010,110(11):6503-6570.
    [13]Gang W, Yuanjing Z, Rongchun X. Controllable preparation of nanosized TiO2 thin film and relationship between structure of film and its photocatalytic activity. Science in China Series B:Chemistry.2003,46(2):184-190.
    [14]Serpone N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO2 particles:size quantization versus direct transitions in this indirect semiconductor. The journal of Physical Chemistry.1995,99(45): 16646-16654.
    [15]Kempa T J, Day R W, Kim S K, et al. Semiconductor nanowires:a platform for exploring limits and concepts for nano-enabled solar cells. Energy & Environmental Science.2013,6(3):719-733.
    [16]Ko S H, Lee D, Kang H W, et al. Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano letters.2011,11(2): 666-671.
    [17]Prakash T. Review on nanostructured semiconductors for dye sensitized solar cells. Electronic Materials Letters.2012,8(3):231-243.
    [18]Tauc J. Generation of an emf in semiconductors with nonequilibrium current carrier concentrations. Reviews of modern physics.1957,29(3):308-324.
    [19]Yadgarov L, Rosentsveig R, Leitus G, et al. Controlled doping of MS2 (M= W, Mo) nanotubes and fullerene-like nanoparticles. Angewandte Chemie International Edition. 2012,51(5):1148-1151.
    [20]Han J W, Kim B, Kobayashi N P, et al. A simple method for the determination of doping type in nanomaterials based on electrical response to humidity. Applied Physics Letters.2012,101(14):142110.
    [21]Cheng S, Lo C, Chuang C, et al. Site-controlled fabrication of dimension-tunable Si nanowire arrays on patterned (001) Si substrates. Thin Solid Films.2012,520(8): 3309-3313.
    [22]Yu B, Zebarjadi M, Wang H, et al. Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites. Nano Letters.2012, 12(4):2077-2082.
    [23]McCluskey M D, Tarun M C, Teklemichael S T. Hydrogen in oxide semiconductors. Journal of Materials Research.2012,27(17):2190-2198.
    [24]Morgenstern F S, Kabra D, Massip S, et al. Ag-nanowire films coated with ZnO nanoparticles as a transparent electrode for solar cells. Applied Physics Letters.2011, 99(18):183307.
    [25]Anthony J E, Facchetti A, Heeney M, et al. N-type organic semiconductors in organic electronics. Advanced Materials.2010,22(34):3876-3892.
    [26]Takimiya K, Shinamura S, Osaka I, et al. Thienoacene-based organic semiconductors. Advanced Materials.2011,23(38):4347-4370.
    [27]Wang H, Rogach A L. Hierarchical SnO2 nanostructures:recent advances in design, synthesis, and applications. Chemistry of Materials.2014,26 (1):123-133.
    [28]Huang R, Shen Y, Zhao L, et al. Effect of hydrothermal temperature on structure and photochromic properties of WO3 powder. Advanced Powder Technology.2012,23(2): 211-214.
    [29]Sui R, Charpentier P. Synthesis of metal oxide nanostructures by direct sol-gel chemistry in supercritical fluids. Chemical Reviews.2012,112(6):3057-3082.
    [30]Devan R S, Patil R A, Lin J H, et al. One-dimensional metal-oxide nanostructures: recent developments in synthesis, characterization, and applications. Advanced Functional Materials.2012,22(16):3326-3370.
    [31]Arafat M, Dinan B, Akbar S A, et al. Gas sensors based on one dimensional nanostructured metal-oxides:a review. Sensors.2012,12(6):7207-7258.
    [32]Fortunato E, Barquinha PMartins R. Oxide Semiconductor Thin-film transistors:a review of recent advances. Advanced Materials.2012,24(22):2945-2986.
    [33]Jeong J K. The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semiconductor Science and Technology.2011,26(3):034008.
    [34]Banger K, Yamashita Y, Mori K, et al. Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a'sol-gel on chip' process. Nature Materials.2010,10(1):45-50.
    [35]Roucka R, Beeler R, Mathews J, et al. Complementary metal-oxide semiconductor-compatible detector materials with enhanced 1550 nm responsivity via Sn-doping of Ge/Si (100). Journal of Applied Physics.2011,109(10):103115.
    [36]Chen S, Zhu J, Wu X, et al. Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano.2010,4(5):2822-2830.
    [37]Deng S, Tjoa V, Fan H M, et al. Reduced graphene oxide conjugated CU2O nanowire mesocrystals for high-performance NO2 gas sensor. Journal of the American Chemical Society.2012,134(10):4905-4917.
    [38]Chen G, Rosei F, Ma D. Interfacial reaction-directed synthesis of Ce-Mn binary oxide nanotubes and their applications in CO oxidation and water treatment. Advanced Functional Materials.2012,22(18):3914-3920.
    [39]Choi H, Park J S, Jeong E, et al. Combination of titanium oxide and a conjugated polyelectrolyte for high-performance inverted-type organic optoelectronic devices. Advanced Materials.2011,23(24):2759-2763.
    [40]Bao N, Li Y, Yu X-H, et al. Removal of anionic azo dye from aqueous solution via an adsorption-photosensitized regeneration process on a TiO2 surface. Environmental Science and Pollution Research.2013,20(2):897-906.
    [41]Chan S H S, Yeong Wu T, Juan J C, et al. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. Journal of Chemical Technology and Biotechnology.2011,86(9): 1130-1158.
    [42]Xu T, Zhang L, Cheng H, et al. Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Applied Catalysis B: Environmental.2011,101(3):382-387.
    [43]Han Y, Wu X, Ma Y, et al. Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications. CrystEngComm.2011,13(10):3506-3510.
    [44]Uddin M T, Nicolas Y, Olivier C, et al. Nanostructured SnO2-ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorganic chemistry.2012,51(14):7764-7773.
    [45]Xie Y P, Liu G, Yin L, et al. Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. Journal of Materials Chemistry.2012,22(14):6746-6751.
    [46]Oliveira H G, Fitzmorris B C, Longo C, et al. Photoelectrochemical and photocatalytic properties of TiO2, WO3 and WO3-TiO2 porous films in the photodegradation of Rhodamine 6G in aqueous solution. Science of Advanced Materials.2012,4(5-6):5-6.
    [47]Mu J, Chen B, Zhang M, et al. Enhancement of the visible-light photocatalytic activity of In2O3-TiO2 nanofiber heteroarchitectures. ACS Applied Materials & Interfaces.2011, 4(1):424-430.
    [48]Saravanan R, Karthikeyan N, Govindan S, et al. Photocatalytic degradation of organic dyes using ZnO/CeO2 nanocomposite material under visible light Advanced Materials Research.2012,584:381-385.
    [49]Khan A, Mir N, Haque M, et al. Solar photocatalytic decolorization of two azo dye derivatives, acid red 17 and reactive red 241 in aqueous suspension. Science of Advanced Materials.2013,5(2):160-165.
    [50]Lee J S, You K HPark C B. Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene. Advanced Materials.2012,24(8):1084-1088.
    [51]Lu Y, Yu H, Chen S, et al. Integrating plasmonic nanoparticles with TiO2 photonic crystal for enhancement of visible-light-driven photocatalysis. Environmental Science & Technology.2012,46(3):1724-1730.
    [52]Natarajan T S, Natarajan K, Bajaj H C, et al. Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. Journal of Nanoparticle research.2013,15(5):1-18.
    [53]Bao N, Li Y, Wei Z, et al. Adsorption of dyes on hierarchical mesoporous TiO2 fibers and its enhanced photocatalytic properties. The Journal of Physical Chemistry C.2011, 115(13):5708-5719.
    [54]Gordon T R, Cargnello M, Paik T, et al. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. Journal of the American Chemical Society.2012,134(15):6751-6761.
    [55]Lv K, Cheng B, Yu J, et al. Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity. Physical Chemistry Chemical Physics.2012, 14(16):5349-5362.
    [56]Xu Y J, Zhuang Y, Fu X. New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes:a case study on degradation of benzene and methyl orange. The Journal of Physical Chemistry C.2010,114(6):2669-2676.
    [57]Mirkhani V, Tangestaninejad S, Moghadam M, et al. Photocatalytic degradation of azo dyes catalyzed by Ag doped TiO2 photocatalys. Journal of the Iranian Chemical Society. 2009,6(3):578-587.
    [58]Bansal P, Bhullar N, Sud D. Studies on photodegradation of malachite green using TiO2/ZnO photocatalyst Desalination and Water Treatment.2009,12(1-3):108-113.
    [59]Zhang Y, Tang Z R, Fu X, et al. Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation:what advantage does graphene have over its forebear carbon nanotube. ACS Nano.2011, 5(9):7426-7435.
    [60]Balachandran S, Praveen S G, Velmurugan R, et al. Facile fabrication of highly efficient, reusable heterostructured Ag-ZnO-CdO and its twin applications of dye degradation under natural sunlight and self-cleaning. RSC Advances.2014,4(9):4353-4362.
    [61]Liu C H, Yu X. Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res. Lett.2011,6(1):75.
    [62]Wang M, Bai J, Formal F L, et al. Solid-state dye-sensitized solar cells using ordered TiO2 nanorods on transparent conductive oxide as photoanodes. The Journal of Physical Chemistry C.2012,116(5):3266-3273.
    [63]Puzzo D P, Helander M G, O'Brien P G, et al. Organic light-emitting diode microcavities from transparent conducting metal oxide photonic crystals. Nano Letters. 2011,11(4):1457-1462.
    [64]Facchetti A, Marks T J. Transparent electronics:from synthesis to applications. Wiley, Chichester, UK.2010.
    [65]Knapp C E, Hyett G, Parkin I P, et al. Aerosol-assisted chemical vapor deposition of transparent conductive gallium-indium-oxide films. Chemistry of Materials.2011, 23(7):1719-1726.
    [66]Stefik M, Cornuz M, Mathews N, et al. Transparent conducting Nb:SnO2 for host-guest photoelectrochemistry. Nano Letters.2012,12(10):5431-5435.
    [67]Hoel C A, Mason T O, Gaillard J F, et al. Transparent conducting oxides in the ZnO-In2O3-SnO2 system. Chemistry of Materials.2010,22(12):3569-3579.
    [68]Choi W J, Kwak D J, Park C S, et al. Characterization of transparent conductive ITO, ITiO, and FTO Films for application in photoelectrochemical cells. Journal of Nanoscience and Nanotechnology.2012,12(4):3394-3397.
    [69]Sima C, Grigoriu C, Antohe S. Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Thin Solid Films.2010, 519(2):595-597.
    [70]Kang D W, Kuk S H, Ji K S, et al. Effects of ITO precursor thickness on transparent conductive Al doped ZnO film for solar cell applications. Solar Energy Materials and Solar Cells.2011,95(1):138-141.
    [71]Kim H K, Ahn K J, Jang H, et al. Dependence of electrical, optical, and structural properties on the thickness of GZO films prepared by CRMS. Journal of The Electrochemical Society.2011,159(1):38-43.
    [72]Park J H, Kang S J, Na S I, et al. Indium-free, acid-resistant anatase Nb-doped TiO2 electrodes activated by rapid-thermal annealing for cost-effective organic photovoltaics. Solar Energy Materials and Solar Cells.2011,95(8):2178-2185.
    [73]Jeong S, Ha Y G, Moon J, et al. Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Advanced Materials.2010,22(12):1346-1350.
    [74]Gesheva K, Ivanova T, Bodurov G. Transition metal oxide films:technology and "smart windows" electrochromic device performance. Progress in Organic Coatings.2012, 74(4):635-639.
    [75]Granqvist C G. Transparent conductors as solar energy materials:a panoramic review. Solar Energy Materials and Solar Cells.2007,91(17):1529-1598.
    [76]Baetens R, Jelle B P, Gustavsen A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings:a state-of-the-art review. Solar Energy Materials and Solar Cells.2010,94(2):87-105.
    [77]Lim S H, Isidorsson J, Sun L, et al. Modeling of optical and energy performance of tungsten-oxide-based electrochromic windows including their intermediate states. Solar Energy Materials and Solar Cells.2013,108:129-135.
    [78]Dinh N N, Ninh D H, Thao T T, et al. Mixed nanostructured Ti-W oxides films for efficient electrochromic windows. Journal of Nanomaterials.2012,4:781236.
    [79]Kim S, Taya M. Electrochromic windows based on V2O5-TiO2 and poly (3, 3-dimethy1-3,4-dihydro-2H-thieno [3,4-b][1,4] dioxepine) coatings. Solar Energy Materials and Solar Cells.2012,107:225-229.
    [80]Bodurov G, Ivanova T, Aleksandrova M, et al. Optical characterization of WO3-VOx thin films for application in electrochromic devices-'smart windows', in Journal of Physics:Conference Series.2012,356:012016.
    [81]Sialvi M Z, Mortimer R J, Wilcox G D, et al. Electrochromic and colorimetric properties of nickel(II) oxide thin films prepared by aerosol-assisted chemical vapor deposition. ACS Applied Materials & Interfaces.2013,5(12):5675-5682.
    [82]Gillaspie D T, Tenent R C, Dillon A C. Metal-oxide films for electrochromic applications:present technology and future directions. Journal of Materials Chemistry. 2010,20(43):9585-9592.
    [83]Wittwer V, Datz M, Ell J, et al. Gasochromic windows. Solar Energy Materials and Solar Cells.2004,84(1):305-314.
    [84]Ho Y, Chang C, Wei D, et al. Characterization of gasochromic vanadium oxides films by X-ray absorption spectroscopy. Thin Solid Films.2013,544:461-465.
    [85]Luo J Y, Li W, Chen F, et al. Self-heating effect and its occurrence mechanism in the gasochromic coloration of Pt coated WO3 nanowire films. Sensors and Actuators B: Chemical.2014,197(5):81-86.
    [86]Wilkinson M, Kafizas A, Bawaked S M, et al. Combinatorial atmospheric pressure chemical vapor deposition of graded TiO2-VO2 mixed-phase composites and their dual functional property as self-cleaning and photochromic window coatings. ACS Combinatorial Science.2013,15(6):309-319.
    [87]Shen Y, Xiao Y, Yan P, et al. Hydrothermal deposition and the photochromic properties of molybdenum oxide hydrate (Mo03-(H20)0.69) films induced by D, L-malic acid Journal of Alloys and Compounds.2014,588:676-680.
    [88]DeJournett T J, Spicer J B. The influence of oxygen on the microstructural, optical and photochromic properties of polymer-matrix, tungsten-oxide nanocomposite films. Solar Energy Materials and Solar Cells.2014,120:102-108.
    [89]Gao Y, Luo H, Zhang Z, et al. Nanoceramic VO2 thermochromic smart glass:a review on progress in solution processing. Nano Energy.2012,1(2):221-246.
    [90]Li Y, Ji S, Gao Y, et al. Core-shell VO2@ TiO2 nanorods that combine thermochromic and photocatalytic properties for application as energy-saving smart coatings. Scientific reports.2013,3:1370.
    [91]Gao Y, Wang S, Kang L, et al. VO2-Sb:SnO2 composite thermochromic smart glass foil. Energy & Environmental Science.2012,5(8):8234-8237.
    [92]Gao Y, Wang S, Luo H, et al. Enhanced chemical stability of VO2 nanoparticles by the formation of SiO2/VO2 core/shell structures and the application to transparent and flexible V02-based composite foils with excellent thermochromic properties for solar heat control. Energy& Environmental Science.2012,5(3):6104-6110.
    [93]Zhou J, Gao Y, Liu X, et al. Mg-doped VO2 nanoparticles:hydrothermal synthesis, enhanced visible transmittance and decreased metal-insulator transition temperature. Physical Chemistry Chemical Physics.2013,15(20):7505-7511.
    [94]Zhou J, Gao Y, Zhang Z, et al. VO2 thermochromic smart window for energy savings and generation. Scientific reports.2013,3:3029.
    [95]Dai L, Chen S, Liu J, et al. F-doped VO2 nanoparticles for thermochromic energy-saving foils with modified color and enhanced solar-heat shielding ability. Physical Chemistry Chemical Physics.2013,15(28):11723-11729.
    [96]Chen Z, Gao Y, Kang L, et al. Fine crystalline VO2 nanoparticles:synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO2 nanocomposite foil. Journal of Materials Chemistry A.2014,2(8):2718-2727.
    [97]Yao Z, Grishkewich N, Tam K. Swelling and shear viscosity of stimuli-responsive colloidal systems. Soft Matter.2013,9(22):5319-5335.
    [98]Seiffert S. Small but smart:sensitive microgel capsules. Angewandte Chemie International Edition.2013,52(44):11462-11468.
    [99]Saunders B R, Laajam N, Daly E, et al. Microgels:from responsive polymer colloids to biomaterials. Advances in Colloid and Interface Science.2009,147:251-262.
    [100]Bysell H, Mansson R, Hansson P, et al. Microgels and microcapsules in peptide and protein drug delivery. Advanced Drug Delivery Reviews.2011,63(13):1172-1185.
    [101]Saez-Martinez V, Argarate N, Morin F, et al. Comparative study of dexamethasone and vancomycin release behavior from stimuli-sensitive microgel aqueous dispersions. Journal of Drug Delivery Science and Technology.2012,22(4):313-316.
    [102]Li P, Xu R, Wang W, et al. Thermosensitive poly (N-isopropylacrylamide-co-glycidyl methacrylate) microgels for controlled drug release. Colloids and Surfaces B: Biointerfaces.2013,101:251-255.
    [103]Averick S E, Paredes E, Irastorza A, et al. Preparation of cationic nanogels for nucleic acid delivery. Biomacromolecules.2012,13(11):3445-3449.
    [104]Velasco D, Tumarkin E, Kumacheva E. Microfluidic encapsulation of cells in polymer microgels. Small.2012,8(11):1633-1642.
    [105]Kumachev A, Greener J, Tumarkin E, et al. High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation. Biomaterials.2011,32(6): 1477-1483.
    [106]Kumachev A, Tumarkin E, Walker G C, et al. Characterization of the mechanical properties of microgels acting as cellular microenvironments. Soft Matter.2013,9(10): 2959-2965.
    [107]Hou W, Shen Y, Liu H, et al. Mechanical properties of pH-responsive poly (2-hydroxyethyl methacrylate/methacrylic acid) microgels prepared by inverse microemulsion polymerization. Reactive and Functional Polymers.2014,74:101-106.
    [108]Hu X, Tong Z, Lyon L A. Control of poly (N-isopropylacrylamide) microgel network structure by precipitation polymerization near the lower critical solution temperature. Langmuir.2011,27(7):4142-4148.
    [109]Destribats M, Eyharts M, Lapeyre V, et al. Impact of pNIPAM microgel size on their ability to stabilize Pickering emulsions. Langmuir.2014,30(7):1768-1777.
    [110]Pich A, Richtering W. Microgels by precipitation polymerization:synthesis, characterization, and functionalization. Advances in Polymer Science.2011,234(172): 1-37.
    [111]Behra M, Schmidt S, Hartmann J, et al. Synthesis of porous PEG microgels using CaCO3 microspheres as hard templates, macromolecular rapid communications.2012, 33(12):1049-1054.
    [112]Xu F, Wu C M, Rengarajan V, et al. Three-dimensional magnetic assembly of microscale hydrogels. Advanced Materials.2011,23(37):4254-4260.
    [113]i Solvas X C. Droplet microfluidics:recent developments and future applications. Chemical Communications.2011,47(7):1936-1942.
    [114]Rossow T, Heyman J A, Ehrlicher A J, et al. Controlled synthesis of cell-laden microgels by radical-free gelation in droplet microfluidics. Journal of the American Chemical Society.2012,134(10):4983-4989.
    [115]Costa E, Lloyd M M, Chopko C, et al. Tuning smart microgel swelling and responsive behavior through strong and weak polyelectrolyte pair assembly. Langmuir.2012, 28(26):10082-10090.
    [116]Clarke K CLyon L A. Modulation of the deswelling temperature of thermoresponsive microgel films. Langmuir.2013,29(41):12852-12857.
    [117]Thaiboonrod S, Berkland C, Milani A H, et al. Poly (vinylamine) microgels: pH-responsive particles with high primary amine contents. Soft Matter.2013,9(15): 3920-3930.
    [118]Hu LSerpe M J. The influence of deposition solution pH and ionic strength on the quality of poly (N-isopropylacrylamide) microgel-based thin films and etalons. ACS Applied Materials & Interfaces.2013,5(22):11977-11983.
    [119]Kojima H, Tanaka F, Scherzinger C, et al. Temperature dependent phase behavior of PNIPAM microgels in mixed water/methanol solvents. Journal of Polymer Science Part B:Polymer Physics.2013,51(14):1100-1111.
    [120]Menut P, Seiffert S, Sprakel J, et al. Does size matter elasticity of compressed suspensions of colloidal-and granular-scale microgels. Soft Matter.2012,8(1): 156-164.
    [121]Romeo G, Ciamarra M P. Elasticity of compressed microgel suspensions. Soft Matter. 2013,9(22):5401-5406.
    [122]Chen J, Gong X, Yang H, et al. NMR Study on the effects of sodium n-dodecyl sulfate on the coil-to-globule transition of poly (N-isopropylacrylamide) in aqueous solutions. Macromolecules.2011,44(15):6227-6231.
    [123]Seiffert S. Impact of polymer network inhomogeneities on the volume phase transition of thermoresponsive microgels. Macromolecular Rapid Communications.2012,33(13): 1135-1142.
    [124]McPhee W, Tam K C, Pelton R. Poly (N-isopropylacrylamide) latices prepared with sodium dodecyl sulfate. Journal of Colloid and Interface Science.1993,156(1):24-30.
    [125]Echeverria C, Peppas N A, Mijangos C. Novel strategy for the determination of UCST-like microgels network structure:effect on swelling behavior and rheology. Soft Matter.2012,8(2):337-346.
    [126]Yin J, Hu H, Wu Y, et al. Thermo-and light-regulated fluorescence resonance energy transfer processes within dually responsive microgels. Polymer Chemistry.2011,2(2): 363-371.
    [127]Ma J, Fan B, Liang B, et al. Synthesis and characterization of poly (N-isopropylacrylamide)/poly (acrylic acid) semi-IPN nanocomposite microgels. Journal of colloid and interface science.2010,341(1):88-93.
    [128]Das M, Zhang H, Kumacheva E. Microgels:old materials with new applications. Annu. Rev. Mater. Res.2006,36:117-142.
    [129]Hu X, Tong Z, Lyon L A. Synthesis and physicochemical properties of cationic microgels based on poly (N-isopropylmethacrylamide). Colloid and Polymer Science. 2011,289(3):333-339.
    [130]Hofmann C H, Plamper F A, Scherzinger C, et al. Cononsolvency revisited:solvent entrapment by N-isopropylacrylamide and N, N-diethylacrylamide microgels in different water/methanol mixtures. Macromolecules.2012,46(2):523-532.
    [131]Zhang Y, Liu T, Wang Q, et al. Synthesis of novel poly (N, N-diethylacrylamide-co-acrylic acid) (P(DEA-co-AA)) microgels as carrier of horseradish peroxidase immobilization for pollution treatment Macromolecular Research.2012,20(5):484-489.
    [132]Deshmukh S, Mooney D A, McDermott T, et al. Molecular modeling of thermo-responsive hydrogels:observation of lower critical solution temperature. Soft Matter.2009,5(7):1514-1521.
    [133]Guan YZhang Y. PNIPAM microgels for biomedical applications:From dispersed particles to 3D assemblies. Soft Matter.2011,7(14):6375-6384.
    [134]Puga A M, Lima A C, Mano J F, et al. Pectin-coated chitosan microgels crosslinked on superhydrophobic surfaces for 5-fluorouracil encapsulation. Carbohydrate Polymers. 2013,98(1):331-340.
    [135]Costa D, Valente A J, Miguel M G, et al. Plasmid DNA Microgels for a therapeutical strategy combining the delivery of genes and anticancer drugs. Macromolecular bioscience.2012,12(9):1243-1252.
    [136]Lord H T, Quinn J F, Angus S D, et al. Microgel stars viaReversible Addition Fragmentation Chain Transfer (RAFT) polymerisation-a facile route to macroporous membranes, honeycomb patterned thin films and inverse opal substrates. Journal of Materials Chemistry.2003,13(11):2819-2824.
    [137]Connal L A, Gurr P A, Qiao G G, et al. From well defined star-microgels to highly ordered honeycomb films. Journal of Materials Chemistry.2005,15(12):1286-1292.
    [138]Cai T, Marquez M, Hu Z. Monodisperse thermoresponsive microgels of poly (ethylene glycol) analogue-based biopolymers. Langmuir.2007,23(17):8663-8666.
    [139]Pelton RHoare T. Microgels and their synthesis:an introduction. Microgel Suspensions: Fundamentals and Applications.2011:1-32.
    [140]Syrett J A, Haddleton D M, Whittaker M R, et al. Functional, star polymeric molecular carriers, built from biodegradable microgel/nanogel cores. Chemical Communications. 2011,47(5):1449-1451.
    [141]Tan B H, Tam K C, Lam Y C, et al. Microstructure and rheology of stimuli-responsive microgel systems-effect of cross-linked density. Advances in colloid and interface science.2005,113(2):111-120.
    [142]Tan B, Tam K, Lam Y, et al. Microstructure and rheological properties of pH-responsive core-shell particles. Polymer.2005,46(23):10066-10076.
    [143]Dong H, Matyjaszewski K. Thermally responsive p(M(EO)2MA-co-OEOMA) copolymers via AGET ATRP in miniemulsion. Macromolecules.2010,43(10): 4623-4628.
    [144]Pelton RChibante P. Preparation of aqueous latices with N-isopropylacrylamide. Colloids and Surfaces.1986,20(3):247-256.
    [145]Chen Y, Ballard N, Bon S A. Moldable high internal phase emulsion hydrogel objects from non-covalently crosslinked poly (N-isopropylacrylamide) nanogel dispersions. Chemical Communications.2013,49(15):1524-1526.
    [146]Lee A, Tsai H Y, Yates M. Steric stabilization of thermally responsive N-isopropylacrylamide particles by poly(vinyl alcohol). Langmuir.2010,26(23): 18055-18060.
    [147]Kim K H, Kim J, Jo W H. Preparation of hydrogel nanoparticles by atom transfer radical polymerization of N-isopropylacrylamide in aqueous media using PEG macro-initiator. Polymer.2005,46(9):2836-2840.
    [148]Rieger J, Grazon C, Charleux B, et al. Pegylated thermally responsive block copolymer micelles and nanogels via in situ RAFT aqueous dispersion polymerization Journal of Polymer Science Part A:Polymer Chemistry.2009,47(9):2373-2390.
    [149]Zhang Q, Remsen E E, Wooley K L. Shell cross-linked nanoparticles containing hydrolytically degradable, crystalline core domains. Journal of the American Chemical Society.2000,122(15):3642-3651.
    [150]Wu J, Liu X Q, Wang Y C, et al. Template-free synthesis of biodegradable nanogels with tunable sizes as potential carriers for drug delivery. Journal of Materials Chemistry. 2009,19(42):7856-7863.
    [151]Xing H L, Chen S L. Application and study of reactive polyacrylate microgel in pigment paint of printed fabric. Advanced Materials Research.2011,311:1044-1048.
    [152]Parasuraman D, Sarker A K, Serpe M J. Poly (N-Isopropylacrylamide)-based microgels and their assemblies for organic-molecule removal from water. ChemPhysChem.2012,13(10):2507-2515.
    [153]Sun H Q, Zhang L, Li Z Q, et al. Interfacial dilational rheology related to enhance oil recovery. Soft Matter.2011,7(17):7601-7611.
    [154]Smeets N, Hoare T. Designing responsive microgels for drug delivery applications. Journal of Polymer Science Part A:Polymer Chemistry.2013,51(14):3027-3043.
    [155]Gutowski S M, Templeman K L, South A B, et al. Host response to microgel coatings on neural electrodes implanted in the brain. Journal of Biomedical Materials Research Part A.2013.
    [156]Moraes C, Simon A B, Putnam A J, et al. Aqueous two-phase printing of cell-containing contractile collagen microgels. Biomaterials.2013,34(37):9623-9631.
    [157]Chari K, Hsu R, Bhargava P, et al. Surfactant-activated microgels:a new pathway to rheology modification Langmuir.2013.
    [158]Howard S C, Craig V, FitzGerald P A, et al. Swelling and collapse of an adsorbed pH-responsive film-forming microgel measured by optical reflectometry and QCM. Langmuir.2010,26(18):14615-14623.
    [159]Seidel J, Pinkrah V, Mitchell J, et al. Isothermal titration calorimetric studies of the acid-base properties of poly (N-isopropylacrylamide-co-4-vinylpyridine) cationic polyelectrolyte colloidal microgels. Thermochimica acta.2004,414(1):47-52.
    [160]Meid J, Dierkes F, Cui J, et al. Mechanical properties of temperature sensitive microgel/polyacrylamide composite hydrogels-from soft to hard fillers. Soft Matter. 2012,8(15):4254-4263.
    [161]Kawaguchi H. Functional polymer microspheres. Progress in Polymer Science.2000, 25(8):1171-1210.
    [162]Liu Y Y, Liu X Y, Yang J M, et al. Investigation of Ag nanoparticles loading temperature responsive hybrid microgels and their temperature controlled catalytic activity. Colloids and Surfaces A:Physicochemical and Engineering Aspects.2012,393: 105-110.
    [163]Wu S, D, zubiella J, Kaiser J, et al. Thermosensitive Au-PNIPA Yolk-Shell nanoparticles with tunable selectivity for catalysis. Angewandte Chemie International Edition.2012,51(9):2229-2233.
    [164]Wu S, Kaiser J, Drechsler M, et al. Thermosensitive Au-PNIPA yolk-shell particles as "nanoreactors" with tunable optical properties. Colloid and Polymer Science.2013, 291(1):231-237.
    [165]Gao J, Hu Z. Optical properties of N-isopropylacrylamide microgel spheres in water. Langmuir.2002,18(4):1360-1367.
    [166]Snowden M, Thomas D, Vincent B. Use of colloidal microgels for the absorption of heavy metal and other ions from aqueous solution. Analyst.1993,118(11):1367-1369.
    [167]Morris G E, Vincent BSnowden M J. Adsorption of Lead Ions onto N-isopropylacrylamide and acrylic acid copolymer microgels. Journal of Colloid and Interface Science.1997,190(1):198-205.
    [168]Vinogradov S V. Colloidal microgels in drug delivery applications. Current pharmaceutical design.2006,12(36):4703-4712
    [169]Sivakumaran D, Maitland D, Hoare T. Injectable microgel-hydrogel composites for prolonged small-molecule drug delivery. Biomacromolecules.2011,12(11): 4112-4120.
    [170]Zhou G, Lu Y, Zhang H, et al. A novel pulsed drug-delivery system:polyelectrolyte layer-by-layer coating of chitosan-alginate microgels. International Journal of Nanomedicine.2012,8:877-887.
    [171]Karg M. Multifunctional inorganic/organic hybrid microgels. Colloid and Polymer Science.2012,290(8):673-688.
    [172]Karg M, Hellweg T. Smart inorganic/organic hybrid microgels:synthesis and characterisation. Journal of Materials Chemistry.2009,19(46):8714-8727.
    [173]Grzelczak M, Perez-Juste J, Mulvaney P, et al. Shape control in gold nanoparticle synthesis. Chemical Society Reviews.2008,37(9):1783-1791.
    [174]Schmidt A M. Thermoresponsive magnetic colloids. Colloid and Polymer Science.2007, 285(9):953-966.
    [175]Yuan J, Xu Y, Walther A, et al. Water-soluble organo-silica hybrid nanowires. Nature Materials.2008,7(9):718-722.
    [176]Karg M, Wellert S, Pastoriza-Santos I, et al. Thermoresponsive core-shell microgels with silica nanoparticle cores:size, structure, and volume phase transition of the polymer shell. Physical Chemistry Chemical Physics.2008,10(44):6708-6716.
    [177]Reculusa S, Mingotaud C, Bourgeat-Lami E, et al. Synthesis of daisy-shaped and multipod-like silica/polystyrene nanocomposites. Nano Letters.2004,4(9): 1677-1682.
    [178]Karg M, Wellert S, Prevost S, et al. Well defined hybrid PNIPAM core-shell microgels: size variation of the silica nanoparticle core. Colloid and Polymer Science.2011, 289(5-6):699-709.
    [179]Hellweg T. Responsive core-shell microgels:synthesis, characterization, and possible applications. Journal of Polymer Science Part B:Polymer Physics.2013,51(14): 1073-1083.
    [180]Oh J K, Park J M. Iron oxide-based superparamagnetic polymeric nanomaterials: design, preparation, and biomedical application. Progress in Polymer Science.2011, 36(1):168-189.
    [181]Liz-Marzan L M, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shell particles. Langmuir.1996,12(18):4329-4335.
    [182]Rodriguez-Fernandez J, Pastoriza-Santos I, Perez-Juste J, et al. The effect of silica coating on the optical response of sub-micrometer gold spheres. The Journal of Physical Chemistry C.2007,111(36):13361-13366.
    [183]Mei Y, Lu Y, Polzer F, et al. Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core-shell microgels. Chemistry of Materials. 2007,19(5):1062-1069.
    [184]Karg M, Pastoriza-Santos I, Rodriguez-Gonzalez B, et al. Temperature, pH, and ionic strength induced changes of the swelling behavior of PNIPAM-poly (allylacetic acid) copolymer microgels. Langmuir.2008,24(12):6300-6306.
    [185]Das M, Sanson N, Fava D, et al. Microgels loaded with gold nanorods:photothermally triggered volume transitions under physiological conditions. Langmuir.2007,23(1): 196-201.
    [186]Gorelikov I, Field L M, Kumacheva E. Hybrid microgels photoresponsive in the near-infrared spectral range. Journal of the American Chemical Society.2004,126(49): 15938-15939.
    [187]Karg M, Pastoriza-Santos I, Perez-Juste J, et al. Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. Small.2007,3(7):1222-1229.
    [188]Sudeep P, Joseph S S, Thomas K G. Selective detection of cysteine and glutathione using gold nanorods. Journal of the American Chemical Society.2005,127(18): 6516-6517.
    [189]Wong J E, Gaharwar A K, Muller-Schulte D, et al. Dual-stimuli responsive PNiPAM microgel achieved via layer-by-layer assembly:magnetic and thermoresponsive. Journal of Colloid and Interface Science.2008,324(1):47-54.
    [190]Agrawal M, Rubio-Retama J, Zafeiropoulos N, et al. Switchable photoluminescence of CdTe nanocrystals by temperature-responsive microgels. Langmuir.2008,24(17): 9820-9824.
    [191]Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science.2006,312(5771):242-246.
    [192]Tang Z Y, Zhang Z L, Wang Y, et al. Self-assembly of CdTe nanocrystals into free-floating sheets. Science.2006,314(5797):274-278.
    [193]Liu J Y, Luo T, Mouli T S, et al. A novel coral-like porous SnO2 hollow architecture: biomimetic swallowing growth mechanism and enhanced photovoltaic property for dye-sensitized solar cell application. Chemical Communications.2010,46(3): 472-474.
    [194]Kolmakov A, Klenov D O, Lilach Y, et al. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Letters.2005, 5(4):667-673.
    [195]Dos Santos O, Weiller M L, Junior D Q, et al. CO gas-sensing characteristics of SnO2 ceramics obtained by chemical precipitation and freeze-drying. Sensors and Actuators B-Chemical.2001,75(1-2):83-87.
    [196]Chen L Y, Bai S L, Zhou G J, et al. Synthesis of ZnO-SnO2 nanocomposites by microemulsion and sensing properties for NO2. Sensors and Actuators B-Chemical. 2008,134(2):360-366.
    [197]Qin L P, Xu J Q, Dong X W, et al. The template-free synthesis of square-shaped SnO2 nano wires:the temperature effect and acetone gas sensors. Nanotechnology.2008, 19(18):185705.
    [198]Wang W W, Zhu Y J, Yang L X. ZnO-SnO2 hollow spheres and hierarchical nanosheets: hydrothermal preparation, formation mechanism, and photocatalytic properties. Advanced Functional Materials.2007,17(1):59-64.
    [199]He J H, Wu T H, Hsin C L, et al. Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties. Small.2006,2(1):116-120.
    [200]Mathur S, Barth S, Shen H, et al. Size-dependent photoconductance in SnO2 nanowires. Small.2005,1(7):713-717.
    [201]Dattoli E N, Wan Q, Guo W, et al. Fully transparent thin-film transistor devices based on SnO2 nanowires. Nano Letters.2007,7(8):2463-2469.
    [202]Yu Y, Chen C H, Shi Y. A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Advanced Materials.2007,19(7):993-997.
    [203]Demir-Cakan R, Hu Y S, Antonietti M, et al. Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties. Chemistry of Materials.2008,20(4):1227-1229.
    [204]Xi G, Ye J. Ultrathin SnO2 nanorods:Template-and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties. Inorganic Chemistry.2010,49(5):2302-2309.
    [205]Zhao Q, Gao Y, Bai X, et al. Facile synthesis of SnO2 hollow nanospheres and applications in gas sensors and electrocatalysts. European Journal of Inorganic Chemistry.2006,2006(8):1643-1648.
    [206]Ye J, Zhang H, Yang R, et al. Morphology-controlled synthesis of SnO2 nanotubes by using ID silica mesostructures as sacrificial templates and their applications in lithiumion batteries. Small.2010,6(2):296-306.
    [207]Pang G, Chen S, Koltypin Y, et al. Controlling the particle size of calcined SnO2 nanocrystals. Nano Letters.2001,1(12):723-726.
    [208]Xi G C, Ye J H. Ultrathin SnO2 nanorods:template-and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties. Inorganic Chemistry.2010,49(5):2302-2309.
    [209]Cheng B, Russell J M, Shi W S, et al. Large-scale, solution-phase growth of single-crystalline SnO2 nanorods. Journal of the American Chemical Society.2004, 126(19):5972-5973.
    [210]Yang R S, Wang Z L. Springs, rings, and spirals of rutile-structured tin oxide nanobelts. Journal of the American Chemical Society.2006,128(5):1466-1467.
    [211]Hu J Q, Bando Y, Liu Q L, et al. Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Advanced Functional Materials.2003,13(6): 493-496.
    [212]Dai Z R, Pan Z W, Wang Z L. Growth and structure evolution of novel tin oxide diskettes. Journal of the American Chemical Society.2002,124(29):8673-8680.
    [213]Xu M H, Cai F S, Yin J, et al. Facile synthesis of highly ethanol-sensitive SnO2 nanosheets using homogeneous precipitation method. Sensors and Actuators B-Chemical.2010,145(2):875-878.
    [214]Zhang J R, Gao L. Synthesis and characterization of nanocrystalline tin oxide by sol-gel method Journal of Solid State Chemistry.2004,177(4-5):1425-1430.
    [215]Yu C L, Yu J C, Wang F, et al. Growth of single-crystalline SnO2 nanocubes via a hydrothermal route. Crystengcomm.2010,12(2):341-343.
    [216]Meduri P, Pendyala C, Kumar V, et al. Hybrid tin oxide nanowires as stable and high capacity anodes for Li-ion batteries. Nano Letters.2009,9(2):612-616.
    [217]Epifani M, Alvisi M, Mirenghi L, et al. Sol-gel processing and characterization of pure and metal-doped SnO2 thin films. Journal of the American Ceramic Society.2001, 84(1):48-54.
    [218]Liu T J, Jin Z G, Yang J X, et al. Preparation and process chemistry of SnO2 films derived from SnC2O4 by the aqueous sol-gel method. Journal of the American Ceramic Society.2008,91(6):1939-1944.
    [219]Das S, Kar SChaudhuri S. Optical properties of SnO2 nanoparticles and nanorods synthesized by solvothermal process. Journal of Applied Physics.2006,99(11):114303.
    [220]Beltran A, Andres J, Sambrano J, et al. Density functional theory study on the structural and electronic properties of low index rutile surfaces for TiO2/SnO2/TiO2 and SnO2/TiO2/SnO2 Composite Systems. The Journal of Physical Chemistry A.2008, 112(38):8943-8952.
    [221]Gnanam S, Rajendran V. Anionic, cationic and nonionic surfactants-assisted hydrothermal synthesis of tin oxide nanoparticles and their photoluminescence property. Digest Journal of Nanomaterials & Biostructures.2010,5(3):623-628.
    [222]Zhao Q, Xie Y, Dong T, et al. Oxidation-crystallization process of colloids:an effective approach for the morphology controllable synthesis of SnO2 hollow spheres and rod bundles. The Journal of Physical Chemistry C.2007,111(31):11598-11603.
    [223]Yang X, Wang L. Synthesis of novel hexagon SnO2 nanosheets in ethanol/water solution by hydrothermal process. Materials Letters.2007,61(17):3705-3707.
    [224]Watt A, Thomsen E, Meredith P, et al. A new approach to the synthesis of conjugated polymer-nanocrystal composites for heteroj unction optoelectronics. Chemical Communications.2004, (20):2334-2335.
    [225]Lalatonne Y, Richardi J, Pileni M. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals. Nature Materials.2004,3(2): 121-125.
    [226]Morales F L, Zayas T, Contreras O E, et al. Effect of Sn precursor on the synthesis of SnO2 and Sb-doped SnO2 particles via polymeric precursor method. Frontiers of Materials Science.2013,7(4):387-395.
    [227]Li Y, Guo Y, Tan R, et al. Selective synthesis of SnO2 hollow microspheres and nano-sheets via a hydrothermal route. Chinese Science Bulletin.2010,55(7):581-587.
    [228]Heyrovsky M. Electrochemical behavior of alkali metal alcoholates (alcoxides) on mercury. Electroanalysis.2006,18(2):121-126.
    [229]Sakulchaicharoen N, O'Carroll D M, Herrera J E. Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. Journal of Contaminant Hydrology.2010,118(3):117-127.
    [230]Li Y, Zhao Y, Zhang Z, et al. SnO2 nanobelts and nanocrystals:synthesis, characterization and optical properties. Journal of Crystal Growth.2008,310(18): 4226-4232.
    [231]Chong M N, Jin B, Chow C W, et al. Recent developments in photocatalytic water treatment technology:a review. Water research.2010,44(10):2997-3027.
    [232]Herrera M, Maestre D, Cremades A, et al. Growth and characterization of Mn doped SnO2 nanowires, nanobelts, and microplates. The Journal of Physical Chemistry C. 2013,117(17):8997-9003.
    [233]Zhang H, Hu C, Chen S, et al. Synthesis of SnO2 nanostructures and their application for hydrogen evolution reaction. Catalysis Letters.2012,142(6):809-815.
    [234]Talebian N, Jafarinezhad F. Morphology-controlled synthesis of SnO2 nanostructures using hydrothermal method and their photocatalytic applications. Ceramics International.2013,39(7):8311-8317.
    [235]Xu J, Liu G, Li J, et al. The electrocatalytic properties of an IrO2/SnO2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction. Electrochimica acta.2012,59:105-112.
    [236]Li Y H, Liu Y J, Xiao X C, et al. Gas response for ethanol of SnO2 nanorods as sensing materials. Advanced Materials Research.2012,399:727-730.
    [237]Fang X, Yan J, Hu L, et al. Thin SnO2 nanowires with uniform diameter as excellent field emitters:a stability of more than 2400 minutes. Advanced Functional Materials. 2012,22(8):1613-1622.
    [238]Huang S, Matsubara K, Cheng J, et al. Highly enhanced ultraviolet photosensitivity and recovery speed in electrospun Ni-doped SnO2 nanobelts. Applied Physics Letters.2013, 103(14):141108.
    [239]Sun P, Zhao W, Cao Y, et al. Porous SnO2 hierarchical nanosheets:hydrothermal preparation, growth mechanism, and gas sensing properties. CrystEngComm.2011, 13(11):3718-3724.
    [240]Wang J, Du N, Zhang H, et al. Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-ion batteries. The Journal of Physical Chemistry C.2011,115(22):11302-11305.
    [241]Wang X, Qiu S, He C, et al. Synthesis of Au decorated SnO2 mesoporous spheres with enhanced gas sensing performance. RSC Adv.2013,3(41):19002-19008.
    [242]Chen J S, Archer L A, Lou X W D. SnO2 hollow structures and TiO2 nanosheets for lithium-ion batteries. Journal of Materials Chemistry.2011,21(27):9912-9924.
    [243]Kiely C J, Fink J, Brust M, et al. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature.1998,396(6710):444-446.
    [244]Shevchenko E V, Talapin D V, Kotov N A, et al. Structural diversity in binary nanoparticle superlattices. Nature.2006,439(7072):55-59.
    [245]Das S, Chaudhuri S, Maji S. Ethanol-water mediated solvothermal synthesis of cube and pyramid shaped nanostructured tin oxide. Journal of Physical Chemistry C.2008, 112(16):6213-6219.
    [246]Han L, Luo J, Kariuki N N, et al. Novel interparticle spatial properties of hydrogen-bonding mediated nanoparticle assembly. Chemistry of Materials.2003, 15(1):29-37.
    [247]Supothina S, Rattanakam R, Vichaphund S, et al. Effect of synthesis condition on morphology and yield of hydrothermally grown SnO2 nanorod clusters. Journal of the European Ceramic Society.2011,31(14):2453-2458.
    [248]Wang H Z, Liang J B, Fan H, et al. Synthesis and gas sensitivities of SnO2 nanorods and hollow microspheres. Journal of Solid State Chemistry.2008,181(1):122-129.
    [249]Brus L. Electronic wave functions in semiconductor clusters:experiment and theory. The journal of Physical Chemistry.1986,90(12):2555-2560.
    [250]Pouretedal H, Tofangsazi ZKeshavarz M. Photocatalytic activity of mixture of ZrO2/SnO2, ZrO2/CeO2 and SnO2/CeO2 nanoparticles. Journal of Alloys and Compounds.2012,513:359-364.
    [251]Chen L, Wu F. Preparation and characterisation of nano-ATO colloid suspension. Micro & Nano Letters, IET.2012,7(3):248-251.
    [252]Li H X, Wei Q Q, Liu Y Y, et al. Cholesterol detection by self-assembled dodecyl thiol layers extracted cholesterol on the Ce-Sb codoped SnO2 film electrodes. Advanced Materials Research.2012,465:198-203.
    [253]Dou X, Sabba D, Mathews N, et al. Hydrothermal synthesis of high electron mobility Zn-doped SnO2 nanoflowers as photoanode material for efficient dye-sensitized solar cells. Chemistry of Materials.2011,23(17):3938-3945.
    [254]Jin B, Im S, Lee S. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films.2000,366(1):107-110.
    [255]Heremans J P, Wiendlocha B, Chamoire A M. Resonant levels in bulk thermoelectric semiconductors. Energy & Environmental Science.2012,5(2):5510-5530.
    [256]Babar A, Shinde S, Moholkar A, et al. Structural and optoelectronic properties of sprayed Sb:SnO2 thin films:effects of substrate temperature and nozzle-to-substrate distance. Journal of Semiconductors.2011,32(10):102001.
    [257]Yang S Y, Kim D, Park H. Shift of the reactive species in the Sb-SnO2-electrocatalyzed inactivation of E. coli and degradation of phenol:effects of nickel doping and electrolytes. Environmental science & technology.2014,48(5): 2877-2884.
    [258]Zhou W, Liu L, Yuan M, et al. Electronic and optical properties of W-doped SnO2 from first-principles calculations. Computational Materials Science.2012,54:109-114.
    [259]Huang Y, Zhang Q, Li G, et al. Tungsten-doped tin oxide thin films prepared by pulsed plasma deposition. Materials Characterization.2009,60(5):415-419.
    [260]Nakao S, Yamada N, Hitosugi T, et al. Fabrication of transparent conductive W-doped SnO2 thin films on glass substrates using anatase TiO2 seed layers. Physica Status Solidi (C).2011,8(2):543-545.
    [261]Huang Y, Li G, Feng J, et al. Investigation on structural, electrical and optical properties of tungsten-doped tin oxide thin films. Thin Solid Films.2010,518(8):1892-1896.
    [262]Huang Y, Zhang Q, Li G. Transparent conductive tungsten-doped tin oxide polycrystalline films prepared on quartz substrates. Semiconductor Science and Technology.2009,24(1):015003.
    [263]Huang Y, Li D, Feng J, et al. Transparent conductive tungsten-doped tin oxide thin films synthesized by sol-gel technique on quartz glass substrates. Journal of Sol-Gel Science and Technology.2010,54(3):276-281.
    [264]Lin C H, Chang W C, Qi X. Growth and characterization of pure and doped SnO2 films for H2 gas detection. Procedia Engineering.2012,36:476-481.
    [265]Chen Z, Gao Y, Kang L, et al. VO2-based double-layered films for smart windows: optical design, all-solution preparation and improved properties. Solar Energy Materials and Solar Cells.2011,95(9):2677-2684.
    [266]Du J, Gao Y, Luo H, et al. Formation and metal-to-insulator transition properties of VO2-ZrV2O7 composite films by polymer-assisted deposition. Solar Energy Materials and Solar Cells.2011,95(7):1604-1609.
    [267]Zhang Z, Gao Y, Luo H, et al. Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications. Energy & Environmental Science.2011,4(10): 4290-4297.
    [268]Du J, Gao Y, Chen Z, et al. Enhancing thermochromic performance of VO2 films via increased microroughness by phase separation Solar Energy Materials and Solar Cells. 2013,110:1-7.
    [269]Feng X, Ma J, Yang F, et al. Preparation and characterization of single crystalline SnC>2 films deposited on a-Al2O3(0001) by MOCVD. Materials Letters.2008,62(12): 1809-1811.
    [270]Enesca A, Andronic L, Duta A. Optimization of opto-electrical and photocatalytic properties of SnO2 thin films using Zn2+and W6+dopant ions. Catalysis Letters.2012, 142(2):224-230.
    [271]Reddy A S, Figueiredo N, Cavaleiro A. Nanocrystalline SnO2 and Au:SnO2 thin films prepared by direct current magnetron reactive sputtering. Vacuum.2012,86(9): 1323-1327.
    [272]Zrinyi M, Szilagyi A, Filipcsei G, et al. Smart gel-glass based on the responsive properties of polymer gels. Polymers for Advanced Technologies.2001,12(9): 501-505.
    [273]Gyenes T, Szilagyi A, Lohonyai T, et al. Electrically adjustable thermotropic windows based on polymer gels. Polymers for Advanced Technologies.2003,14(11-12):757-762.
    [274]Szilagyi A, Gyenes T, Filipcsei G, et al. Thermotropic polymer gels:smart gel glass. Macromolecular Symposia.2005,227(1):357-366.
    [275]Watanabe H. Intelligent window using a hydrogel layer for energy efficiency. Solar Energy Materials and Solar Cells.1998,54(1):203-211.
    [276]Ye X, Luo Y, Gao X, et al. Design and evaluation of a thermochromic roof system for energy saving based on poly (N-isopropylacrylamide) aqueous solution. Energy and Buildings.2012,48:175-179.
    [277]Liu R, Fraylich M, Saunders B R. Thermoresponsive copolymers:from fundamental studies to applications. Colloid and Polymer Science.2009,287(6):627-643.
    [278]Jung S C, Bae Y C. Molecular Thermodynamic analysis for assessing the relationship between reentrant swelling behavior and ternary liquid-liquid equilibrium for poly (N-isopropylacrylamide) nanometer-sized gel particles in a water-tetrahydrofuran cosolvent system. The Journal of Physical Chemistry B.2012,116(7):2208-2215.
    [279]Hofmann C, Schonhoff M. Do additives shift the LCST of poly (N-isopropylacrylamide) by solvent quality changes or by direct interactions. Colloid and Polymer Science.2009,287(12):1369-1376.
    [280]Crowther H, Vincent B. Swelling behavior of poly-N-isopropylacrylamide microgel particles in alcoholic solutions. Colloid and Polymer Science.1998,276(1):46-51.
    [281]Walter J, Sehrt J, Vrabec J, et al. Molecular dynamics and experimental study of conformation change of poly (N-isopropylacrylamide) hydrogels in mixtures of water and methanol. The Journal of Physical Chemistry B.2012,116(17):5251-5259.
    [282]Zarzyka I, Pyda M, DiLorenzo M L. Influence of crosslinker and ionic comonomer concentration on glass transition and demixing/mixing transition of copolymers poly (N-isopropylacrylamide) and poly (sodium acrylate) hydrogels. Colloid and Polymer Science.2014,292(2):485-492.
    [283]Sun B, Lin Y, Wu P, et al. A FTIR and 2D-IR spectroscopic study on the microdynamics phase separation mechanism of the poly (N-isopropylacrylamide) aqueous solution. Macromolecules.2008,41(4):1512-1520.
    [284]Deshmukh S A, Li Z, Kamath G, et al. Atomistic insights into solvation dynamics and conformational transformation in thermo-sensitive and non-thermo-sensitive oligomers. Polymer.2013,54(1):210-222.
    [285]Hayashi Y, Puzenko A, Feldman Y. Ice nanocrystals in glycerol-water mixtures. The Journal of Physical Chemistry B.2005,109(35):16979-16981.
    [286]Zhang Y, Zhang J, Zhang X, et al. The additives W, Mo, Sn and Fe for promoting the formation of VO2 and its optical switching properties. Materials Letters.2013,92: 61-64.
    [287]Kiri P, Warwick M E, Ridley I, et al. Fluorine doped vanadium dioxide thin films for smart windows. Thin Solid Films.2011,520(4):1363-1366.
    [288]Ye J, Zhou L, Liu F, et al. Preparation, characterization and properties of thermochromic tungsten-doped vanadium dioxide by thermal reduction and annealing. Journal of Alloys and Compounds.2010,504(2):503-507.
    [289]Warwick M E, Binions R. Chemical vapour deposition of thermochromic vanadium dioxide thin films for energy efficient glazing. Journal of Solid State Chemistry.2013.
    [290]Mai L, Xu L, Han C, et al. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Letters.2010,10(11): 4750-4755.
    [291]Cui Y, Wang X, Zhou Y, et al. Synthesis of vanadium dioxide thin films on conducting oxides and metal-insulator transition characteristics. Journal of Crystal Growth.2012, 338(1):96-102.
    [292]Batista C, Ribeiro R, Carneiro J, et al. DC sputtered W-doped VO2 thermochromic thin films for smart windows with active solar control. Journal of Nanoscience and Nanotechnology.2009,9(7):4220-4226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700