用户名: 密码: 验证码:
酿酒酵母Bdf1p转录因子在高盐胁迫反应中调控机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在自然条件下,生物的生存依赖于对外界环境改变的及时识别以及对新环境所作出的相应反应。生物对不良环境刺激因子的应答反应,并最终形成对胁迫环境的抵抗力就是环境胁迫反应(environmental stress response,ESR)。生物胁迫反应是研究基因功能和了解生命活动本质的便利模型。同时,对生物胁迫反应的研究在培育抗逆植物、改造工业微生物的生产形状以及对细胞癌变的机理与治疗等方面的研究具有重要作用。
     酿酒酵母(Saccharomyces cerevisiae)是最简单和最早完成全基因组测序的真核生物(http://genome-www.stanford.edu/Saccharomyces)。酿酒酵母易培养、生活周期短,遗传背景清晰,同时以酿酒酵母为基础的分子生物学研究技术平台日趋完善,很容易制备各种突变体等遗传学研究材料,使研究方便可行,是理想的真核生物模式种。
     高盐环境一直是人们关注的重要的胁迫因子之一,以酿酒酵母为模型开展盐胁迫机理研究,在国际上一直是生物学研究的热点之一。目前,对酿酒酵母胁迫反应机制已经有了较深入的了解,高盐胁迫对酵母细胞的毒害作用包括两个方面,一是Na~+离子毒害;二是产生渗透压胁迫,使质膜的跨膜渗透压降低而导致细胞膨胀压的丧失。同时,一些重要的盐胁迫信号传导途径和离子通道蛋白相继被发现。例如:在高浓度NaCl条件下,高渗透性甘油促分裂原激酶信号转导途径(high osmolarity glycerol mitogen activated protein kinase signaling transductionpathway,HOG-MAPK)通过促进甘油积累抵抗渗透胁迫刺激。钙调磷酸酶(Calcineurin,CaN)信号途径通过转录因子Crzlp/Tcnlp激活酵母细胞ENA1(编码重要P-型ATPase离子外排泵)的表达,促进Na~+外排。同时TRK1/2p负责的K~+/Na~+离子吸收系统,通过提高K~+离子亲和性,优先积累K~+限制Na~+的吸收,减少对细胞的毒害作用Na~+。本课题组前期利用转座标签随机插入突变技术,首次在酿酒酵母中发现Bdf1p(Bromodomain Transcription Factor 1)转录因子与高盐胁迫有关。
     BDF1基因的缺失并不会引起致死效应,属于非基础性的基因转录调控因子。Bdf1p转录因子在蛋白质结构上包含:2个“溴”结构域(Bromodomain)和一个位于C末端的ET(Extra-terminal)结构域,属于BET转录因子家族。Bromodomain结构域是近10年来发现的广泛存在于多种真核生物中的组蛋白赖氨酸乙酰化位点结合结构域,由60~110个高度保守的氨基酸残基组成,目前对于含Bromodomain结构域蛋白功能的研究还处于起步阶段。
     本研究利用基因敲除(gene knockout)和化学药物阻断的方法,对盐胁迫条件下HOG-MAPK途径、Calcineurin途径、ENA1基因、以及TRK1基因与BDF1基因之间的遗传学关系进行了分析。实验结果表明,当BDF1基因分别与HOG1、CMP1CMP2、ENA1和TRK1基因同时缺失或阻断时,酵母细胞的盐耐受性均进一步减弱,该结果提示BDF1基因在酵母盐胁迫应答反应中与上述途径/基因可能分别涉及不同的酵母盐胁迫途径。
     基因表达谱分析技术为酵母盐胁迫反应分子机制及其相关基因功能的研究提供了全新和有效的研究手段。利用酵母全基因组芯片分别绘制了盐胁迫条件下野生型菌株和bdf1△菌株的基因表达谱,分析比较相互间的不同,在全基因范围内寻找受Bdf1p影响的盐胁迫反应相关基因。野生型菌株和bdf1△菌株细胞经0.6 M NaCl处理45 min后,提取酵母总RNA,合成cDNA并分别用Cy5-dCTP和Cy3-dCTP标记,与含有5935个开放阅读框(open reading frame,ORF)的酵母全基因组芯片进行杂交并扫描。采用GenePix Pro 4.0图像分析软件(AxonInstruments公司)对芯片图像进行分析,计算ratio值(两种荧光强度的比值cy5/cy3);然后对芯片上的数据用Lowess方法进行归一化;最后用T-test和以两倍差异(即ratio值大于等于2.0,小于等于0.5)的标准来确定差异表达基因。为了消除荧光偏向性带来的假阳性,盐处理和对照的酵母细胞RNA样品在反转录过程中进行荧光交换实验,同时对于每个菌株盐处理(W303盐处理/W303和bdf1△盐处理/bdf1△),都作两次独立的生物学重复实验,分析两次独立实验中表达变化趋势一样的基因,基因变化的数值取两组数据的平均值。在此基础上,随机挑选差异表达的基因,利用实时荧光定量RT-PCR(real-time quantitativeRT-PCR,qPCR)进行验证,实验结果显示对所测定的基因与基因芯片技术检测结果一致,不仅变化方向一致,而且表达值非常接近,说明芯片结果具有良好的准确性。
     本实验共筛选出差异表达基因217个,有144个差异表达基因分别在野生型菌株与bdf1△菌株呈现相同的变化趋势(上调基因119个,下调基因25个)。采用MIPS数据库的在线软件Functional Catalogue Database(http://mips.gif.de/proj/funcatDB/search_main_fra me.html)进行生物学功能分类对上述144个差异表达基因进行功能分类发现,以上差异表达基因主要集中在甘油代谢、海藻糖代谢、离子通道蛋白、氧化胁迫反应、热休克蛋白和功能未知蛋白等方面。其中ENA1基因在野生型菌株和bdf1△菌株中的盐胁迫诱导表达倍数相似(5.25和6.32),说明BDF1基因缺失并未对盐胁迫条件下ENA1基因的正常表达产生影响,与前面遗传学分析结果一致,即BDF1和ENA1基因分别涉及不同酵母盐胁迫途径。同时,基因芯片数据显示甘油合成关键酶基因GPD1(编码3-磷酸甘油脱氢酶),经盐胁迫处理后,在野生型菌株和bdf1△菌株的基因表达水平均显著上升,其诱导表达倍数分别高达35.79和35.52倍。酵母胞内甘油含量测定结果表明,经0.6 M NaCl处理45 min后,野生型菌株和bdf1△菌株中甘油积累均有大幅提高且含量相近,此结果与上述通过基因芯片在转录水平上测定结果一致。
     BDF2是酿酒酵母BDF1基因的同源基因,采用长臂同源多聚酶链式反应(LFH-PCR)方法制备含有遗传霉素耐药基因(kanMX4)的BDF2基因敲除片段并转化酵母,构建了bdf2△菌株。梯度生长实验表明,与野生型菌株相比,BDF2基因缺失并不造成盐敏感表型,说明BDF2基因是酵母盐抗性的非必须基因。基因芯片结果显示,BDF1基因缺失导致盐胁迫条件下BDF2基因表达下调,提示两基因间的表达可能存在相互影响,盐胁迫条件下两基因间的遗传学关系有待进一步研究。
     线粒体是真核生物能量代谢的中心,在物质代谢、细胞凋亡过.程中发挥了重要的作用。基因芯片结果显示,经0.6 M NaCl处理45 min后,与野生型菌株相比,BDF1基因缺失造成盐胁迫条件下大量线粒体功能相关基因表达下降。其中包括:线粒体核糖体基因(MRPL3、MRP4、MRP7和MRP11),细胞色素C基因CYC1,线粒体延伸因子基因MEF1和线粒体缬氨酰-tRNA合成酶基因VAS1,该结果提示,Bdf1p可能在维持盐胁迫条件下线粒体的正常功能方面发挥重要作用。
     线粒体膜电位(Mitochondrial membrane potential,△Ψm)和胞内活性氧(reactive oxygen species,ROS)含量是评价线粒体功能的的重要指标。利用还原型线粒体特异性荧光探针Mito Tracker Red CMXRos对盐胁迫处理后野生型菌株和bdf1△菌株中线粒体膜电位的变化进行了检测。实验结果表明,经0.6 M NaCl处理45 min后,Mito Tracker Red CMXRos探针在野生型菌株细胞中仍处于聚集状态,呈现网状分布的荧光线条,而大约20%左右的bdf1△菌株细胞呈现弥散状分布的荧光,说明这些细胞的线粒体跨膜电位下降或消失。利用DHR荧光探针(dihydrorhodamine 123),对经0.6 M NaCl盐胁迫处理45 min的野生型菌株和bdf1△菌株的胞内ROS含量进行了测定。实验结果表明,经盐胁迫处理后的野生型酵母细胞在荧光显微镜下呈现微弱红色荧光,而BDF1基因缺失菌株显现明亮的红色荧光,荧光强度相对定量分析表明,bdf1△菌株细胞的相对荧光强度比野生型菌株细胞高出1.5倍以上,说明BDF1基因缺失可导致盐胁迫条件下胞内活性氧ROS的积累。超氧化物歧化酶(superoxide dismutase,SOD)是酵母体内活性氧清除体系中最重要的抗氧化酶,酶活测定结果表明,0.6 M NaCl处理45min的盐胁迫条件下野生型菌株和bdf1△菌株中SOD酶活性均呈上升趋势,且bdf1△菌株的SOD酶活性比野生型菌株高出38个活力单位以上。该结果表明,盐胁迫条件下bdf1△菌株细胞中ROS的大量积累并不是由于超氧化物歧化酶的活性受到抑制引起的。
     细胞凋亡(apoptosis)是指细胞在一定的外界刺激或病理条件下,受基因控制的一种细胞自主的有序的死亡。线粒体功能紊乱与酵母细胞凋亡的发生密切相关。利用DAPI染色和透射电子显微镜(TEM)对盐胁迫处理后,野生型菌株和bdf1△菌株细胞的细胞核和染色质形态进行观察。结果显示,与野生型菌株相比,bdf1△菌株细胞的细胞核裂解,染色质发生凝集,核膜皱缩,呈现明显的细胞凋亡特征,说明盐胁迫条件下BDF1基因缺失可引发线粒体依赖的酵母细胞凋亡。
Cellular organisms have developed several autonomous mechanisms to adjust themselves to new conditions,because they are constantly challenged by changing environmental conditions,.Under stress conditions,the cells undergoes a series of changes to protect the external system from the detrimental effects of stress,which were referred to as the environmental stress responses(ESR).The studies of yeast stress responses have provided a powerful tool for investigation of the genes function and elucidation of the nature of important life activities.In addition,research on stress response has important role for the improvement of the stress resistance of plant corps and industrial microbial,and has a large impact on medical issues.
     Saccharomyces cerevisiae was the first eukaryotic organism whose whole genome was completely sequenced(http://genome-www.stanford.edu/Saccharomyces).The rapid growth,ease of genetic manipulation,and a well-defined genetic system of the yeast Saccharomyces cerevisiae make it ideal for fundamental and applied studies in eukaryotic species.
     Salt-stress adaptation mechanisms are being intensively studied in model organisms Saccharomyces cerevisiae.Under high salt conditions,the yeast cells are mainly challenged by ion and hyperosmotic stress.Several mechanisms involved in yeast salt stress response have been identified.For instance,under NaCl stress,the high osmolarity glycerol mitogen activated protein kinase signaling transduction pathway (HOG-MAPK)is activated,which mediates the production and accumulation of the osmolyte glycerol.Calcineurin functions through the Crz 1 p/Ten 1 p transcription factor to induce several salt stress-responsive genes expression,such as the ENA1 gene which encodes a plasma membrane P-type Na~+-ATPase ion extrusion pump. Additionally,the TRK1/2p transport system increased affinity for K~+ and prevent entry of excess Na~+,to increase NaCl tolerance.Yeast mutants with impaired K~+ transport system showed increased sensitivity to salt stress due to accumulate of more Na~+ than wild type strain.The S.cerevisiae BDF1 gene,which encodes a bromodomain-containing transcription factor,was isolated in a large-scale screen for salt-sensitivity mutants following transposon mutugenesis.
     Bromodomain transcription factor 1 protein(Bdf1p)contains two bromodomains and an ET(extra-terminal)domain.It is a member of the BET protein family.In yeast, Bdf1p was not essential for cell viability.Bromodomains are evolutionarily conserved and act as acetryl-lysine binding domains that process the molecular information conveyed by lysine acetylation modification.To understanding the biological functions ofbromdomain-containing proteins in cellular processes were currently at a fledgling stage.
     By using gene knockout and drugs block techniques,the relationship between BDF1 and several signaling transduction pathways/genes have been known in salt tolerance,was investigated.These included HOG-MAPK pathway,Calcineurin pathway,ENA1 and TRK1 genes.Genetic analysis indicated that the function of Bdf1p in salt tolerance is independent of the HOG-MAPK pathway or the calcineurin pathway,K~+ transportation system and is not meditated by Enalp,the major determinant of Na~+ extrusion system.
     The yeast genome-scale cDNA microarray platform provides an effective research tool to investigated the global changes in gene expression under a given salt stress condition.To gain further insight into the role of Bdf1p in salt tolerance on a global scale,DNA microarray analysis was conducted.The global gene expression changes in the wild-type and a bdf1△mutant responding to a salt stress treatment(0.6 mol/L NaCl,45 min)were measured,respectively.Total yeast RNA was isolated after treated by0.6 mol/L NaCl for45 min,and the cDNA were labeled with Cy5-dCTP and Cy3-dCTP,respectively.Then the Cy5/cy3-1abeled cDNA were hybridized on the yeast genome-wide DNA microarrays containing 5935 ORFs.Obtained images were analyzed with a GenePix Pro 4.0.A space and intensity-dependent normalization based on the LOWESS program was employed.We determined the levels of gene expression based on the statistical method student's t-test in combination with a 2-fold cutoff Genes whose ratio changed>2-fold with p<0.05 were determined to be have significantly different gene expression.
     To eliminate the dye-bias artifact,the dye-swap experiment was performed for two different RNA populations.And two biologically independent experiments of each of the samples(wild-type,wild-type salt treated,bdf1△,bdf1△salt treated)were analyzed.Only genes having consistently altered expression in two independent experiments were selected for further analysis,and the final fold changes were derived from the average of two independent experiments.
     Based on this experiment design,totally 217 differentially expressed genes were identified in salt-treated yeast cells(wild type and bdf1△mutant),in which 144 total genes(119 up-regulated genes and down-regulated 25 genes)displayed the same altered tendency in the wild type and bdf1△mutant after the salt treatment.Functional classification of the 144 differential expressed genes were base on the MIPS Functional Catalogue Database(http://mips.gif.de/proj/funcatDB/search_main_fra me.html).The above genes are associated with functions,such as glycerol metabolism,trehalose metabilism,ion transport,heat shock protein,unclassified protein,and so on.
     Interestingly,the expression level of ENA1 had a similar increase in the wild type and bdf1△mutant(5.25- and 6.32- fold,respectively),suggesting that the function of ENA1 in Na~+ tolerance is independent of BDF1.Additionally,The glycerol-3-phosphate dehydrogenase gene(GDP1),which is a key enzyme of glycerol metabolism,was highly induced in the wild type and bdf1△mutant(35.79- and 35.52- fold, respectively)after the salt treatment.The determination of intracellular content of the yeast cells showed that there was a similar level of glycerol in wild type and bdf1△mutant after the salt treatment,which is consistent with the data from the microarray analysis.
     Change in expressions of two randomly selected genes(MEF1 and YNL208w)were further confirmed by real-time quantitative RT-PCR.And the results suggested good agreement between the microarray and real-time quantitative PCR analysis.
     In yeast,BDF2 gene is a homolog of the BDF1 gene.Construction of TRK1 deletion mutants was performed by long flanking homology(LFH)-PCR and the kanMX4 deletion marker was used.In spot dilution growth assays,we have not observed a salt sensitive phenotype of the bdf2△mutant compared to the wild-type at various NaCl concentrations,which suggests that the BDF2 gene is not essential for salt resistance. In addition,the microarray results showed that,in response to the salt stress,the expression of BDF2 gene was down regulated in bdf1△mutant but not in the wild type strain.This result indicated that there is some genetic interaction between BDF1 and BDF2 gene,and the roles of Bdf1p and Bdf2p in salt tolerance remains to be determined.
     It has been known that the mitochondrial functions are important for energy metabolism and have an intimate relation with cell death.The microarray results showed that 7 genes associated with mitochondrial function were downregulated in the bdf1△strain but not in the wild type strain after the salt treatment(0.6M NaCl for 45min).These included four mitochondrial ribosomal genes(MRPL3,MRP4,MRPL7, MRPL11),Cytochrome c Oxidase encoding gene CYC1,a gene encoding a mitochondrial elongation factor MEF1and a gene encoding a mitochondrial valyl-tRNA synthetase VAS1.This result suggested a possible role for Bdf1p in the control of mitochondrial functions under salt stress conditions.
     Mitochondrial membrane potential(△Ψm)and reactive oxygen species(ROS) production are useful indicators of mitochondrial function.To measure△Ψ, Mitotracker red CMRos was used,which CMRos(Molecular Probes),which stains mitochondria in a△Ψm-dependent fashion.The MitoTracker specifically stains mitochondria when the△Ψm is high,but stains in a diffused pattern when△ΨM is lost.After treated with 0.6 M NaCl for 45 min,the wild type cells displayed a very nice,linear MitoTracker staining,but about 20%of bdf1△cells showed a diffused staining,indicating that absence of Bdf1p caused△Ψloss under salt stress conditions. To monitor the ROS production of yeast cells,we used dihydrorhodamine 123(DHR), which can be oxidized by the intracellular ROS to become fluorescent chromophore rhodamine.After treated with 0.6 M NaCl for 45 min,wild-type cells showed a very dim,red fluorescence after incubation with DHR,whereas bdf1△cells had intense red fluorescence staining with DHR after treatment with NaCl.Relative fluorescence intensities were further quantified on a fluorescent microplate reader.About 1.5-fold increase in fluorescence intensities was observed in the bdf1△mutant compare with the wild-type strain.Superoxide dismutase(SOD)is the key enzyme providing cells protection from the ROS toxicity.After the salt treatment,the SOD activity increased significantly in bdf1△,and was 38 unit higher than in wild type cells.This result indicated that the SOD activity responded normally in bdf1△mutant and the accumulation of ROS in bdf1△cells was not due to the inhibition of Superoxide dismutase activity in the mutant.
     Apoptosis is an intrinsic cell death process.Mitochondrial dysfunction has been described as a key event in triggering yeast apoptosis.DAPI staining and examination with transmission electron microscopy revealed that the salt-stress treated bdf1△cells displayed randomly distributed nuclear fragments,extensive chromatin condensation and margination along the nuclear envelope,which is a typical marker of apoptosis. This result indicated that absence of Bdf1p caused mitochondria-dependent yeast apoptosis under salt stress conditions.
引文
1.Adler L,Blomberg A,Nilsson A.Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii[J].J Bacteriol.1985,162(1):300-306
    2.Akhtar N,Blomberg A,Adler L.Osmoregulation and protein expression in a pbs2delta mutant of Saccharomyces cerevisiae during adaptation to hypersaline stress[J].FEBS Lett.1997,403(2):173-180
    3.Albertyn J,Hohmann S,Thevelein JM and Prior BA.GPD1,which encodes glycerol-3-phosphate dehydrogenase,is essential for growth under osmotic stress in Saccharomyces cerevisiae,and its expression is regulated by the high osmolarity glycerol response pathway[J].Mol Cell Biol.1994,14:4135-4144
    4.Alepuz P M,de Nadall E,Zapater M,et al.Osmostress-induced transcription by Hotl depends on a Hogl-mediated recruitment of the RNA Pol Ⅱ[J].EMBO J.2003,22(10):2433-2442
    5.Amoros M,Estruch F.Hsflp and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a 8ene-and stress type-dependent manner[J].Mol Microbiol.2001,39(6):1523-1532
    6.Anderson JA,Best LA,G-aber RF.Structural and functional conservation between the high-affinity K+ transporters of Saccharomyces uvarum and Saccharomyces cerevisiae[J].Gene.1991,99(1):39-46
    7.Autor AP.Biosynthesis of mitoehondrial manganese superoxide dismutase in Saccharomyces cerevisiae.Precursor form of mitochondrial superoxide dismutase made in the cytoplasm[J].J Biol Chem.1982,257(5):2713-2718
    8.Balzan R,Sapienza K,Galea DR,Vassallo N,Frey H,Bannister WH.Aspirin commits yeast cells to apoptosis depending on carbon source[J].Microbiology.2004,150(Pt 1):109-115
    9.Bell W,Klaassen P,Ohnacker M,Boller T,Herweijer M,Schoppink P,Van der Zee P,Wiernken A.Characterization of the 56-kDa subunit of yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1,a regulator of carbon catabolite inactivation[J].Eur J Biochem 1992,209(3):951-959
    10.Bell W,Sun W,Hohmann S,Wera S,Reinders A,De Virgilio C,Wiemken A,Thevelein JM.Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex[J].J Biol Chem.1998,273(50):33311-33319
    11.Bianchi MM,Costanzo G Chelstowska A,Grabowska D,Mazzoni C,Piccinni E,Cavalli A,Ciceroni F,Rytka J,Slonimski PP,Frontali L,Negri R.The bromodomain-containing protein Bdflp acts as a phenotypic and transcriptional multicopy suppressor of YAF9 deletion in yeast[J].Mol Microbiol,2004,53(3):953-968
    12.Blomberg A.Global changes in protein synthesis during adaptation of the yeast Saccharomyces cerevisiae to 0.7 M NaC1[J].J Bacteriol.1995,177(12):3563-3572
    13.Blomberg A.The osmotic hypersensitivity of the yeast Saccharomyces cerevisiae is strain and growth media dependent:quantitative aspects of the phenomenon[J].Yeast.1997,13(6):529-539
    14.Blomberg A and Adler L.Roles of glycerol and glycerol-3-phosphate dehydrogenase(NAD)in acquired osmotolerance of Saccharomyces cerevisiae[J].J.Bacteriol.1989,171(2):1087-1092
    15.Boone C,Bussey H,Andrews BJ.Exploring genetic interactions and networks with yeast[J].Nat Rev Genet.2007,8(6):437-449
    16.Boorstein WR,Craig EA.Structure and regulation of the SSA4 HSP70 gene of Saccharomyces cerevisiae[J].J Biol Chem.1990,265(31):18912-18921
    17.Borgnia M,Nielson S,Engel A,Agre P.Cellular and molecular biology of the aquaporin water channels[J].Annu Rev Biochem.1999,68:425-458
    18.Bowers K,Levi BP,Patel FI,Stevens TH.The sodium/proton exchanger Nhxlp is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae[J].Mol Biol Cell.2000,11(12):4277-4294
    19.Brush GS,Kelly TJ.Phosphorylation of the replication protein A large subunit in the Saccharomyces cerevisiae checkpoint response[J].Nucleic Acids Res.2000,28(19):3725-3732
    20.Butcher RA,Schreiber SL.A small molecule suppressor of FK506 that targets the mitochondria and modulates ionic balance in Saccharomyces cerevisiae[J].Chem Biol.2003,10(6):521-531
    21.Calero F,Montiel V,Caracuel Z,Cabello-Hurtado F,Ramos J.On the role of Trk1 and Trk2 in Schizosaccharomyces pombe under different ion stress conditions[J].FEMS Yeast Res.2004,4(6):619-624
    22.Causton HC,Ren B,Koh SS,Harbison CT,Kanin E,Jermings EG,Lee TI,True HL,Lander ES,Young RA.Remodeling of yeast genome expression in response to environmental changes[J].Mol Biol Cell.2001,12(2):323-337
    23.Chan G,Hardej D,Santoro M,Lau-Cam C,Billack B.Evaluation of the antimicrobial activity of ebselen:Role of the yeast plasma membrane H(+)-ATPase[J].J Biochem Mol Toxicol.2007,21(5):252-264
    24.Chang M,Bellaoui M,Boone C,Brown GW.A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage[J].Proc Natl Acad Sci U S A.2002, 99(26):16934-16939
    25.陈罡,王晓冬.细胞凋亡检测技术的进展[J].国外医学分子生物学分册.2003,25(2):125-128
    26.陈慧莉,李建华,王树庆.线粒体跨膜电位和细胞凋亡相关性的研究[J].医学综述.2007,13:(14)1041-1043
    27.陈建业,张睨,陈俊杰,李瑞祥.“溴”结构域(bromodomain)简介[J].生物化学与生物物理进展.2001,28(6):801-801
    28.Chen LW,Wang YQ,Wei LC,Shi M,Chan YS Chinese herbs and herbal extracts for neuroprotection of dopaminergic neurons and potential therapeutic treatment of Parkinson's disease[J].CNS Neurol Disord Drug Targets.2007,6(4):273-281
    29.Chua P,Roeder G S.Bdfl,a yeast chromosomal protein required for sporulation [J].Mol Cell Biol,1995,15(7):3685-3696
    30.Chughtai ZS,Rassadi R,Matusiewicz N,Stochaj U.Starvation promotes nuclear accumulation of the hsp70 Ssa4p in yeast cells[J].J Biol Chem.2001,276(23):20261-20266
    31.Coury LA,Hiller M,Mathal JC,Jones EW,Zeidel ML,Brodsky JL.Water transport across yeast vacuolar and plasma membrane-targeted secretory vesicles occurs by passive diffusion[J].J Bacteriol.1999,181(14):4437-4440
    32.Craig EA,Weissman JS,Horwich AL.Heat shock proteins and molecular chaperones:mediators of protein conformation and turnover in the cell[J].Cell.1994,78(3):365-372
    33.Crespo JL,Daicho K,Ushimaru T,Hall MN.The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae[J].J Biol Chem.2001,276(37):34441-34444
    34.Cullen P J,Sabbagh W Jr,Graham E,et al.A signaling mucin at the head of the Cdc42-and MAPK-dependent filamentous growth pathway in yeast[J].Genes Dev.2004,18(14):1695-1708
    35.Culotta VC,Joh HD,Lin SJ,Slekar KH,Strain J.A physiological role for Saccharomyces cerevisiae copper/zinc superoxide dismutase in copper buffering[J].J Biol Chem.1995,270(50):29991-29997
    36.Cyert MS.Calcineurin signaling in Saccharomyces cerevisiae:how yeast go crazy in response to stress[J].Biochem Biophys Res Commun.2003,311(4):1143-1150
    37.Cyert MS,Kunisawa R,Kaim D,Thorner J.Yeast has homologs(CNA1 and CNA2 gene products)of mammalian calcineurin,a calmodulin-regulated phosphoprotein phosphatase[J].Proc Natl Acad Sci U S A.1991,88(16):7376-7380
    38.Cyert MS,Thorner J.Regulatory subunit(CNB1 gene product)of yeast Ca2+/calmodulin-dependent phosphoprotein phosphatases is required for adaptation to pheromone.Mol Cell Biol.1992,12(8):3460-3469
    39.Davenport KR,Sohaskey M,Kamada Y,Levin DE,Gustin MC.A second osmosensing signal transduction pathway in yeast.Hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway[J].J Biol Chem.1995,270(50):30157-30161
    40.de Jesus Ferreira M C,Bao X,Laize V,Hohmann S.Transposon mutagenesis reveals novel loci affecting tolerance to salt stress and growth at low temperature [J].Current Genetics.2001,40(1):27-39
    41.de Nadal E,Aplepuz P M,Posas F.Dealing with osmostress through MAP kinase activation[J].EMBO Rep.2002,3(8):735-740
    42.de Nadal E,Casadome L,Posas F.Targeting the MEF2-1ike transcription factor Smpl by the stress-activated Hogl mitogen-activated protein kinase[J].Mol Cell Biol,2003,23(1):229-237
    43.Denis GV.Bromodomain motifs and "scaffolding"?[J].Front Biosci,2001,6(1):1065-1068
    44.Denis V and Cyert MS.Internal Ca(2+)release in yeast is triggered by hypertonic shock and mediated by a TRP channel homologue[J].J Cell Biol.2002,156(1):29-34
    45.Dey A,Ellenberg L Farina A,Coleman AE,Maruyama T,Sciortino S,Lippincott-Schwartz J,Ozato K A bromodomain protein,MCAP,associates with mitotic chromosomes and affects G(2)-to-M transition[J].Mol Cell Biol.2000,20(17):6537-6549
    46.Dumont ME,Cardillo TS,Hayes MK,Sherman F.Role of cytochrome c heme lyase in mitochondrial import and accumulation of cytochrome c in Saccharomyces cerevisiae[J].Mol Cell Biol.1991,11(11):5487-5496
    47.Durant M,Pugh BF.NuA4-directed chromatin transactions throughout the Saccharomyces cerevisiae genome[J].Mol Cell Biol.2007,27(15):5327-5335
    48.Elbein AD,Pan YT,Pastuszak I,Carroll D.New insights on trehalose:a miltifunetional molecule[J].Glycobiology,2003,13(4):17-27
    49.Eriksson P,Andre L,Ansell R,Blomberg A,Adler L.Cloning and characterization of GPD2,a second gene encoding sn-glycerol 3-phosphate dehydrogenase(NAD+)in Saccharomyces cerevisiae,and its comparison with GPDI[J].Mol Microbiol.1995,17(1):95-107
    50.付畅,杨传平,刘桂丰,姜静.酵母耐盐机制的研究进展[J].遗传.2003,25(6):757-761
    51.Ferrigno P,Posas F,Koepp D,Saito H,Silver PA.Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1[J].EMBO J.1998,17(19):5606-14
    52.De Virgilio C,Bürckert N,Bell W,Jeno P,Boiler T,Wiemken A.Disruption of TPS2,the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae,causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity[J].Eur J Bioehem.1993,212(2):315-323
    53.Dhalluin C,Carlson JE,Zeng L,He C,Aggarwal AK,Zhou MM.Structure and ligand of a histone acetyltransferase bromodomain[J].Nature.1999,399(6735):491-496
    54.Diehtl B,Stevens A,Tollervey D.Lithium toxicity in yeast is due to the inhibition of RNA processing enzymes[J].EMBO J.1997,16(23):7184-7195
    55.Didefich JA,Schuurmans JM,Van Galen MC,Kruekeberg AL,Van Dam K.Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae[J].Yeast,2001,18(16):1515-1524
    56.Eisenberg T,Buttner S,Kroemer G,Madeo F.The mitochondrial pathway in yeast apoptosis[J].Apoptosis.2007,12(5):1011-1023
    57.Esterbauer H,Sehaur RJ,Zollner H.Chemistry and biochemistry of 4-hydroxynonenal,malonaldehyde and related aldehydes[J].Free Radio Biol Med.1991,11(1):81-128
    58.Fadeel B,Orrenius S.Apoptosis:a basic biological phenomenon with wide-ranging implications in human disease[J].J Intern Med.2005,258(6):479-517
    59.Gaber RF,Styles CA,Fink GR.TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae[J].Mol Cell Biol.1988,8(7):2848-2859
    60.Galcheva-Gargova Z,Derijard B,Wu IH Davis RJ.An osmosensing signal transduction pathway in mammalian cells[J].Science.1994,265(5173):806-808
    61.Gan X,Kitakawa M,Yoshino K,Oshiro N,Yonezawa K,Isono K.Tag-mediated isolation of yeast mitochondfial ribosome and mass spectrometric identification of its new components[J].Eur J Biochem.2002,269(21):5203-5314
    62.Garay-Arroyo A and Covarrubias AA.Three genes whose expression is induced by stress in Saccharomyces cerevisiae[J].Yeast.1999,15(10):879-892
    63.Gasch AP,Huang M,Metzner S,Botstein D,Elledge SJ,Brown PO.Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Meclp[J].Mol Biol Cell.2001,12(10):2987-3003
    64.Gasch AP,Spellman PT,Kao CM,Carmel-Harel O,Eisen MB,Storz G,Botstein D,Brown PO.Genomic expression programs in the response of yeast cells to environmental changes[J].Mol Biol Cell.2000,11(12):4241-4257
    65.Gomez MJ,Luyten K,Ramos J.The capacity to transport potassium influences sodium tolerance in Saccharomyces cerevisiae[J].FEMS Microbiol Lett.1996,15;135(2-3):157-160
    66.Gourlay CW,Du W,Ayscough KR.Apoptosis in yeast-mechanisms and benefits to a unicellular organism[J].Mol Microbiol.2006,62(6):1515-1521
    67.Grant CM,Perrone G,Dawes IW.Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae[J].Biochem Biophys Res Commun.1998,253(3):893-898
    68.Gustin M C,Albertyn J,Alexander M.and Davenport K.MAP kinase pathways in the yeast Saccharomyces cerevisiae[J].Microbiol Mol Biol Rev.1998,62:1264-1300
    69.Haro R,Garciadeblas B,Rodriguez-Navarro A.A novel P-type ATPase from yeast involved in sodium transport[J].FEBS Lett.1991,291(2):189-191
    70.Haro R,Banuelos MA,Quintero FJ,Rubio F,Rodriguez-Navarro A.Genetic basis of sodium exclusion and sodium tolerance in yeast.A model for plants[J].Physiol Plant.1993,89:868-874
    71.Haslbeck M,Braun N,Stromer T,Richter B,Model N,Weinkauf S,Buchner J.Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae[J].EMBO J.2004,23(3):638-649
    72.Hauptmann P,Riel C,Kunz-Schughart LA,Frohlich KU,Madeo F,Lehle L.Defects in N-glycosylation induce apoptosis in yeast[J].Mol Microbiol.2006,59(3):765-778
    73.Heinisch JJ,Lorberg A,Schmitz liP,Jacoby JJ.The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae[J].Mol Microbiol.1999,32(4):671-680
    74.Heitman J,Movva NR,Hall MN.Proline isomerases at the crossroads of protein folding,signal transduotiort,and immunosuppression[J].New Biol.1992,4(5):448-460
    75.Helliwell SB,Wagner P,Kunz J,Deuter-Reinhard M,Henriquez R,Hall MN.TOR1 and TOR2 are structrurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast[J].Mol Bid Cell.1994,5(1):105-118
    76.Hohmann,S.Shaping up:the response of yeast to osmoticstress.In:Yeast Stress Responses.1997,101-146.Springer,New York
    77.Hohmann S.Osmotic stress signaling and osmoadaptation in yeasts[j].Microbiol Mol Biol Rev.2002,66(2):300-372
    78.Holst B,Lunde C,Lages F,Oliveira R,Lucas C,Kielland-Brandt MC.GUP1 and its close homologue GUP2,encoding multimembrane-spanning proteins involved in active glycerol uptake in Saccharomyces cerevisiae[J].Mol Microbiol.2000,37(1):108-124.
    79.Horn PJ,Peterson CL.The bromodomain:a regulator of ATP-dependent chromatin remodeling?[J].Front Biosci.2001,6:D 1019-1023
    80.Huh GH,Damsz B,Matsumoto TK,Reddy MP,Rus AM,Ibeas JI,Narasimhan ML,Bressan RA,Hasegawa PM.Salt causes ion disequilibrium-induced programmed cell death in yeast and plants[J].Plant J.2002,29(5):649-659
    81.Huisinga K L,Pugh B F.A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae[J].Mol Cell.2004,13(4):573-585
    82.Imlay JA,Linn S.DNA damage and oxygen radical toxicity[J].Science.1988,240(4857):1302-1309
    83.Jambunathan N,Martinez AW,Robert EC,Agochukwu NB,Ibos ME,Dugas SL,Donze D.Multiple bromodomain genes are involved in restricting the spread of heterochromatic silencing at the Saccharomyces cerevisiae HMR-tRNA boundary[J].Genetics.2005,(3):913-922
    84.Jelinsky SA,Estep P,Church GM,Samson LD.Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells:Rpn4 links base excision repair with proteasomes[J].Mol Cell Biol.2000,20(21):8157-8167
    85.金庆国,唐桂娥.线粒体中活性氧的产生途径和测定方法[J].延边大学农报.2007,29(2):145-148
    86.Jones MH,Hamana N,Nezu J,Shimane M.A novel family of bromodomain genes[J].Genomics.2000,63(1):40-45
    87.Karlgren S,Filipsson C,Mullins JG,Bill RM,Tamas MJ,Hohmann S.Identification of residues controlling transport through the yeast aquaglyceroporin Fpsl using a genetic screen[J].Eur J Biochem.2004,271(4):771-779
    88.Kerr JF,Wyllie AH,Currie AR.Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics[J].Br J Cancer.1972,26(4):239-257
    89.Ko CH,Buckley AM,Gaber RF.TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae[J].Genetics.1990,125(2):305-312
    90.Ko CH,Gaber RF.TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae[J].Mol Cell Biol.1991,11(8):4266-4273
    91.Krantz M,Becit E,Hohmann S.Comparative genomics of the HOG-signalling system in fungi[J].Curr Genet.2006,49(3):137-151
    92.Krogan NJ,Keogh MC,Datta N,Sawa C,Ryan OW,Ding H,Haw RA,Pootoolal J,Tong A,Canadien V,Riehards DP,Wu X,Emili A,Hughes TR Buratowski S, Greenblatt JF.A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htzl[J].Mol Cell.2003,12(6):1565-1576
    93.Kunz J,Henriquez R,Schneider U,Deuter-Reinhard M,Movva NR,Hall MN.Target of rapamycin in yeast,TOR2,is an essential phosphatidylinositol kinase homolog required for G1 progression[J].Cell.1993,73(3):585-596
    94.Ladurner A G;Inouye C,Jain R,Tjian R.Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries[J].Mol Cell.2003,11(2):365-376
    95.Larsson K,Ansell R,Eriksson P and Adler L.A gene encoding glycerol 3-phosphate dehydrogenase(NAD.)complements an osmosensitive mutant of Saccharomyces cerevisiae.Mol Microbiol.1993,10:1101-1111
    96.Lee GJ,Roseman AM,Saibil HR,Vierling E.A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state[J].EMBO J.1997,16(3):659-671
    97.刘东亮 冉隆建.细胞凋亡检测进展[J].中国现代临床医学.2007,6(8):38-40
    98.Li W,Sun L,Liang Q,Wang J,Mo W,Zhou B.Yeast AMID homologue Ndi lp displays respiration-restricted apoptotic activity and is involved in chronological aging[J].Mol Biol Cell.2006,17(4):1802-1811
    99.Lutfiyya LL,Iyer VR,DeRisi J,DeVit MJ,Brown PO,Johnston M.Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae[J].Genetics.1998,150(4):1377-1391
    100.Luyten K,Albertyn J,SkibbeWF,Prior BA,Ramos J,Thevelein JM and Hohmann S.FPS1,a yeast member of the MIP family of channel proteins,is a facilitator for glycerol uptake and exit and is inactive under osmotic stress[J].EMBO J.1995,14:1360-1371
    101.Lygerou Z,Conesa C,Lesage P,Swanson RN,Ruet A,Carlson M,Sentenac A,Seraphin B.The yeast BDF1 gene encodes a transcription factor involved in the expression of a broad class of genes including snRNAs[J].Nucleic Acids Res.1994,22(24):5332-5340
    102.马超颖,戚薇,杜连祥.酿酒酵母氧化应激反应的研究进展.天津轻工业学院学报[J].2002,43(4):14-18
    103.Madeo F,Frohlich E,Frohlich,K.U.A yeast mutant showing,diagnostic markers of early and late apoptosis[J].J Cell Biol.1997,139(3):729-734
    104.Madeo F,Herker E,Maldener C,Wissing S,Lachelt S,Hedan M,Fehr M,Lauber K,Sigrist SJ,Wesselborg S,Frrhlich KU A caspase-related protease regulates apoptosis in yeast[J].Mol Cell.2002,9(4):911-917
    105.Madeo F,Herker E,Wissing S,Jungwirth H,Eisenberg T,Frohlich KU. Apoptosis in yeast[J].Curr Opin Microbiol.2004,7(6):655-660
    106.Maeda T,Wurgler-Murphy SM,Saito H.A two-component system that regulates an osmosensing MAP kinase cascade in yeast[J].Nature.1994,369(6477):242-245
    107.Manon S,Priault M,Camougrand N.Mitochondrial AAA-Type Protease Ymelp Is Involved in Bar Effects on Cytochrome c Oxidase[J].Biochem Biophys Res Commun.2001,289(5):1314-1319
    108.Marmorstein R,Berger SL.Structure and function of bromodomains in chromatin-regulating complexes[J].Gene,2001,272(1-2):1-9
    109.Marie C,Xiaoming Bao,Vincent Laize,Stefan Hohmann,Transposon mutagenesis reveals novel loci affecting tolerance to salt stress and growth at low temperature[J].Curr Genet,2001,40(1):27-39
    110.Martin DE,Hall MN.The expanding TOR signaling network[J].Curr Opin Cell Biol,2005,17(2):158-166
    111.Martin H,Castellanos MC,Cenarnor R,Sanchez M,Molina M,Nombela C.Molecular and functional characterization of a mutant allele of the mitogen-activated protein-kinase gene SLT2(MPK1)rescued from yeast autolytic mutants[J].Curr Genet.1996,29(6):516-522
    112.Martinez P,Persson BL.Identifieation,cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae[J].Mol Gen G-enet.1998,258(6):628-638
    113.Matangkasombut O,Buratowski S.Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation[J].Mol Cell.2003,11(2):353-363
    114.Matangkasombut O,Buratowski RM,Swilling NW,Buratowski S.Bromodomain factorl corresponds to a missing piece of yeast TFIID[J].Genes Dev.2000,14(8):951-962
    115.Matheos DP,Kingsbury TJ,Ahsan US,Cunningham KW.Tcnlp/Crzlp,a calcineurin-dependent transcription factor that differentially regulates gene expressi on in Saccharomyces cerevisiae[J].Genes Dev.1997,11(24):3445-3458
    116.Mendoza I,Rubio F,Rodriguez-Navarro A,Pardo JM.The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae[J].J Biol Chem.1994,269(12):8792-8796
    117.Meyrial V,Laize V,Gobin R,Ripoche P,Hohmann S,Tacnet F.Existence of a tightly regulated water channel in Saccharomyces cerevisiae[J].Eur J Biochem.2001,268(2):334-43
    118.Mulet JM,Leube MP,Kron SJ,Rios G,Fink GR,Serrano R.A novel mechanism of ion homeostasis and salt tolerance in yeast:the Hal4 and Hal5 protein kinases modulate the Trk1 -Trk2 potassium transporter[J].Mol Cell Biol.1999,19(5):3328-37
    119.Murguía JR,Bellés JM,Serrano R.A salt-sensitive 3'(2'),5'-bisphosphate nucleotidase involved in sulfate activation[J].Science.1995,267(5195):232-234
    120.Murguía JR,Bellés JM,Serrano R.The yeast HAL2 nucleotidase is an in vivo target of salt toxicity[J].J Biol Chem.1996,271(46):29029-29033
    121.Muthuvijayan V,Marten MR.In silico reconstruction of nutrient-sensing signal transduction pathways in Aspergillus nidulans[J].In Silico Biol.2004,4(4):605-631
    122.Nagy PD,Pogany J.Yeast as a model host to dissect functions of viral and host factors in tombusvirus replication.Virology.2006,344(1):211-220
    123.Naoi M,Maruyama W,Yi H,Akao Y,Yamaoka Y,Shamoto-Nagai M.Neuroprotection by propargylamines in Parkinson's disease:intracellular mechanism underlying the anti-apoptotic function and search for clinical markers[J].J Neural Transm Suppl.2007,(72):121-131
    124.Nass R and Rao R.Novel localization of a Na+/H+ exchanger in a late endosomal compartment of yeast.Implications for vacuole biogenesis[J].J Biol Chem.1998,273(33):21054-21060
    125.Nelson DE,Shen B,Bohnert H J.Salinity tolerance---mechanisms models and the metabolic engineering of complex traits[J].Genet Eng(NY).1997,20(1):153-176
    126.NelsonN,HarveyWR.Vacuolar and plasma membrane proton-adenosinetriphosphatases.Physiol Rev.1999,79(2):361-385
    127.Norbeck J,Blomberg A.Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 M NaCl.Evidence for osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway[J].J Biol Chem.1997,272(9):5544-5554
    128.Nwaka S,Kopp M,Holzer H.Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae[J].J Bid Chem.1995,270(17):10193-10198
    129.Oliveira R,Lucas C.Expression studies of GUP1 and GUP2,genes involved in glycerol active transport in Saccharomyces cerevisiae,using semi-quantitative RT-PCR[J].Curr Genet.2004,46(3):140-146
    130.O'Rourke SM,Herskowitz I.A Third Osmosensing Branch in Saccharomyces cerevisiae Requires the Msb2 Protein and Functions in Parallel with the Shol Branch[J].Mol Cell Biol.2002,22(13):4739-4749
    131.O'Rourke SM,Herskowitz I,O'Shea EK.Yeast go the whole HOG for the hyperosmotic response[J].Trends Genet.2002,18(8):405-412
    132.O'Rourke SM,Herskowitz I.Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis[J].Mol Biol Cell.2004,15(2):532-542
    133.Palmer CP, Zhou XL, Lin J, Loukin SH, Kung C, Saimi Y. A TRP homolog in Saccharomyces cerevisiae forms an Intracellular Ca(2+)-permeable channel in the yeast vacuolar membrane[J].Proc Natl Acad Sci U S A. 2001, 98(14):7801-7805
    134. Pamblanco M, Poveda A, Sendra R, Rodriguez-Navarro S, Perez-Ortin JE, Tordera V.Bromodomain factor 1 (Bdf1) protein interacts with histones[J].FEBS Lett. 2001, 496(1):31-35
    135.Panagopoulos I, Fioretos T, Isaksson M, Samuelsson U, Billstrom R, Strombeck B, Mitelman F, Johansson B.Fusion of the MORF and CBP genes in acute myeloid leukemia with the t(10;16)(q22;p13) [J]. Hum Mol Genet. 2001,10(4):395-404
    136.Pavlov EV, Priault M, Pietkiewicz D, Cheng EH, Antonsson B, Manon S, Korsmeyer SJ, Mannella CA, Kinnally KW. A novel ,high conductance channel of mitochondria linked to apoptosis in mammalian cells and bax expression in yeast[J]. J Cell Biol. 2001, 155(5):725-731
     137.Pereira MD, Eleutherio EC, Panek AD.Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae[J].BMC Microbiol. 2001; 1:11 -18
    138.Pir P, Ulgen KO, Hayes A, Ilsen Onsan Z, Kirdar B, Oliver SG Annotation of unknown yeast ORFs by correlation analysis of microarray data and extensive literature searches[J].Yeast. 2006,23(7):553-571
    139.Planta RJ, Brown AJ, Cadahia JL, Cerdan ME, de Jonge M, Gent ME, Hayes A, Kolen CP, Lombardia LJ, Sefton M, Oliver SG, Thevelein J, Tournu H, van Delft YJ, Verbart DJ, Winderickx J.Transcript analysis of 250 novel yeast genes from chromosome XIV[J]. Yeast. 1999,15(4):329-350
    140.Polesskaya A, Naguibneva I, Duquet A, Bengal E, Robin P, Harel-BellanA.Interaction between acetylated MyoD and the bromodomain of CBP and/or p300[J].Mol Cell Biol. 2001,21(16):5312-5320
    141.Polizotto RS, Cyert MS.Calcineurin-dependent nuclear import of the transcription factor Crz1p requires Nmd5p[J].J Cell Biol. 2001,154(5):951-960
    142.Posas F, Chambers JR, Heyman JA, Hoeffler JP, de Nadal E, Arino J.The transcriptional response of yeast to saline stress[J].J Biol Chem. 2000,275(23): 17249-17255
    143.Posas F, Saito H.Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK[J]. Science. 1997 , 276(5319): 1702-1705
    144.Posas F, Saito H. Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator[J]. EMBO J. 1998 ,17(5): 1385-1394
    
    145.Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF.Role of mitochondria in the pheromone-and amiodarone-induced programmed death of yeast[J].J Cell Biol.2005,168(2):257-269
    146.Praekelt UM,Meacock PA.HSP12,a new small heat shock gene of Saccharomyces cerevisiae:analysis of structure,regulation and function[J].Mol Gen Genet.1990,223(1):97-106
    147.Proft M,Pascual-Ahuir A,de Nadal E,et al.Regulation of the Skol transcriptional repressor by the Hog MAP kinase in response to osmotic stress[J].EMBO J.2001,20(5):1123-1133
    148.Proft M,Serrano R.Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae:bZIP protein Skolp confers HOG-dependent osmotic regulation[J].Mol Cell Biol.1999,19(1):537-546
    149.Raitt DC,Posas F,Saito H.Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Shol-dependent activation of the Hogl MAPK pathway[J].EMBO J.2000,19(17):4623-4631
    150.Ramirez J,Ramirez O,Saldana C,Coria R,Pena A.A Saccharomyces cerevisiae mutant lacking a K+/H+ exchanger[J].J Bacteriol.1998,180(22):5860-5865
    151.Ramos J,Haro R,Rodríguez-Navarro A.Regulation of potassium fluxes in Saccharomyces cerevisiae[J].Biochim Bi ophys Acta.1990,1029(2):211-217
    152.Rodríguez A,De La Cera T,Herrero P,Moreno F.The hexokinase 2 protein regulates the expression of the GLK1,HXK1 and HXK2 genes of Saccharomyces cerevisiae[j].Biochem J.2001,355(Pt 3):625-631
    153.Ren Q,Yang H,Rosinski M,Conrad MN,Dresser ME,Guacci V,Zhang Z.Mutation of the cohesin related gene PDS5 causes cell death with predominant apoptotic features in Saccharomyces cerevisiae during early meiosis[j].Mutat Res.2005,570(2):163-173
    154.Rep M,Krantz M,Thevelein JM,Hohmann S.The transcriptional response of Saccharomyces cerevisiae to osmotic shock.Hotlp and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes[J].J Biol Chem.2000,24;275(12):8290-8300
    155.Rep M,Reiser V,Cartner U,Thevelein JM,Hohmann S,Ammerer G,Ruis H.Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn 1 p and the novel nuclear factor Hotlp[j].Mol Cell Biol.1999,19(8):5474-5485
    156.Rusnak F,Mertz P Calcineurin;form and function[J].Physiol Rev.2000,80(4):1483-1521
    157.Saito H,Tatebayashi K.Regulation of the Osmoregulatory HOG MAPK Cascade in Yeast[J].J Biol Chem.2004,136(3):267-272
    158.Saldana C,Naranjo D,Coria R,Pena A,Vaca L.Splitting the two pore domains from TOK1 results in two cationic channels with novel functional properties[J].J Biol Chem.2002,277(7):4797-4805
    159.Sales K,Brandt W,Rumbak E,Lindsey G The LEA-like protein HSP 12 in Saccharomyces cerevisiae has a plasma membrane location and protects membranes against desiccation and ethanol-induced stress[J].Biochim Biophys Acta.2000,1463(2):267-278
    160.Sambrook J.,Fritsch E.F.and Maniatis T.Molecular cloning:a laboratory manual,2nd ed.1989,Cold Spring Harbor Laboratory,N.Y
    161.Sawa C,Nedea E,Krogan N,Wada T,Handa H,Greenblatt J,Buratowski S.Bromodomain factorl(Bdf1)is phosphorylated by protein kinase CK2[J].Mol Cell Biol.2004,24(11):4734-4742
    162.Serrano R.,Marquez J A and Rios G.Crucial factors in salt stress tolerance.In:Yeast Stress Responses,1997,147-170.Springer,New York
    163.Serrano R,Mulet J.M.,G Rios,J.A.Marquez,I.F.de Larrinoa,M.P.Leube,I.Mendizabal,A.Pascual-Ahuir,M.Proft,R.Ros and C.Montesinos.A glimpse of the mechanisms of ion homeostasis during salt stress[J].J Exp Bot.1999,50:1023-1036
    164.Serrano R,Rodriguez-Navarro A.Ion homeostasis during salt stress in plants[J].Curt Opin Cell Biol.2001,13(4):399-404
    165.Serrano R,Ruiz A,Bernal D,Chambers JR,Arino J.The transcriptional response to alkaline pH in Saccharomyces cerevisiae:evidence for calcium-mediated signalling[J].Mol Microbiol.2002,46(5):1319-1333
    166.沈金花.组蛋白密码与表观标志[J].国外医学分子生物学分册.2002,24(6):337-340
    167.Shiratori A,Shibata T,Arisawa M,Hanaoka F,Murakami Y,Eki T.Systematic identification,classification,and characterization of the open reading frames which encode novel helicase-related proteins in Saccharomyces cerevisiae by gene disruption and Northern analysis[J].Yeast.1999,15(3):219-253
    168.Shoemaker DD,Lashkari DA,Morris D,Mittmann M,Davis RW.Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy[J].Nat Genet.1996,14(4):450-456
    169.Sikorski RS,Hieter P.A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae[J].Genetics.1989,122(1):19-27
    170.Silva RD,Sotoca R,Johansson B,Ludovico P,Sansonetty F,Silva MT,Peinado JM,Ctne-Real M.Hyperosmotic stress induces metacaspase- and mitochondria -dependent apoptosis in Saccharomyces cerevisiae[J].Mol Microbiol.2005,58(3):824-834
    171.Simon E,Barcelo A,Arino J.Mutagenesis analysis of the yeast Nhal Na+/H+antiporter carboxy-terminal tail reveals residues required for function in cell cycle[J].FEBS Lett.2003,545(2-3):39-45
    172.Singer M A,Lindquist S.Thermotolerance in Saccharomyces cer-evisiae:the Yin and Yang of trehalose[J].Trends Biotechnol,1998,16(11):460-468
    173.Stuart GR,Santos JH,Strand MK,Van Houten B,Copeland WC.Mitochondrial and nuclear DNA defects in Saccharomyces cerevisiae with mutations in DNA polymerase gamma associated with progressive external ophthalmoplegia[J].Hum Mol Genet.2006,15(2):363-374
    174.Syntichaki P,Topalidou I,Thireos G.The Gcn5 bromodomain co-ordinates nucleosome remodeling[J].Nature,2000,404(6776):414-417
    175.Tamburini BA,Carson JJ,Linger JG,Tyler JK.Dominant mutants of the Saccharomyces cerevisiae ASF1 histone chaperone bypass the need for CAF-1 in transcriptional silencing by altering histone and Sir protein recruitment[J].Genetics.2006,173(2):599-610
    176.T ate JJ,Cooper TG.Stress-responsive Gln3 localization in Saccharomyces cerevisiae is separable from and can overwhelm nitrogen source regulation[J].J Biol Chem,2007,282(25):18467-18480
    177.Tenney K A,Glover C V.Transcriptional regulation of the S.cerevisiae ENA1gene by casein kinase Ⅱ[J].Mol Cell Biochem.1999,191(1-2):161-167
    178.Tissieres A,Mitchell HK,Tracy UM.Protein synthesis in salivary glands of Drosophila melanogaster:relation to chromosome puffs[J].J Mol Biol.1974 Apr 15;84(3):389-98
    179.Treger JM,McEntee K.Structure of the DNA damage-inducible gene DDR48 and evidence for its role in mutagenesis in Saccharomyces cerevisiae[J].Mol Cell Biol.1990,10(6):3174-3184
    180.Trott A,Shaner L,Morano KA.The molecular chaperone Ssel and the growth control protein kinase Sch9 collaborate to regulate protein kinase A activity in Saccharomyces cerevisiae[J].Genetics.2005,170(3):1009-1021
    181.Tseng RJ,Armstrong KR,Wang X,Chamberlin HM The bromodomain protein LEX-lacts with TAM-1 to modulate gene expression in C.elegans[J].Mol Genet Genomics.2007,278(5):507-518
    182.Ulrich G,Susanne H,Thomas F,et al.A new efficient gene disruption cassette for repeated use in budding yeast[J].Nucleic Acids Research,1996,24(13): 2519-2524
    183.Vambutas A,Ackerman SH,Tzagoloff A.Mitochondrial translational-initiation and elongation factors in Saccharomyces cerevisiae[J].Eur J Biochem.1991,201(3):643-652
    184.van Loon AP,Pesold-Hurt B,Schatz G.A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen[J].Proc Natl Acad Sci U S A.1986,83(11):3820-3824
    185.Wadskog I,Maldener C,Prokseh A,Madeo F,Adler L.Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress[J].Mol Biol Cell.2004,15(3):1436-1444
    186.王文亮.细胞凋亡研究进展[J].心脏杂志.2005,17(6):603-606
    187.Westerbeek-Marres CA,Moore MM,Autor AP.Regulation of manganese superoxide dismutase in Saccharomyces cerevisiae.The role of respiratory chain activity[J].Eur J Biochem.1988,174(4):611-620
    188.Westfall P J,Ballon D R,Thomer J.When the Stress of Your Environment Makes You Go HOG Wild[J].Science.2004,306(5701):1511-1512
    189.Wieland J,Nitsche AM,Strayle J,Steiner H,Rudolph HK.The PMR2 gene cluster encodes functionally distinct isoforms of a putative Na~+ pump in the yeast plasma membrane[J].EMBO J.1995,14(16):3870-3882
    190.Winston F,Allis C D.The bromodomain:a chromatin-targeting module[J]? Nat Street Biol.1999,6(7):601-614
    191.Wu J,Carmen AA,Kobayashi R,Suka N,Grunstein M.HDA2 and HDA3 are related proteins that interact with and are essential for the activity of the yeast historic deacetylase HDA1[J].Proc Natl Acad Sci U S A.2001a,98(8):4391-4396
    192.Wu J,Suka N,Carlson M,Grunstein M.TUP1 utilizes histone H3/H2B-specific HDA1 deacetylase to repress gene activity in yeast[J].Mol Cell b.2001,7(1):117-126
    193.Wright MB,Ramos J,Gomez MJ,Moulder K,Scherrer M,Munson G.Gaber RF.Potassium transport by amino acid permeases in Saccharomyces cerevisiae[J].J Biol Chem.1997,272(21):13647-13652
    194.Xiangyong Liu,Xiaohua Zhang,Chao Wang,Liangyu Liu,Ming Lei,Xiaoming Bao Genetic and comparative transcriptome analysis of bromodomain factor 1 in the salt stress response of Saccharomyces cerevisiae[J].Curr Microbiol,2007,54(4):325-330
    195.徐炳森,邵健忠.几种新型生物芯片的研究进展[J].生物化学与生物物理进展.2000,27(3):251-254
    196.Yale J,Bohnert HJ.Transcript expression in Saccharomyces cerevisiae at high salinity[J].J Biol Chem.2001,276(19):15996-16007
    197.杨蓉,谢文章,张亮,朱小山,王国青,董赫,李志明,陈恳,陈德朴,程京.生物芯片研究进展[J].生物工程进展,1999,19(4):33-38
    198.Yamaki M,Umehara T,Chimura T,Horikoshi M.Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF1/CIA1[J].Genes Cells.2001,6(12):1043-1054
    199.Yang H,Ren Q,Zhang Z.Chromosome or chromatin condensation leads to meiosis or apoptosis in stationary yeast(Saccharomyces cerevisiae)cells[J].FEMS Yeast Res.2006,6(8):1254-1263
    200.Yang X Y.Lysine acetylation and the bromodomain:a new partnership for signaling[J].Bioessays.2004,26(10):1076-1087
    201.Yoshimoto H,Saltsman K,Gasch AP,Li HX,Ogawa N,Botstein D,Brown PO,Cyert MS.Genome-wide analysis of gene expression regulated by the calcineurin/Crzlp signaling pathway in Saccharomyces cerevisiae[J].J Biol Chem.2002,277(34):31079-31088
    202.Zanton SJ,Pugh BF.Changes in genomewide occupancy of core transcriptional regulators during heat stress[J].Proc Natl Acad Sci USA.2004,101(48):16843-16848
    203.Zeng L,Zhou MM Bromodomain:an acetyl-lysine binding domain[J].FEBS Lett.2002,513(1):124-128
    204.张小华,刘向勇,于典科,鲍晓明.酿酒酵母促分裂原蛋白激酶Hoglp介导的渗透胁迫反应调控机制[J].中国生物化学与分子生物学报.2007,23(1):27-32
    205.张志斌 付晓光.药物诱导胰腺癌细胞凋亡研究进展[J].国外医学肿瘤学分册.2004,31(7):541-545
    206.赵云罡,徐建兴.线粒体,活性氧和细胞凋亡[J].生物化学与生物物理进展.2001,28(2):168-171
    207.钟文英,普雄明.热休克蛋白的分子生物学研究进展[J].医学综述.2005,11(2):148-150
    208.周璐,李越中,李健.酵母基因组学研究进展[J].生命科学.1999,11(2):87-91
    209.周洁.Bromodomain.国外医学·生理、病理科学与临床分册[J].2002,22(6):548-550
    210.Zimmer T,Ogura A,Takewaka T,Zimmer RM,Ohta A,Takagi M.Gene regulation in response to overexpression of cytochrome P450 and proliferation of the endoplasmic reticulum in Saccharomyces cerevisiae[J].Biosci Biotechnol Biochem.2000,64(9):1930-1936
    211.Zuzuarregui A,del Olmo M.Analyses of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection[J].Antonie Van Leeuwenhoek.2004,85(4):271-280
    1.Bianchi MM,Costanzo G,Chelstowska A,Grabowska D,Mazzoni C,Piccinni E,Cavalli A,Ciceroni F,Rytka J,Slonimski PP,Frontali L,Negri R(2004)The bromodomain-containing protein Bdflp acts as a phenotypic and transcriptional multicopy suppressor of YAF9 deletion in yeast.Mol Microbiol 53:953-968
    2.Bianchi MM,Ngo S,Vandenbol M,Sartori G,Morlupi A,Ricci C,Stefani S,Morlino GB,Hilger F,Carignani G,Slonimski PP,Frontali L(2001)Large-scale phenotypic analysis reveals identical contributions to cell functions of known and unknown yeast genes.Yeast 18:1397-1412
    3.Butcher RA,Schreiber SL(2003)A small molecule suppressor of FK506 that targets the mitochondria and modulates ionic balance in Saccharomyces cerevisiae.Chem Biol 10:521-531
    4.Caro LH,Tettelin H,Vossen JH,Ram AF,van den Ende H,Klis FM(1997)In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae.Yeast 13:1477-1489
    5.Gasch AP,Spellman PT,Kao CM,Carmel-Harel O,Eisen MB,Storz G,Botstein D,Brown PO(2000)Genomic expression programs in the response of yeast cells to environmental changes.Mol Biol Cell 11:4241-4257
    6.Causton HC,Ren B,Koh SS,Harbison CT,Kanin E,Jennings EG,Lee TI,True HL,Lander ES,Young RA(2001)Remodeling of yeast genome expression in response to environmental changes.Mol Biol Cell 12:323-337
    7.Chua P,Roeder GS(1995)Bdfl,a yeast chromosomal protein required for sporulation.Mol Cell Biol 15:3685-3696
    8.de Jesus Ferreira MC,Bao X,Laize V,Hohmann S(2001)Transposon mutagenesis reveals novel loci affecting tolerance to salt stress and growth at low temperature.Curr Genet 40:27-39
    9.Garcia-Rodrignez LJ,Valle R,Duran A,Roncero C(2005)Cell integrity signaling activation in response to hyperosmotic shock in yeast.FEBS Lett 579:6186-6190
    10.Gerik KJ,Donlin MJ,Soto CE,Banks AM,Banks IR,Maligie MA,Selitrennikoff CP,Lodge JK(2005)Cell wall integrity is dependent on the PKC1signal transduction pathway in Cryptococcus neoformans.Mol Microbiol 58:393-408
    11.Gietz RD,Schiestl RH,Willems AR,Woods RA(1995)Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure.Yeast 11:355-360
    12.Guo Y,Guo H,Zhang L,Xie H,Zhao X,Wang F,Li Z,Wang Y,Ma S,Tao J,Wang W,Zhou Y,Yang W,Cheng J(2005)Genomic analysis of anti-hepatitis B virus(HBV)activity by small interfering RNA and lamivudine in stable HBV-producing cells.J Virol 79:14392-14403
    13.Haro R,Garciadeblas B,Rodriguez-Navarro A(1991)A novel P-type ATPase from yeast involved in sodium transport.FEBS Lett 291:189-191
    14.Jung US,Levin DE(1999)Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway.Mol Microbiol 34:1049-1057
    15.Levin DE(2005)Cell wall integrity signaling in Saccharomyces cerevisiae.Microbiol Mol Biol Rev 69:262-291
    16.Marquez JA,R Serrano(1996)Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast.FEBS Lett 382:89-92
    17.Maruyama T,Farina A,Dey A,Cheong J,Bermudez VP,Tamura T,Sciortino S,Shuman J,Hurwitz J,Ozato K(2002)A Mammalian bromodomain protein,brd4,interacts with replication factor C and inhibits progression to S phase.Mol Cell Biol 22:6509-6520
    18.Matangkasombut O,Buratowski RM,Swilling NW,Buratowski S(2000)Bromodomain factor 1 corresponds to a missing piece of yeast TFIID.Genes Dev 14:951-962
    19.Nehlin JO,Carlberg,M,Ronne,H(1989)Yeast galactose permease is related to yeast and mammalian glucose transporters.Gene 85:313-319
    20.Posas F,Chambers JR,Heyman JA,Hoeffler JP,de Nadal E,Afino J(2000)The transcriptional response of yeast to saline stress.J Biol Chem 275:17249-17255
    21.Sawa C,Nedea E,Krogan N,Wada T,Handa H,Greenblatt J,Buratowski S(2004)Bromodomain factor 1(Bdf1)is phosphorylated by protein kinase CK2.Mol Cell Biol 24:4734-4742
    22.Wadskog I,Adler L(2003)Ion homeostasis in Saccharomyces cerevisiae under NaCl stress.In:S.Hohmann,P.Mager,(eds)Topics in current genetics:yeast stress responses,vol.1.Berlin,New York,Springer-Yerlag,pp 201-239
    23.Walfridsson M,Anderlund M,Bao X,Hahn-Hagerdal B(1997)Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effect on product formation during xylose utilisation.Appl Microbiol Biotechnol 48:218-224
    24.Yang XJ(2004)Lysine acetylation and the bromodomain:a new partnership for signaling.Bioessays 26:1076-1087
    25.Yang YH,Dudoit S,Luu P,Lin DM,Peng V,Ngai J,Speed TP(2002)Normalization for cDNA microarray data:a robust composite method addressing single and multiple slide systematic variation.Nucleic Acids Res 30:e15
    26.Yoshimoto H,Saltsman K,Gasch AP,Li HX,Ogawa N,Botstein D,Brown PO,Cyert MS(2002)Genome-wide analysis of gene expression regulated by the calcineurin/Crzlp signaling pathway in Saccharomyces cerevisiae.J Biol Chem 277 34:31079-31088
    
    27. Zeng L, Zhou MM (2002) Bromodomain: an acetyl-lysine binding domain. FEBS Lett 513:124-128
    
    28. Zhang L, Zhang Y, Zhou Y, An S, Zhou Y, Cheng, J (2002) Response of gene expression in Saccharomyces cerevisiae to amphotericin B and nystatin measured by microarrays. International Journal of Antimicrobial Chemotherapy 20:444-450
    Butcher RA, Schreiber SL. A small molecule suppressor of FK506 that targets the mitochondria and modulates ionic balance in Saccharomyces cerevisiae. Chem Biol 2003,10:521-531
    de Nadal E, Alepuz PM, Posas F. Dealing with osmostress through MAP kinase activation. EMBO Rep. 2002, 3:735-740
    Eisenberg T, Buttner S, Kroemer G, Madeo F. The mitochondrial pathway in yeast apoptosis[J]. Apoptosis. 2007,12(5):1011-1023
    Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med.1991,11(1):81-128
    Frohlich KU, Fussi H, Ruckenstuhl C.Yeast apoptosis--from genes to pathways.Semin Cancer Biol. 2007, 17(2):112-121
    Garciadeblas B, Rubio F, Quintero FJ, Banuelos MA, Haro R & Rodriguez-Navarro A Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol Gen Genet. 1993,236:363-368
    Gomez MJ, Luyten K, Ramos J. The capacity to transport potassium influences sodium tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett. 1996, 15;135(2-3):157-160
    
    Haro R, Garciadeblas B & Rodriguez-Navarro A.A novel P-type ATPase from yeast involved in sodium transport. FEBS Lett. 1991,291:189-191
    Huh GH, Damsz B, Matsumoto TK, Reddy MP, Rus AM, Ibeas JL, Narasimhan ML, Bressan RA, Hasegawa PM. Salt causes ion disequilibrium-induced programmed cell death in yeast and plants. Plant J. 2002 Mar;29(5):649-59
    Imlay JA, Linn S. DNA damage and oxygen radical toxicity. Science. 1988, 240(4857): 1302-1309
    Jones MH, Hamana N, Nezu J, Shimane M. A novel family of bromodomain genes [J]. Genomics. 2000, 63(1): 40-45
    
    Ko CH, Gaber RF.TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae.Mol Cell Biol. 1991, 11(8):4266-4273
    Ligr,M.,Madeo,F.,Frohlich,E.,Hilt,W.,Frohlich,K.U.,and Wolf,D.H.(1998)Mammalian Bax triggers apoptotic changes in yeast.FEBS Lett 438:61-65
    Liu X,Zhang X,Wang C,Liu L,Lei M,Bao X.Genetic and comparative transcriptome analysis of bromodomain factor 1 in the salt stress response of Saccharomyces cerevisiae.Curr Microbiol.2007,54(4):325-330
    Li W,Sun L,Liang Q,Wang J,Mo W,Zhou B Yeast AMID homologue Ndilp displays respiration-restricted apoptotic activity and is involved in chronological aging.Mol Biol Cell.2006,17(4):1802-1811
    Madeo F,Frohlich E,Ligr M,Grey M,Sigrist SJ,Wolf DH,Frohlich KU.Oxygen stress:a regulator of apoptosis in yeast.J Cell Biol.1999 May 17;145(4):757-67
    Marquez JA,R Serrano.Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast.FEBS Lett.1996,382:89-92
    Nakamura T,Liu Y,Hirata D,Namba H,Harada S,Hirokawa T,Miyakawa T.Protein phosphatase type 2B(calcineurin)-mediated,FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions.EMBO J.2003,12:4063-4071
    Posas F,Wurgler-Murphy SM,Maeda T,Witten EA,Thai TC,Saito H.Yeast HOG1MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1 -YPD1-SSK1 "two-component" osmosensor.Cell.1996,86:865-875
    Pozniakovsky AI,Knorre DA,Markova OV,Hyman AA,Skulachev VP,Severin FF.Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast.J Cell Biol.2005,168(2):257-269
    Rarnos J,Haro R,Rodriguez-Navarro A.Regulation of potassium fluxes in Saccharomyces cerevisiae.Biochim Biophys Acta.1990,1029(2):211-217
    Ren Q,Yang H,Rosinski M,Conrad MN,Dresser ME,Guacci V,Zhang Z.Mutation of the cohesin related gene PDS5 causes cell death with predominant apoptotic features in Saccharomyces cerevisiae during early meiosis[J].Mutat Res.2005,570(2):163-173
    Rep M,Krantz M,Thevelein JM,Hohmann S.The transcriptional response of Saccharomyces cerevisiae to osmotic shock.Hotlp and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem. 2000, 275:8290-8300
    Silva RD, Sotoca R, Johansson B, Ludovico P, Sansonetty F, Silva MT, Peinado JM, Corte-Real M. Hyperosmotic stress induces metacaspase- and mitochondria-dependent apoptosis in Saccharomyces cerevisiae. Mol Microbiol. 2005,58(3):824-834
    Wach A (1996) PCR-synthesis of marker cassettes with long flanking homology regions for gene disruption in S.cerevisiae. Yeast 12: 259-265
    Wadskog I, Maldener C, Proksch A, Madeo F, Adler L. Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibilityto apoptosis-like cell death on exposure to NaCl stress. Mol Biol Cell. 2004 Mar; 15(3): 1436-44.
    Yamaki M, Umehara T, Chimura T, Horikoshi M.Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF1/CIA1. Genes Cells. 2001, 6(12): 1043-1054
    Yang H, Ren Q, Zhang Z. Chromosome or chromatin condensation leads to meiosis or apoptosis in stationary yeast (Saccharomyces cerevisiae) cells. FEMS Yeast Res. 2006, 6(8): 1254-1263
    Yang XJ (2004) Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 26:1076-1087
    Yoshimoto H, Saltsman K, Gasch AP, Li HX, Ogawa N, Botstein D, Brown PO, Cyert MS.Genome-wide analysis of gene expression regulated by the calcineurin/Crz1psignaling pathway in Saccharomyces cerevisiae. J Biol Chem.2002, 277 34: 31079-31088
    Zeng L, Zhou MM (2002) Bromodomain: an acetyl-lysine binding domain. FEBS Lett 513:124-128
    Zhang K, Zhao J, Yang Y, Hu Z.Cardioprotective effects of diazoxide on myocardial ischemia/reperfusion injury in rats.J Huazhong Univ Sci Technolog Med Sci. 2006,26(6):690-692

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700