用户名: 密码: 验证码:
番茄挥发性物质在不同发育时期的变化及其对寡糖诱导子响应的差异
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物合成并释放一定量的挥发性物质(Volatile organic compound,VOCs),这些挥发性物质包括烷烃、烯烃、醇、醛、醚、酯和羧酸,是植物次生代谢产物中的一个重要类群。挥发性物质的大部分组分具有抑菌活性,是植物抗性的物质基础和抵御病原侵染的化学防御因素;其中一些组分是防御基因表达的调节因子,是病原侵染过程中植株组织间或相邻植株间传递信息的信号分子。因此,挥发性物质在植物防御、通讯和/或抵制极端环境中发挥着重要的作用。发育进程、诱导子、环境因素及各种胁迫均影响植物挥发性物质的释放。不同病害侵染不同发育时期的植物,植物在不同发育期对同一病害的敏感性不同,这种差异和植物挥发性物质之间的关系是本文研究的主要内容。
     本文用C-C/MS法测定了番茄叶片在不同发育时期(发育阶段与叶龄)挥发性物质释放变化特性,探讨了其抑菌活性和植物系统抗性的关系;研究了壳寡糖对不同发育时期番茄叶片挥发性物质释放的影响特性;进一步全面的确定了牛蒡低聚果糖对植物系统抗性中重要事件的效应,证实该低聚果糖为高效的系统抗性调节子;本文还研究了稀土元素钕和镧提高植物抗病性的机理。主要结果如下:
     1.以不同发育阶段植株上部相同叶龄番茄叶片为材料,动态顶空吸附法收集叶片释放的VOCs,GC/MS法对其进行定性和定量分析;SQ-PCR法研究VOCs合成途径中关键酶脂氧合酶、苯丙氨酸转氨酶和4-香豆酸CoA连接酶基因的表达;测定了番茄叶片脂氧合酶和苯丙氨酸转氨酶活性;悬滴法检测了番茄叶片释放的VOCs的抑菌活性;离体挑战接种法调查了番茄叶片对灰葡萄孢的敏感性。结果发现:随着植株的生长,同叶龄番茄叶片释放的VOCs质和量均显著增加;二叶期、十叶期和开花期植株释放的VOCs中分别鉴定出13、19和29种组分;开花期和十叶期植株VOCs总量分别是二叶期植株释放量的5.36和11.3倍。合成酶基因在不同发育阶段中的表达量与VOCs的释放具有一定的正相关性。脂氧合酶和苯丙氨酸转氨酶活性随着植株的生长而逐渐增加,分别于十叶期和开花期达到最高。VOCs的抑菌能力,随着植株生长而逐渐增强;不同发育时期番茄叶片对灰葡萄孢的敏感性随着植株的生长而显著降低,开花期植株比二叶期植株对灰葡萄的抗性高66.7%。该研究表明,同叶龄番茄叶片VOCs的释放量及其抑菌活性和叶片对病原真菌抗性随着植株生长显著增加;番茄叶片VOCs合成途径中关键酶基因表达量及酶活性与VOCs的释放呈一定的正相关。
     2.以开花期番茄为材料,研究了不同叶龄(按叶位划分)番茄叶片VOCs释放及其抑菌活性,和叶片对灰葡萄孢敏感性的差异。结果发现:番茄叶片释放VOCs的种类和量随着叶龄的增加而减少,幼叶、成熟叶和衰老叶释放的VOCs中分别鉴定出20、18和11种组分,幼叶VOCs的释放量分别是成熟叶和衰老叶释放量的1.42和3.09倍。番茄叶片VOCs的抑菌活性及叶片对灰葡萄孢敏感性随着叶龄的增加而降低,与VOCs的质和量成正相关。该研究表明,随着叶龄的增加,番茄叶片VOCs的释放量及其抑菌活性和叶片对病原真菌的抗性显著降低。
     3.以不同发育阶段及开花期番茄植株为材料,研究了不同发育时期番茄防御酶同工酶酶谱及防御酶活性的差异。结果发现,同叶龄番茄叶片过氧化物酶、过氧化物歧化酶和酯酶同工酶随植株生长均显著增加;叶龄对三种同工酶的影响显著低于植株发育阶段对这三种酶的影响。同叶龄番茄叶片的β-1,3-葡聚糖酶和几丁质酶在不同发育阶段有显著差异,β-1,3-葡聚糖酶和几丁质酶活性分别在开花初期和六叶期植株中活性最高;β-1,3-葡聚糖酶活性随着叶龄的增加而升高,几丁质酶活性变化不大。该研究表明,植物的一些抗病防御相关因子与植物发育时期密切相关,植株发育阶段对叶片防御相关因子的影响显著高于叶龄对它的影响。
     4.以5.0 mg/ml壳寡糖(CO)处理不同发育阶段番茄植株,研究了不同发育阶段植株番茄叶片VOCs的释放及防御酶对CO的响应。结果发现:同叶龄番茄叶片VOCs的释放对CO的响应依赖于植株的发育阶段;CO处理后,二叶期植株的响应最强,VOCs的总量及主要组分在48 h内有所下降,随后显著升高;其次为六叶期植株,VOCs释放量降低,但组分种类显著增加;开花期植株VOCs的释放量显著降低,组分变化不大。CO诱导后,二叶期植株番茄叶片内脂氧合酶和β-1,3-葡聚糖酶活性的增加幅度最大,其次为六叶期,开花期植株这两种酶活性也显著增加,但增加幅度较平缓;六叶期和开花期植株番茄叶片内几丁质酶活性显著增加,二叶期植株中该酶活性没有显著变化。该研究表明,同叶龄番茄叶片VOCs的释放及防御相关酶对CO诱导的响应与植物的发育阶段密切相关。
     5.以壳寡糖处理开花期植株,研究了不同叶龄番茄叶片VOCs释放及病原真菌敏感性对CO的响应。结果发现:不同叶龄番茄叶片VOCs释放对CO的响应有显著差异;经CO诱导后,VOCs总量及四类化合物总量的变化相似,幼叶VOCs的释放量在96 h前显著下降,随后有所回升;成熟叶和衰老叶VOCs的释放量显著升高,成熟叶的响应显著高于衰老叶。CO诱导后,幼叶、成熟叶和衰老叶对灰葡萄孢的抗性分别提高了33.1%、39.4%和34.2%。该研究表明,植物叶片VOCs的释放对CO的响应依赖于叶龄;CO诱导后不同叶龄番茄叶片VOCs释放量与叶片对病原真菌抗性的提高呈一定相关性。
     6.以5.0 mg/ml牛蒡低聚果糖(BFO)处理二叶期、六叶期和开花期植株,研究BFO对不同发育阶段植株番茄VOCs释放及防御酶活性的影响。结果发现:同叶龄番茄叶片VOCs的释放对BFO的响应依赖于植株的发育阶段;BFO诱导后,六叶期植株的响应最强,新检出15种组分,VOCs总量、芳香族、单萜类和倍半萜类化合物量均显著增加;其次为二叶期植株,120 h时总量增加为对照组的238.8%,增加了5种组分;开花期植株VOCs的变化主要在量上,其总量、脂肪酸衍生物和倍半萜类组分的释放量显著降低,芳香族和单萜类组分含量均显著增加。BFO处理后,β-1,3-葡聚糖酶的活性在二叶期植株中响应最强,其次为六叶期;同叶龄番茄叶片几丁质酶对BFO的响应随着植株的生长而增强。该研究表明,番茄叶片对BFO的响应与植物发育阶段有关,开花前植株番茄VOCs的释放对该果糖响应较强,不同发育阶段防御酶对该果糖的响应有差异。
     7.以牛蒡低聚果糖处理开花期植株,研究不同叶龄番茄叶片VOCs的释放及其抑菌活性、防御相关因子及叶片的病原敏感性对BFO的响应。结果发现:BFO诱导后,幼叶VOCs的释放量显著降低,脂肪酸衍生物在24 h内显著增加,芳香族化合物先略有下降后显著增加,萜类化合物显著下降;成熟叶VOCs总量、脂肪酸衍生物和芳香族化合物释放量都显著增加,单萜类化合物变化不明显,倍半萜类化合物略有增加;衰老叶四类挥发性化合物含量均显著增加,其中单萜类组分增加最为显著。BFO处理后,成熟叶和衰老叶VOCs的抑菌活性显著增加,幼叶VOCs的抑菌活性基本没有变化。BFO处理后,不同叶龄番茄叶片内源自由基产生速率随着叶龄增加而增加;β-1,3-葡聚糖酶在不同叶龄番茄叶片中的变化趋势相似,其中幼叶响应较强;几丁质酶活性在成熟叶中响应最高,其次为幼叶;BFO处理后,幼叶防御酶同工酶的响应最高,其次为成熟叶。BFO处理后,三个叶龄番茄叶片对灰葡萄孢的抗性均显著增强;其中衰老叶的增加幅度最大,其次为成熟叶,幼叶略低。该研究表明,BFO处理显著提高不同叶龄番茄叶片对病原真菌的抗性,这种抗性的提高除与VOCs的释放有关外,也与氧爆发和防御酶活性密切相关。
     8.以八叶期番茄为材料,研究牛蒡低聚果糖对植物水杨酸及水杨酸信号转导途径相关因子的影响。结果发现:BFO诱导后,局部叶和系统叶中的SA和SAG水平显著升高,系统叶的增加幅度低于局部叶。BFO处理后,局部叶内PR2和Chit、LoxD和Pall基因表达量显著增加;系统叶内PR2、Chit和Pall的表达量也显著升高,LoxD表达量有所下降。BFO处理后,局部叶和系统叶自由基产生速率、β-1,3-葡聚糖酶和几丁质酶活性显著增加,系统叶较局部叶迟缓。该研究表明,BFO能够通过依赖于水杨酸的信号转导途径诱导植物系统抗性。
     9.以黄瓜子叶为材料,研究稀土元素钕对氧胁迫下的植物保护作用,及钕和镧对黄瓜子叶抗性相关生理指标的影响。结果发现:Nd~(3+)预处理及Nd~(3+)与H_2O_2同时处理都能显著降低H_2O_2对植物造成的伤害,缓解氧胁迫引起的细胞膜相对透性增加、自由基产生速率和MDA含量升高,光化学效率降低。Nd~(3+)和La~(3+)处理后,黄瓜子叶内源SA及SAG的含量迅速升高;内源O_2~-·产生速率在12 h内逐渐升高,随后降低;β-1,3-葡聚糖酶和几丁质酶活性显著增加。该研究表明,稀土元素钕可以通过直接降低自由基的水平而保护细胞膜,减轻植物所受伤害;稀土元素钕和镧通过植物水杨酸信号转导途径提高植物抗性。
     综上所述,番茄叶片挥发性物质的释放随着发育时期的变化有显著不同,与植物对病原真菌敏感性的差异相一致,挥发性物质中的大部分组分具有抑菌活性,是植物抵御病原侵染的化学防御因素。因此,在植物与病原微生物相互作用中,挥发性物质的释放与植物在不同发育阶段的抗性差异有关(植物阶段性抗性)。不同发育时期番茄叶片挥发性物质的释放对寡糖诱导子的响应有较大差异。植物中天然存在的储存型糖——牛蒡低聚果糖促进了植物系统抗性中的主要事件,其作用与壳寡糖相似,可能是一种新型诱导子,在开发无公害植物病害防治剂具有重要应用前景。本文还发现可以提高植物抗病性的稀土元素可能是通过水杨酸信号转导途径发挥作用的。
A large variety of volatile organic compounds(VOCs)are synthesized by a range of physiological processes in many different plant tissues and themselves also extremely diverse(30 000 compounds),and include alkanes,alkenes,alcohols, aldehydes,ethers,esters and carboxylic acids.Most of them can be assigned to the following classes(in order of decreasing size):terpenoids,fatty acid derivatives including lipoxygenase pathway products,benzenoids and phenylpropanoids,and various nitrogen and sulfur containing compounds.Those low-molecular-weight volatiles that have different functional groups play a vital role in the plant life cycle by providing a way for plants to interact with the surrounding environment.Many factors could effects the quantity and quality of VOCs emitted from plants,including developmental stage,growth condition,and all sorts of stresses.Most of VOCs have the inhibited activity on microbe growth and are a part of plant chemical defense. Some of VOCs have the activity to enhance defense genes expression,and are an intercommunion signal molecular between plants themself or neighbor.In plant-microbe interaction,when older leaves/plants display increased resistance or reduced susceptibility to pathogens,this form of resistance often is referred to as age-related resistance(ARR).The onset of some ARR forms correlates with flowering,while others correlate with plant age,leaf size,or the synthesis of secondary metabolites or defense proteins.
     In this paper,we studied developmental-dependent variations of VOCs emission and their inhibitory activity to Botrytis cinerea and Fusarium oxysporum,and systemic acquire resistance(SAR)in tomato leaves in order to investigate the role of VOCs in plant ARR.The effects of crop development on the emission of volatile in tomato leaves and their antifungal activity towards chitosan oligosaccharide(CO)and Burdock fructooligosaccharide(BFO)were investigated.The ability of BFO to induce systemic acquire resistance(SAR)in tomato was studied.The cotyledons of cucumber were used to investigate the protection of Nd~(3+)on plant against the oxidative stress,and the effects of Nd~(3+)and La~(3+)on physiological characters in respect of plant resistance.The mainly results are as followed:
     1.VOCs emitted from the leaves of tomato at different developmental stages(the two-,ten-leaf and anthesis periods)were collected by gas absorbing method and analyzed by GC/MS.The expressions of several key genes of the VOCs synthesis ways including lipoxygenase D(Lox D),phenylalanine transaminase 1(Pall)and 4-coumarate CoA ligase(4-CL)were investigated by SQ-PCR.The effects of VOCs emitted from tomato on B.cinerea and F.oxysporum were examined by a modified hanging drop methods.The resistances of tomato leaves at three developmental stages to B.cinerea in vitro were also studied.The results demonstrated that plant developmental stage variations in the levels and composition of VOCs emitted from leaves were notably.With plant developing,VOCs emitted from the leaves of tomato were significantly increased.In total 13,19,and 33 constituents were identified in VOCs emitted from leaves of tomatoes at two-,ten-leaf and anthesis periods, respectively.The amounts of VOCs emitted from ten-leaf and anthesis plants were 5.36 and 11.3 folds of those emitted from two-leaf plant,respectively.The expressions of LoxD,Pal1 and 4-CL,and the activities of LOX and PAL have a positive correlation with VOCs emitted from leaves of tomato at different developmental stages.The antifungal activities of VOCs emitted from leaves and the resistances of leaves to B.cinerea were enhanced with plant growth.
     2.Age-dependent variations of VOCs emission,its inhibitory activity,and resistance to B.cinerea in tomato leaves were investigated.The results demonstrated that volatile emitted from tomato decreased with leaf age(based on the leaf positions on the plant).Contents of VOCs decreased steadily with leaf age,from 452.4μg/g·Fw in young leaf to 146.6μg/g·Fw in old leaf.VOCs emitted from young leaf demonstrated the best antifungal activity on spores germination and hyphal growth against B.cinerea and F.oxysporum.The leaves of tomato become more susceptible to B.cinerea with age increasing.
     3.Several resistance related factors including isozyme,β-1,3-glucanase and chitinase activities in leaf of tomatoes at different development stages were analyzed. The results demonstrated that the isozymes of POD,SOD and EST in the same age leaves were enhanced with plant growth.Effects of leaf age on these isozymes were much lower than plant developmental stage.The activities ofβ-1,3-glucanase were enhanced significantly in anthesis plant,while chitinase were the highest of all in six-leaf plant.β-1,3-glucanase activities were enhaced with leaf age increasing,while chitinase activities were not significantly different in three age leaf.
     4.Developmental change in leaf volatile emission and several resistance factors in response to CO were studied.The results demonstrated that the leaves of tomato become less susceptible to oligosaccharide inducement with plant growth.The amount of VOCs and several mainly compounds emitted from leaves of two-leaf tomato decreased a little in 48 h,and then significantly increased after CO treatment. Although the total amount of VOCs emitted from the leaf of six-leaf tomato decreased a little,the kinds of VOCs were markedly increased by CO elicited.The amount of VOCs emitted from anthesis plant decreased significantly.After CO treatment.LOX andβ-1,3-glucanase activities in two-leaf plant were significantly enhanced,and become more susceptible than six-leaf and anthesis plants.Chitinase activities were markedly increased in leaves of six-leaf and anthesis plants at 72 h after CO treatment. There were no significantly changes in leaf of two-leaf plant after CO treatment.
     5.To investigate the influence of leaf age(based on the leaf positions on the plant) on volatile emissions and leaf resistance response to elicitation,the anthesis tomatoes were treated with CO.The results demonstrated that the leaves of tomato become more susceptible to CO with age increasing.The responses of young leaf to CO treatment that were attenuated or delayed included the quantity and quality of VOCs. VOCs released from old and adult leaves were dramatically increased after treatment with CO.In contrast,VOCs emitted from young leaf was decreased to 88.4%of the control at 72 h after CO treated.Resistances of leaves at three ages to B.cinerea were all enhanced by CO treated.There were an increase of 33.1%,39.4%and 34.2%in the resistance of young,adult and old leaf compared to the control group.
     6.The effects of plant development on the VOCs emission and defense-related enzymes response to BFO were studied.The results demonstrated that the response of tomato leaf to BFO depended on the plant developmental stages.VOCs emitted from six-leaf plant response to BFO were increased,and detected fifteen new compounds. The amounts of VOCs,aromatic compounds,monoterpene and sesquiterpenoids emitted from leaf of six-leaf plant were enhanced markedly after BFO elicited.For BFO treatment,VOCs emitted from leaf of two-leaf plant were significantly enhanced and 138.8%higher than the control.After BFO treatment,VOCs emitted from anthesis plant changes greatly in quantity and total amount of VOCs decreased sharply.The amount of oxygenated aliphatic compounds and sesquiterpenoids emitted from anthesis plant were significantly decreased,but the amounts of aromatic compounds and monoterpene were markedly enhanced after BFO treated.β-1,3-glucanase activity in two-leaf plant was notbly enhanced by BFO treatment. Chitinase activity response to BFO was enhanced with plant growth.
     7.To investigate the influence of leaf age on volatile emissions and their antifungal activity of VOCs,defense-related factors and leaf eliciting resistance,the anthesis plant leaf were treated with Burdock fructooligosaccharide.The results demonstrated that the leaf of tomato become more susceptible to BFO with leaf age increasing.After BFO treatment,the synthesis and release were attenuated or delayed in young leaf in terms of the quality and quantity of VOCs.VOCs emitted from young leaf were significantly reduced after BFO treated.After BFO treatment,the amount of oxygenated aliphatic compounds and aromatic compounds were significantly enhanced,but there were no significantly different in the amount of monoterpene and sesquiterpenoids different in adult leaf.VOCs emitted from old leaf were markedly enhanced after BFO elicited,especially in the content of monoterpene.The inhibitory activity of volatile emitted from adult and old leaves increased significantly against two fungi after BFO,while VOCs emitted from young leaf were not changes.After BFO treatment the generation rate of O_2~-·become more susceptible in tomato leaf with leaf age increasing.The changes ofβ-1,3-glucanase activity were similar in three leaf age,while the increase in young leaf were the most in three leaf ages after BFO treatment.For BFO treatment,chitinase activity was enhanced significantly in adult leaf,and a little in old leaf.The isozymes of POD and SOD were markedly enhanced by BFO eliciting in young leaf,and were increased in adult leaf after BFO treated.For BFO elicited,resistances of leaves at three ages to B.cinerea were all enhanced.An increase of resistance in old leaf was higher to BFO than adult and young leaves.
     8.We studied the ability of BFO to induce SAR in tomato.It is revealed that after BFO eliciting,level of SA and SAG in the first leaf sprayed with BFO and the untreated leaf of the same seedling increased sharply.The changes of SA and SAG in untreated leaf were lower than this change in local leaf after BFO treatment.BFO treatment enhanced markedly the expressions of PR2,Chit,LoxD,and Pal1 in local leaf,and PR2,Chit,and in systemic leaf Pal1 expression also increased significantly. In addition,the generation rate of O_2~-·reached the highest at 3h in local leaf and 12h in systemic leaf,and the extent of oxygen burst in systemic leaf was much lower than this in local leaf.β-1,3-glucanase and chitinase activities significantly increased both in the first leaf treated with BFO and in systemic leaf.
     9.The protection of Nd~(3+)on the cotyledons of cucumber against the oxidative stress by H_2O_2 was studied.The result revealed that both Nd~(3+)pretreatments and Nd~(3+)treated with H_2O_2 synchronous decreased the injury of H_2O_2 effectively.The permeability of cell membrane,the generation rate of O_2~-·and the content of MDA were obviously lower than that of H_2O_2 treatment.The cucumber cotyledons were sprayed with Nd~(3+) and La~(3+),and the changes on SA and SAG contents,the generation rate of O_2~-·,and the activities ofβ-1,3-glucanase and chitinase were measured.The results demonstrated that the yields of endogenous SA and SAG in cucumber cotyledons were enhanced significantly in a short time in response to Nd~(3+)and La~(3+)treatments. The generation rate of O_2~-·increased gradually after Nd~(3+)or La~(3+)treatments,and then decreased in cucumber at 12 h.β-1,3-glucanase and chitinase activities were significantly enhaced by Nd~(3+)and La~(3+)treatments.
     In summary,the emission of VOCs,some defense related factors,and the resistance to pathogen of tomato leaf were affected by plant developmental stage and leaf age. Most compounds of VOCs have the inhibitory microbe growth activity and play a key role in plant chemical defense.Thus,VOCs emitted from tomato leaf play a role in plant age-related resistance.VOCs emission,several PR genes expression and PR activities of tomato leaf in response to oligosaccharide elicit varied with plant developmental stage and leaf age.Studies of these forms of resistance may help us to evaluate more exhaustively the plethora of levels of regulation during development, the variability of the defense potential of developing hosts and may have practical application,making it possible to reduce pesticide applications.Furthmore,we also confirmed that BFO may induce the SAR response through an SA dependent signal pathway to enhance defense related genes expression and improve PR enzymes activities.Due to the low cost and abundant supply of substandard Arctium lappa roots,we believed that the activation of plant defenses using the BFO elicitor could be a valuable tool that would contribute to a new alternative strategy for developing plant protection.Rare earth(RE),a kind of natural mineral,has been used as the beneficial elements to enhance crops resistance to abiotic and biotic stress for quite a long time. The mechanism about RE biological activities is not clear yet.In this paper,these results suggest that RE can enhance the resistance of plant to stress factors and diseases due to directly decrease the injury of free radical to plant and through the signal pathway of salicylic acid.
引文
安建平,陈靠山.氯化钕对渗透胁迫引起的膜损伤和ABA含量的影响.中国稀土学报,1994,4(12):348-351.
    安黎哲,王勋陵.臭氧对春小麦生长的影响及稀土的防护效应.生态学报,1994,14(3):95-98.
    白松,邓先明.稀土对植物抗病增产作用的研究动态.国外农学-植物保护,1994,7(1):4.
    白松,邓先明,谭万忠,刘万珍.稀土对棉花枯萎病的诱抗增产作用研究.西南农业大学学报,1995,17(1):28-31.
    蔡志全,秦秀英.植物释放挥发性有机物(VOCs)的研究进展.生态科学,2002,21(1):86-90.
    程东升,潘学仁.食用菌过氧化物酶同工酶不同的染色法效果比较.中国食用菌,1994,13(3):15-18.
    杜昱光,白雪芳,虞星炬,韩秀文.寡聚糖类物质生理活性的研究.中国生化药物杂志,1997,18(5):268-270.
    郜红建,常江,张自立,丁士明,魏俊岭.稀土在植物抗逆中的生理作用.中国稀土学报,2003,21(5):487-490.
    龚培灶.水杨酸信号分子在植物抗病反应中的作用.三明高等专科学校学报,2001,18(3):44-46.
    郝林华,陈靠山,李光友.牛蒡寡糖对黄瓜幼苗诱导抗病性的研究.高技术通讯,2004a,14(9):43-48.
    郝林华,陈靠山,王能飞,李光友.钕诱导黄瓜植株小分子抗菌物质的研究.中国稀土学报.2005a,23:111-115.
    郝林华,陈磊,仲娜,陈靠山,李光友.牛蒡寡糖的分离纯化及结构研究.高等学校化学学报,2005b,26(7):1242-1247.
    郝林华,田黎,陈靠山,李光友.牛蒡寡糖及其协同钕诱导黄瓜幼苗白粉病抗性的研究.中国稀土学报,2004b,22:140-143.
    郝林华,孙丕喜,石红旗,陈靠山,李光友.牛蒡寡糖诱导黄瓜对白粉病的抗性.上海交通大学学报,2006,24:441-447.
    郝林华.牛蒡寡糖的制备与结构分析及其对植物生长和抗病性的研究(博士毕业论文).青岛:中国海洋大学,2004.
    何培青.番茄叶挥发性物质对壳寡糖等诱导子响应特点的研究(博士毕业论文).青岛:中国海洋大学,2005.
    何培青,陈靠山,田黎,李光友.钕对番茄叶片挥发性物质诱导效应的研究.中国稀土学报.2006,24(3):338-343.
    何培青,柳春燕,郝林华,陈靠山,李光友.植物挥发性物质与植物抗病防御反应.植物生理学通讯,2005,41(1):105-110.
    何培青,张鹏英,陈靠山.番茄几种挥发性组分对番茄灰葡萄孢的抑制作用.云南植物研究,2005,27(3):315-320.
    何培青,张鹏英,陈靠山,李光友.番茄几种挥发性组分对番茄灰葡萄孢的抑制作用.云南植物研究,2005,27(3):315-320.
    扈学文,许秋瑾,金相灿,刘景辉,李立军,郭俊秀,欧阳坤.不同分子量壳寡糖对黑麦草种子萌发和幼苗抗病酶活性影响的研究.中国农学通报,2007,23(2):221-225.
    黄瑾,校现周.乙烯利和乙烯刺激对橡胶树胶乳中几丁质酶活性和胶乳产量的影响.热带作物学报,2003,24(4):1-5.
    黄丽萍,刘宗明.几丁寡糖、壳寡糖的应用与开发.中国微生态学杂志,1998,10(3):180-184.
    惠娜娜,郭成瑾,商文静,商鸿生.壳寡糖诱导和TMV侵染烟草防御酶活性的变化.西北农林科技大学学报(自然科学版),2007,35(3):213-216.
    李洪连,王守正,王金生,张学君.黄瓜对炭疽病诱导抗性的初步研究诱导抗病机制的研究.植物病理学报,1993,23(4):27-32.
    娄永根,程家安.虫害诱导的植物挥发物:基本特性、生态学功能及释放机制.生态学报,2000,20(6):1097-1106.
    罗广华,王爱国.植物SOD的凝胶电泳及活性的显示.植物生理学通讯,1983,6:44-45.
    慕康国,张福锁,王成菊,张文吉,胡林.稀土元素防治植物病害的研究进展,2003,21(1):1-5.
    宁加贲,肖苏林.稀土元素应用黄花菜的效果.稀土,1989,5:52-55.
    潘汝谦,黄旭明,古希昕.活性氧清除酶类在黄瓜感染霜霉病过程中的活性变化.植物病理学报.1999,29(3):287-288.
    彭安,庞欣.稀土对植物抗逆作用的自由基机制.环境化学,2002,21(4):313-317.
    商文静,吴云锋,商鸿生,赵小明,杜昱光.壳寡糖诱导对烟草体内TMV-CP基因表达的抑制作用植物病理学报,2007,37(6):637-641.
    孙艳秋,李宝聚,陈捷.寡糖诱导植物防卫反应的信号转导.植物保护,2005,31(1):5-9.
    王爱国,罗广华.植物的超氧物自由基与羟胺反应的定量关系.植物生理学通讯,1990,6:55-57.
    王春霞,刘亚力,彭安.稀土硝酸盐对超氧阴离子自由基的抑制作用.中国稀土学报,2000,18(3):286-288.
    王存兴,刘宗亮.稀土微肥、安索菌毒清防治小麦全蚀病试验.山东农业科学,1993,5:18.
    王进昌.牛蒡低聚果糖诱导植物系统抗性的研究(硕士毕业论文).济南:山东大学,2006.
    王莉,史玲玲,张艳霞,刘玉军.植物次生代谢物途径及其研究进展,武汉植物学研究,2007,25(5):500-508.
    魏新林,夏文水.甲壳低聚糖的生理活性研究.中国药理学通报,2003,19(6):164-167.
    中国科学院上海植物生理研究所.现代植物生理学实验指南.北京:科学出版社,2004,308.
    严重玲,洪业汤,杨先科,付舜珍,吴善绮.稀土元素对酸雨胁迫小麦抗氧化酶的生物学效应.科学通报,1998,43(20):2206-2209
    张鹏英,柳春燕,陈靠山.NdCl_3对黄瓜子叶抗氧胁迫的保护作用.中国稀土学报,2004,22:152-155.
    张鹏英,何培青,陈靠山,谢寒冰.番茄几种有机挥发组分对尖镰孢的抑制作用.植物病理学报,2006,36(1):91-93.
    张树生,胡蕾,刘忠良,何美仙,方勇.植物体内抗病相关酶与植物抗病性的关系.安徽农学通报,2006,12(13):48-49.
    张悟民,刘月香,曹新江,沈佳音,邱利江,沈新根,蔡振林,王旭阳.微肥对水稻大麦油菜病虫害影响的调查,1995,土壤通报,26(6):285-287.
    张玉凤,齐军山,陈靠山,董亮.钕诱导小麦抗白粉病的效应.麦类作物学报,2006,26(5):159-162
    赵雷,粱元存,刘延荣.壳聚糖对烟草黑胫病的作用.应用与环境生物学报,2000,6(5):436-439.
    周青,黄晓华,彭方晴,曹玉华,张剑华.La-Gly对酸雨伤害大豆幼苗的影响.中国稀土学报,1998,16(2):181-183.
    朱广康,钟诲文,张爱琴.植物生理学实验.北京:北京大学出版社,1990,245-248.
    竺国芳,赵鲁杭.N-乙酰壳寡糖和壳寡糖的研究进展.中国海洋药物,2000,1:43-46.
    Abbasi PA,Graham TL.Age-related regulation of induced isoflavonoid responses in soybean lines differing in inherent elicitation competency.Physiol Mol Plant Pathol,2001,59:143-152.
    Aharoni A,Keizer LCP,Bouwmeester HJ,Sun ZK,Alvarez-Huerta M,Verhoeven HA,Blaas J,van Houwelingen AMML,De Vos RCH,van der Voet H.Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays.Plant Cell,2000,12:647-661.
    Albersheim P,Valent BS.Host-pathogen interactions in plants,when exposed to oligosaccharides of fungal origin,defend themselves by accumulating antibiotics.J Cell Bio,1978,78(3):627-632.
    Ahneras E,Stolz S,Voilenweider S,Reymond P,Mene-Saffrane L,Farmer EE.Reactive electrophile species activate defense gene expression in Arabidopsis.Plant J,2003,34:205-216.
    Andreae MO,Browell EV,Garstang M,Gregory GL,Harriss RC,Hill GF,Jacob DJ,Pereira MC,Sachse GW,Setzer AW,Silva Dias PL,Talbot RW,Torres AL,Wofsy SC.Biomass burning emissions and associated haze layer over Amazonia.J Geophys Res,1988,93:1509-1527.
    Arimura G,Ozawa R,Horiuehi J,Nishioka T,Takabayashi J.Plant-plant interactions mediated by volatiles emitted from plants infested by spider mites.Biochem Syst Ecol,2001,29:1049-1061.
    Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature, 2000, 406: 512-515.
    Assmann SM. Cyclic AMP as a second message in plants. Plants Physiol, 1995,108: 885-889.
    Axelrod B, Cheesbrough TM, Leakso S. Lipoxygenase from soybeans. Methods Enzymol, 1981, 7: 443-451.
    Aziz A, Heyraud A, Lambert B. Oligogalacturonide signal transduction, induction of defence-related responses and protection of grapevine against Botrytis cinerea. Planta, 2004, 218: 767-774.
    Bate NJ, Rothstein SJ. C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J, 1998,16: 561-569.
    Batten JH, Stutte GW, Wheeler RM. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers. Phytochem, 1995,39(6): 1351-1357.
    Baurle I, Dean C. The timing of developmental transitions in plants. Cell, 2006,125: 655-664.
    Beekwilder J, Alvarez-Huerta ML, Neef E., Verstappen FWA, Bouwmeester HJ, Aharoni A. Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol, 2004,135: 1865-1878.
    Bell AA, Hubbard JC, Liu L, Davis RM, Subbarao KV. Effects of chitin and chitosan on the incidence and severity of Fusarium yellows in celery. Plant Dis, 1998, 82: 322-328.
    Ben-Shalom N, Ardi R, Pinto R, Aki C, Fallik E. Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Prot, 2003,22:285-290.
    Bertin N, Staudt M, Hansen U, Seufert G, Ciccioli P, Foster P, Fugit JL, Torres L. Seasonal and diurnal patterns of monoterpene emission from Pinus Pinea (L.) under field conditions. Atmos Environ, 1997,31:145-156.
    
    Blee E. Impact of phyto-oxylipins in plant defense. Trends Plant Sci, 2002, 7: 315-321.
    Bloksberg LN. Studies on the biology of phenylalanine ammonia lyase and plant pathogen interaction. Thesis Plant Pathology, University of California, Davis, 1991.
    Boatright J, Negre F, Chen XL, Kish CM, Wood B, Peel G, Orlova I, Gang D, Rhodes D, Dudareva N. Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol, 2004,135:1993-2011.
    Boland W, Gabler A. Biosynthesis of homoterpenes in higher plants. Helv Chim Acta, 1989, 72: 247-253.
    Boiler T, Gehri A, Mauch F, Vogeli M. Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta, 1983,157: 22-31.
    Boonchird C, Flegel TW. In vitro antifungal activity of eugenol and vanillin against Candida albicans and Cryptococcus neoformans. Can J Microbio, 1982,28: 1235-1241.
    Bouvier F, Suire C, D'Harlingue A, Backhaus RA, Camara B. Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant J, 2000, 24:241-252.
    Bouwmeester HJ,Gershenzon J,Konings MCJM,Croteau R.Biosynthesis of the monoterpenes limonene and carvone in the fruit of caraway.I.Demonstration of enzyme activities and their changes with development.Plant Physiol,1998,117:901-912.
    Bouwmeester HJ,Konings MCJM,Gershenzon J,Karp F,Croteau R.Cytochrome P-450dependent(+)-limonene-6-hydroxylation in fruits of caraway(Carum carvi).Phytochem,1999,50:243-248.
    Bruin J,Dieke M,Sabelis MW.Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics.Experientia,1992,48:525-529.
    Burke CC,Croteau R.Geranyl diphosphate synthase from Abies grandis:cDNA isolation,functional expression,and characterization.Arch Biochem Biophys,2002,405:130-136.
    Burke CC,Wiidung MR,Croteau R.Geranyl diphosphate synthase:cloning,expression,and characterization of this prenyltransferase as a beterodimer.Proc Natl Acad Sci USA,1999,96:13062-13067.
    Caccioni DRL,Guizzardi M,Biondi DM,Renda A,Ruberto G.Relationship between volatile components of citrus fruit essential oils and antimicrobial action on Penicilliwn digitatum and Penicillium italicum.Int J Food Microbiol,1998,43(1/2):73-79.
    Caccioni DRL,Guizzardi M.inhibition of germination and growth of fruit and vegetable postharvest pathogenic fungi by essential oil components.J Essent Oil Res,1994,6(2):173-179.
    Cambier V,Hance T,de Hoffmann E.Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize.Phytochem,2000,53:223-229.
    Cameron RK,Zaton K.Intercellular salicylic acid accumulation is important for age-related resistance in Arabidopsis to Pseudomonas syringae.Physiol Mol Plant Pathol,2004,65:197-209.
    Cane DE.Sesquiterpene biosynthesis:cyelization mechanisms.In DE Cane,ed,Comprehensive Natural Products Chemistry.Isoprenoids Including Carotenoids and Steroids,Vol 2.Pergamon Press,Oxford,1999,155-200.
    Cardoza YJ,Alborn HT,Tumlinson JH.In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage.J Chem Ecol,2002,28:161-174.
    Carta C,Moretti MDL,Peana AT.Activity of the oil of Salvia officinalis L.against Botrytis cinerea.Ital J Essent Oil Res,1996,8(4):399-404.
    Cavaleanti FR,Resende MLV,Carvalho CPS,Silveira JAG,Oliveira JTA.Induced defence responses and protective effects on tomato against Xanthomonas vesicatoria by an aqueous extract from Solanum lycocarpum infected with Crinipellis perniciosa.Biol Control,2006,39:408-417.
    Celimene CC,Micales JA,Ferge L,Young RA.Efficacy of pinosylvins against white-rot and brown-rot fungi.Holzforschung,1999,53(5):491-497.
    Chang X,Alderson PG,Wright CJ.Solar irradiance level alters the growth of basil(Ocimum basilicum L.)and its content of volatile oils.Environl Exp Bot,2008,63:216-223.
    Chen F,D'Auria JC,Tholl D,Ross JR,Gershenzon J,Noel JP,Pichersky E.An Arabidopsis thaliana gene for methylsalicylate biosynthesis,identified by a biochemical genomics approach, has a role in defense. Plant J, 2003,36: 577-588.
    Chen Z, Malamy J, Henning J, Conrath U, Sanchez-Casas P, Silva H, Ricigliano J, Klessig DK. Induction, modification, and transduction of the salicylic acid signal in plant defense responses. Proc Natl Acad Sci USA, 1995, 92(10): 4134-4137.
    Chen Z, Silva H, Klessig DF. Active oxygen species in the induction of plant systemic acquired resistance induced by salicylic acid. Science, 1993,262: 1883-1886.
    Chylla R, Whitmarsh J. Inactive photosystem II complexs in leaves. Plant Physiol, 1989, 90: 765-772.
    Cooley DR, Wilcox WF, Kovach J, Schloemann SG. Integrated pest management programs for strawberries in the Northeastern United States. Plant Dis, 1996. 80: 228-237.
    Cota IE, Troncoso-Rojas R, Sotelo-Mundo R, Sanchez-Estrada A, Tiznado-Hernandez ME. Tiznado-Hernandez. Chitinase and β-1,3-glucanase enzymatic activities in response to infection by Alternaria alternata evaluated in two stages of development in different tomato fruit varieties. Sci Horti, 2007,112: 42-50.
    
    Croteau R. Biosynthesis and catabolism of monoterpenoids. Chem Rev, 1987, 87: 929-954.
    D'Auria JC, Chen F, Pichersky E. Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol, 2002,130: 466-476.
    
    Daly JM. Role of recognition in plant disease. Annu Rev Phytopathol, 1984,22: 273-307.
    Danhash N, Wagemakers CA, van Kan JA, de Wit PJ. Molecular characterization of four chitinase cDNAs obtained from Cladosporium fulvum-infected tomato. Plant Mol Biol, 1993, 22 (6): 1017-1029.
    Davill A, Augurc C, Bergmann C. Oligosaccharins oligosacchrides that regulate growth. development and defense repones in plants. Glycobiol, 1992,2(3): 181-198.
    De Moraes CM, Mescheer MC, Tumlinson JH. Caterpillar-induced nocturnal plant volatiles repel nonspecific females. Nature, 2001,410: 577-580.
    Deepak SA, Ishii H, Park P. Acibenzolar-S-methyl primes cell wall strengthening genes and reactive oxygen species forming/scavenging enzymes in cucumber after fungal pathogen attack. Phys Mol Plant Path, 2006,69: 52-61.
    Degenhardt J, Gershenzon J. Demonstration and characterization of (E)-nerolidol synthase from maize: a herbivore-inducible terpene synthase participating in (3E)-4,8-dimethyl-1,3,7-nonatriene biosynthesis. Planta, 2000,210: 815-822.
    Dempsey DA, Klessig DF. Salicylic acid, active oxygen species and systemic acquired resistance in plants. Trends Cell Biol, 1994, 4(9): 334-338.
    Dempsey DA, Shah J, Klessig DF. Salicylic acid and disease resistance in plants. Crit Rev Plant Sci. 1999,18:547-575.
    Develey-Riviere MP, Galiana E. Resistance to pathogens and host developmental stage: a multifaceted relationship within the plant kingdom. New Phytol, 2007,175: 405-416.
    Doares SH,Syrovets T,Weiler EW,Ryan CA.Oiigogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway.PNAS,1995,92:4095-4098.
    Dudai N,Larkov O,Ravid U,Putievsky E,Lewinsohn E.Developmental control of monoterpene content and composition in Micromeriafruticosa(L.)Druce.Ann Bot,2001,88:349-354.
    Dudareva N,Cseke L,Blanc VM,Pichersky E.Evolution of floral scent in Clarkia:novel patterns of S-linalool synthase gene expression in the Clarkia breweri flower.Plant Cell,1996,8:1137-1148.
    Dudareva N,D'Auria JC,Nam KH,Raguso IRA,Piehersky E.AcetyI-CoA:benzyl alcohol acetyltransferase:an enzyme involved in floral scent production in Clarkia breweri.Plant J,1998,14:297-304.
    Dudareva N,Murfitt LM,Mann CJ,Gorenstein N,Kolosova N,Kish CM,Bonham C,Wood K.Developmental regulation of methylbenzoate biosynthesis and emission in snapdragon flowers.Plant Cell,2000,12:949-961.
    Dudareva N,Negre F.Practical applications of research into the regulation of plant volatile emission,Curt Opin Plant Biol,2005,8:113-118.
    Dudareva N,Pichersky E,Gershenzon J.Biochemistry of plant volatiles,Plant Physiol,2004,135:1893-1902.
    Dudareva N,Piehersky E.Biochemical and molecular genetic aspects of floral scents.Plant Physioi,2000,122:627-633.
    Eikemo H,Stensvond A,Tronsmo AM.Induced resistance as a possible means to control disease of strawberry caused by Phytophthora spp.Plant Dis,2003,87:345-350.
    Falasca G,Capitani F,Rovere FD,Zaghi D,Franchin C,Biondi S,Altamura MM.Oligogalacturonides enhance cytokinin-induced vegetative shoot formation in tobacco explants,inhibit polyamine biosynthetic gene expression,and promote long-term remobilisation of cell calcium.Pianta,2008,227:835-852.
    Farag MA,Pare PW.C_6-green leaf volatiles trigger local and systemic VOC emissions in tomato.Phytochem,2002,61:545-554.
    Farmer EE,Ryan CA.Interplant communication:airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves.Proc Natl Acad Sci USA,1990,87:7713-7716.
    Farmer EE.Surface to air signals.Nature,2001,411:854-856.
    Ficke A,Gadoury DM,Seem RC.Ontogenic resistance and plant disease management:a case study of grape powdery mildew.Am Phytopatholi Soc,2002.92:671-675.
    Fischbach RJ,Zimmer W,Schnitzler JP.Isolation and functional analysis of a cDNA encoding a myrcene synthase from holm oak(Quercus ilex L.).Eur J Biochem,2001,268:5633-5638.
    Fletcher J,Bender C,Budowle B,Cobb WT,Gold SE,Ishimaru CA,Luster D,Melcher U,Murch R,Scherm H,Seem RC,Sherwood JL,Sobral BW,Tolin SA.Plant pathogen Forensics:capabilities,needs,and recommendations.Microbiol Mol Bio Rev.2006,70:450-471.
    Frank MR,Deyneka JM,Schuler MA.Cloning of wound-induced cytochrome P450 monooxygenases expressed in pea. Plant Physiol, 1996,110: 1035-1046.
    Friedman M, Henika PR, Mandrell RE. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J Food Prot, 2002, 65: 1545-1560.
    Fry SC, Aldington S, Hetherington PR, Aitken J. Oligosaccharides as signals and substrates in the plant cell wall. Plant Physiol, 1993,103: 1-5.
    Fukami H, Asakura T, Hirano H, Abe K, Shimomura K, Yamakawa T. Salicylic acid carboxyl methyltransferase induced in hairy root cultures of Atropa belladonna after treatment with exogeneously added salicylic acid. Plant Cell Physiol, 2002, 43: 1054-1058.
    Gang DR, Beuerle T, Ullmann P, Werck-Reichhart D, Pichersky E. Differential production of meta-hydroxylated phenylpropanoids in sweet basil peltate glandular trichomes and leaves is controlled by the activities of specific acyltransferases and hydroxylases. Plant Physiol, 2002a, 130: 1536-1544.
    Gang DR, Lavid N, Zubieta C, Chen F, Beuerle T, Lewinsohn E, Noel JP, Pichersky E. Characterization of phenylpropene O-methyltransferases from sweet basil: facile change of substrate specificity and convergent evolution within a plant OMT family. Plant Cell, 2002b, 14: 505-519.
    Geronb C, Pierce P, Lambd B, Harleya P, Falle R. Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America. Atmos Environ, 2000,34: 2205-2230.
    Gershenzon J, McConkey ME, Croteau RB. Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol, 2000,122: 205-213.
    Gill AO, Delaquis P, Russo P, Holley RA. Evaluation of antilisterial action of cilantro oil vacuum packed ham. Int J Food Microbiol, 2002, 73: 83-92.
    Gomi K, Yamasaki Y, Yamamoto H, Akimitsu K. Characterization of a hydroperoxide lyase gene and effect of C_6-volatiles on expression of genes of the oxylipin metabolism in Citrus. J Plant Physiol, 2003,160: 1219-1231.
    Grace SC, Longan BA. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philo Trans R Soc Lond B Biol Sci, 2000, Oct 29,355(1402): 1499-1510.
    Grant M, Lamb C. Systemic immunity. Curr Opin Plant Biol, 2006, 9: 414-420.
    Grinspoon J, Bowman W, Facc R. Delayed onset of isoprene emission in developing velvter bean leaves. Plant Physiol, 1991,97: 170-174.
    Guenther AB, Monson RK, Fall R. Isoprene and monoterpene emission rate variability: observations with eucalyptus and emission rate algorithm development. J Geophys Res, 1991, 96: 10799-10808.
    Gutrella M, Kessmann H, Ward E, Ryals J. A central role of salicylic acid in plant disease resistance. Science, 1994, 266: 1247-1250.
    Hadwiger LA, Tomoya O, Hiroki KH. Chitosan polymer sizes effective in inducing phytoalexin accumulation and fungal suppression are verified with synthesized oligomers.Mol Plant Microbe Interact,1994,7:531-533.
    Hahn MG.Microbial elicitors and their receptors in plants.Annu Rev Phytopathol,1996,34:387-412.
    Halitschke R,Baldwin IT.Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuate.Plant J,2003,36(6):794-807.
    Hamilton-Kemp TR,Loughrin JH,Archbold DD,Andersen RA,Hildebrand DF.Inhibition of pollen germination by volatile compounds including 2-hexenal and 3-hexenal.J Agric Food Chem,1991,39:952-956.
    Hamilton-Kemp TR,McCracken CT,Loughrin JH,Andersen RA,Hildebrand DF.Effects of some natural volatile compounds on the pathogenic fungi Alternaria alternata and Botrytis cinerea.J Chem Ecol,1992,18(7):1083-1086.
    Hammer KA,Carson CF,Riley TV.Antifungal activity of the components of Melaleuca alternifolia(tea tree)oil.J Appl Microbiol,2003,95:853-860.
    Hartmann T.From waste products to ecochemicals:fifty years research of plant secondary metabolism.Phytochem,2007,68:2831-2846.
    Harley PC,Monson RK,Lerdau MT.Ecological and evolutionary aspects of isoprene emission fromplants.Oecologia,1999,118:109-123.
    He PQ,Tin L,Chert KS,Hao LH,Li GY.Induction of volatile organic compounds of Lycopersicon esculentum Mill.and its resistance to Botryis cinerea Pers.by burdock oligosaceharide.J Integral Plant Biol,2006,48(5):550-557.
    He PQ,Lin XZ,Shen JH,Huang XH,Chen KS,Li GY.Induction of volatile organic compounds in the leaves of Lycopersicon esculentum by chitosan oligomer.High Tech Lett,2005,11:95-100.
    Herbers K,Menwly P,Mktraux JP,Sonnewald U.Salicylic acid-independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage.FEBS Letters,1996,397:239-244.
    Hippeli S,Heiser Y,Eistner EF.Activated oxygen and free oxygen radicals in pathology:new insights and analogies between animals and plants.Plant Physiol Biochem,1999,37:167-178.
    Holopainen JK.Multiple functions of inducible plant volatiles.Trends Plant Sci,2004,9:529-533.
    Howe GA,Schilmiller AL.Oxylipin metabolism in response to stress.Curr Opin Plant Biol,2002,5:230-236.
    Hung J,Cardoza YJ,Schmelz EA,Raina R,Engelberth J,Tumlinson JH.Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae.Planta,2003,217:767-775.
    Jetiyanon K.Defensive-related enzyme response in plants treated with a mixture of Bacillus strains (IN937a and IN937b)against different pathogens.Biol Control,2007,42:178-185.
    Joosten MHAJ,De Wit PJGM.Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn. Fulvia fulvum) as β-1,3-glucanase and chitinase. Plant Physiol, 1989,89: 945-951.
    Joubes J, Lemaire-Chamley M, Delmas F, Walter J, Hernould M, Mouras A, Raymond P, Chevalier C. A new C-type cyclin-dependent kinase from tomato expressed in dividing tissues does not interact with mitotic and G1 cyclins. Plant Physiol, 2001,126: 1403-1415.
    Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW. Communication between plants induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia, 2000, 125:66-71.
    Kavouras IG, Mihalopoulos N. Formation of atmospheric particles from organic acids produced by forests. Nature, 1998,395: 683-686.
    Keen N, Yoshikawa M. β-1,3-Endoglucanases from soybean releases elicitor-active carbohydrates from fungus cell walls. Plant Physiol, 1983, 71: 460-465.
    Kennelly MM, Gadoury DM, Wilcox WF, Magarey PA, Seem RC. Seasonal development of ontogenic resistance to downy mildew in grape berries and rachises. J Phytopathol, 2005. 95: 1445-1452.
    Kesselmeier J, Staudt M. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. J Atmos Chem, 1999,33: 23-88.
    Kessler A, Baldwin IT. Defensive function of herbivore-induced plant volatile emissions in nature. Science, 2001,292: 2141-2144.
    Kessman H, Staub T, Hofmann C, Maetzke T, Herzog J, Ward E, Uknes S, Ryals J. Induction of systemic acquired disease resistance in plants by chemicals. Ann Rev Phytopathol, 1994, 32: 439-459.
    Kishimoto K, Matsui K, Ozawa R, Takabayashi J. Components of C6-aldehyde-induced resistance in Arabidopsis thaliana against a necrotrophic fungal pathogen, Botrytis cinerea. Plant Sci, 2006,170:715-723.
    Kishimoto K, Matsui K, Ozawa R, Takabayashi J. Volatile C6-aldehydes and alloocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol, 2005,46: 1093-1102.
    Knobloch K, Pauli A. Iberl B. Antibacterial and antifungal properties of essential oil components. J Essent Oil Res, 1989,1:119-128.
    Knudsen JT, Tollsten L, Bergstrom LG. Floral scents-a checklist of volatile compounds isolated by head-space techniques. Phytochem, 1993,33: 253-280.
    Koch T, Bandemer K, Boland W. Biosynthesis of cis-jasmone: pathway for the inactivation and the disposal of the plant stress hormone jasmonic acid to the gas phase? Helv Chim Acta, 1997, 80: 838-850.
    Kolosova N, Gorenstein N, Kish CM, Dudareva N. Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell, 2001b, 13: 2333-2347.
    Kolosova N, Sherman D, Karlson D, Dudareva N. Cellular and subcellular localization of S-adenosyI-L-methionine:benzoic acid carboxyl methyltransferase,the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in snapdragon flowers.Plant Physiol,2001a,126:956-964.
    Kottapalli KR,Rakwal R,Satoh K,Shibato J,Kottapalli P,lwahashi H,Kikuehi S.Transcriptional profiling of indica rice cultivar IET8585(Ajaya)infected with bacterial leaf blight pathogen Xanthomonas oryzae pv.oryzae.Plant Phys Biochem,2007,45:834-850.
    Kowaiski B,Terry FJ,Herrera L,Penalver DA.Application of soluble chitosan in vio'o and in the greenhouse to increase yield and seed quality of potato minitubers.Potato Research.2006,49:167-176.
    Koyama T,Ogura K.Isopentenyl diphosphate isomerase and prenyltransferases.In DE Cane,ed,Comprehensive Natural Product Chemistry.Isoprenoids Including Carotenoids and Steroids,Vol 2.Pergamon Press,Oxford,1999,69-96.
    Kubo I,Fujita K,Knbo A,Nihei K,Lunde CS.Modes of antifungai action of(2E)-alkenals against Saccharomyces cerevisiae.J Agric Food Chem,2003,51:3951-3957.
    Kume A,Arakaki T,Tsuboi N,Suzuki M,Kuramoto D,Nakane K,Sakugawa H.Harmful effects of radicals generated in polluted dew on the needles of Japanese Red Pine(Pinus densiflora).New Phytol,2001,152:53-58.
    Kus JV,Zaton K,Sarkar R,Cameron RK.Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae.Plant Cell,2002,14:479-490.
    Kuzma J,Fall R.Leaf isoprene emission rate is dependent on leaf development and the level of isoprene synthase.Plant Physiol,1993,101:435-440.
    Lange R,Dmitriev AP,Joosten MHAJ,de Wit PJGM.Additional resistance genes against Cladosporium fulvum present on the Cf 9 introgression segment are associated with strong PR protein accumulation.Mol Plant-Microbe In,1998,11:301-308.
    Laule O,Furhoiz A,Chang HS,Zhu T,Wang X,Heifetz PB,Gruissem W,Lange M.Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana.Proc Natl Acad Sci USA,2003,100:6866-6871.
    Lavid N,Wang J,Shalit M,Gutterman I,Bar E,Beuerle T,Weiss D,Vainstein A,Pichersky E,Lewinsohn E.O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals.Plant Physiol,2002,129:1899-1907.
    Lerdau MT,Gray DW.Ecology and evolution of light dependent and light-independent phytogenic volatile organic carbon.New Phytol,2003,157:199-211.
    Letessier MP,Svoboda KP,Waiters DR.Antifungal activity of the essential oil of hyssop (Hyssopus officinalis).J Phytopathol,2001,149:673-678
    Levine A,Tenhaken R,Dixon R,Levine A,Tenhaken R,Dixon R,Lamb C.H_2O_2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response.Cell,1994.79:583-589.
    Lewinsohn E, Ziv-Raz I, Dudai N, Tadmor Y, Lastochkin E, Larkov O, Chaimovitsh D, Ravid U, Putievsky E, Pichersky E. Biosynthesis of estragole and methyl-eugenol in sweet basil (Ocimum basilicum L.) developmental and chemotypic association of allylphenyl O-methyltransferase activities. Plant Sci, 2000,160: 27-35.
    Liang PH, Ko TP,Wang AHJ. Structure, mechanism and function of prenyltransferases. Eur J Biochem, 2002,269: 3339-3354.
    Limpanavech P, Chaiyasuta S, Vongpromek R, Pichyangkura R, Khunwasi C, Chadchawan S, Lotrakul P, Bunjongrat R, Chaidee A, Bangyeekhun T. Chitosan effects on floral production, gene expression, and anatomical changes in the Dendrobium orchid. Sci Horti, 2008,116: 65-72.
    Liu J, Tian SP, Meng XH, Xu Y. Effects of chitosan on control of postharvest diseases and physiological responses of tomato fruit. Postharvest Bio Tec, 2007, 44: 300-306.
    Lizama-Uca G, Estrada-Mota IA, Caamal-Chan MG, Souza-Perera R, Oropeza-Salin C, Islas-Flores I, Zuniga-Aguilar JJ. Chitosan activates a MAP-kinase pathway and modifies abundance of defense-related transcripts in calli of Cocos nucifera L. Physiol Mol Plant Pathol, 2007,70:130-141.
    Loreto F, Pinelli P, Brancaleoni E, Ciccioli P. ~(13)C labeling reveals chloroplastic and extra-chloroplastic pools of dimethylallyl pyrophosphate and their contribution to isoprene formation. Plant Physiol, 2004a, 135: 1903-1907.
    Loreto F, Pinelli P, Manes F, Kollist H. Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol, 2004b, 24: 361-367.
    Loreto F, Sharkey TD. On the relationship between isoprene emission and photosynthetic metabolites under different environmental conditions. Planta, 1993,189: 420-424.
    Loreto F, Velikova V. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol, 2001,127: 1781-1787.
    Lupien S, Karp F, Wildung M, Croteau R. Regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha) species: cDNA isolation, characterization, and functional expression of (-)-4S-limonene-3-hydroxylase and (-)-4S-limonene-6-hydroxylase. Arch Biochem Biophys, 1999,368: 181-192.
    Magalhaes STV, Guedes RNC, Lima ER, Demuner AJ. Coffee leaf volatiles and egg laying by the coffee leaf miner Leucoptera coffeella. Crop Protection, 2008,27: 1038-1041.
    Mahmoud ALE. Antifungal action and antiaflatoxigenic properties of some essential oil constituents. Lett Appl Micro, 1994,19: 110-113.
    Mandal S, Mitra A. Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physciol Mol Plant Pathol, 2008, doi:10.1016/j.pmpp.2008.02.003.
    Mason ME, Davis JM. Defense response in slash pine: Chitosan treatment alter the bundance of specific mRNA.Mol.Plant-Microbe Interact,1997,10:135-137.
    Matsui K.Green leaf volatiles:hydroperoxide lyase pathway of oxylipin metabolism.Curr Opin Plant Biol,2006,9:274-280.
    Mauch F,Mauch-Mani B,Boller T.Antifungal hydrolases in pea tissue.Ⅱ.Inhibition of fungal growth by combination of chitinase and β1,3-glucanase.Plant Physiology,1988,88:936-942.
    MeConkey ME,Gershenzon J,Croteau RB.Developmental regulation of monoterpene biosynthesis in the glandular trichomes of peppermint.Plant Physiol,2000,122:215-223.
    McFrederick QS,Kathilankal JC,Fuentes JD.Air pollution modifies floral scent trails.Atmospheric Environ,2008,42:2336-2348.
    Mishra NS,Tuteja R,Tuteja N.Signaling through MAP kinase networks in plants.Archives Biochem Biophysics,2006,452:55-68.
    Moalemiyau M,Vikram A,Kushalappa AC.Detection and discrimination of two fungal diseases of mango(cv.Keitt)fruits based on volatile metabolite profiles using GC/MS.Postharvest Bio Tec,2007,45:117-125.
    Moerschbacher BM,NoD UM,Fiott BE,Reisener HJ.Lignin biosynthetic enzymes in stem rust infected,resistant and susceptible nearisogenic wheat lines.Physiol Mol Plant Pathol,1988,33:33-46.
    Monsou RK,Harley PC,Litvak ME.Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves.Oecologia,1994,99:260-270.
    Monsou RK,Jaeger CH,Adams WW,Driggers EM,Silver GM,Fall R.Relationships among isoprene emission rate,photosynthesis,and isoprene synthase activity as influenced by temperature.Plant Physiol,1992,98:1175-1180.
    Moraes MCB,Birkett MA,Gordon-Weeks R,Smart LE,Martin JL,Pye BJ,Bromilow R,Pickett JA.cis-Jasmone induces accumulation of defence compounds in wheat,Triticum aestivum.Phytochem,2008,69:9-17.
    Morkuuas I,Bednarski W.Fusarium oxysporum-induced oxidative stress and antioxidative defenses of yellow lupine embryo axes with different sugar levels.J Plant Phys,2008,165:262-277.
    Mothes K.Nebenwege des Stoffwechsels bei Pflanze,Tier und Mikrobe.Mitt.Chem.Ges.DDR,1980,27:2-10.
    Mu KG,Zhao XQ,Hu L,Zhang FS,Zhang WJ,Cui JY.Toxicity of lanthanum to pathogenic fungi and its morphological characteristics.J Rare Earths,2006,24:607-614.
    Murfitt LM,Kolosova N,Mann CJ,Dudareva N.Purification and characterization of S-adenosyI-L-methionine:benzoic acid carboxyl methyltransferase,the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in flowers of Antirrhinum majus.Arch Biochem Biophys,2000,382(1):145-151.
    Nakamura S,Hatanaka A.Green-leaf-derived C6-aroma compounds with potent antibacterial action that act on both Gram-negative and Gram-positive bacteria.J Agric Food Chem,2002,50: 7639-7644.
    Negre F,Kish CM,Boatright J,Underwood B,Shibuya K,Wagner C,Clark DG,Dudareva N.Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers.Plant Cell,2003,15:2992-3006.
    Negre F,Kolosova N,Knoll J,Kish CM,Dudareva N.Novel S-adenosyl-L-methionine:salicylic acid carboxyi methyltransferase,an enzyme responsible for biosynthesis of methylsalicylate and methylbenzoate,is not involved in floral scent production in snapdragon flowers.Arch Biochem Biophys,2002,406:261-270.
    Neri F,Mari M,Menniti AM,Brigati S,Bertolini P.Control of Penicillium expansum in pears and apples by trans-2-hexenal vapours.Postharvest Bio Tec,2006,41:101-108.
    Niinemets U,Tenhunen JD,Harley PC,Steinbrecher R.A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus.Plant Cell Environ,1999,22:1319-1336.
    Noel JP,Dixon RA,Pichersky E,Zubieta C,Ferrer JL.Structural,functional,and evolutionary basis for methylation of plant small molecules.In JT Romeo,ed,Recent Advances in Phytochem,Vol 37.Elsevier Science,Oxford,2003,37-58.
    Obara N,Hasegawa M,Kodama O.Induced volatiles in elicitor-treated and rice blast fungus-inoculated dee leaves.Biosci Biotechnol Biochem,2002,66:2549-2559.
    Oliveira-Collet SA,Collet MA,Machado MFPS.Differential gene expression for isozymes in somatic mutants of Viris vinifera L.(Vitaceae).Biochem Genentics,2005,33(2):691-703.
    Owen SM,Penuelas J.Response to Firn and Jones:Volatile isoprenoids,a special case of secondary metabolism.Trends Plant Sci,2006,11(3):113-114.
    Panter SN,Hammond-Kosaek KE,Harrison K,Jones JDG,Jones DA.Developmental control of promoter activity is not responsible for mature onset of Cf-9B-mediated resistance to leaf mold in tomato.Mol Plant-Microbe In,2002,15:1099-1107.
    Panter SN,Jones DA.Age-related rsistance to plant pathogens.Adv Bot Res,2002,38:252-272.
    Pare PW,Tumlinson JH.De novo biosynthesis of volatiles induced by insect herbivory in cotton plants.Plant Physiol,1997,114:1161-1167.
    Parniske M,Hammond-Kosack KE,Golstein C,Parniske M,Hammond-Kosack KE,Golstein C,Thomas CM,Jones DA,Harrison K,Wulff BB,Jones JD.Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato.Cell,1997,91:821-832.
    Patrignani F,Iucci L,Belletti N,Gardini F,Guerzoni ME,Lanciotti R.Effects of sub-lethal concentrations of hexanal and 2-(E)-hexenal on membrane fatty acid composition and volatile compounds of Listeria monocytogenes,Staphylococcus aureus,Salmonella enteritidis and Escherichia coli.International J Food Microbiology,2008,123:1-8.
    Pennelas J,Linsia J.PVOCs:plant defense against climatic warming? Trends Plant Sci,2003,8:105-109.
    Penuelas J,Liusia J.Linking photorespiration,monoterpenes and thermotolerance in Quercus.New Phytol,2002,158:227-237.
    Penuelas J,Llusia J.Plant VOC emissions:making use of the unavoidable.Trends Ecol Evol,2004,19:402-404.
    Penuelss J,Munne-Bosch S.Isoprenoids:an evolutionary pool for photoprotection.Trends Plant Sci,2005,10(4):166-169.
    Piehersky E,Gershenzon J.The formation and function of plant volatiles:perfumes for pollinator attraction and defense.Curr Opin Plant Biol,2002,5:237-243.
    Pichersky E,Lewinsohn E,Croteau R.Purification and characterization of S-linalool synthase,an enzyme involved in the production of floral scent in Clarkia breweri.Arch Biochem Biophys,1995,316:803-807.
    Pichersky E,Raguso RA,Lewinsohn E,Croteau R.Floral scent production in Clarkia (Onagraceae)I.Localization and developmental modulation of monoterpene emission and linalool synthase activity.Plant Physiol,1994,106:1533-1540.
    Poethig RS.Phase change and the regulation of developmental timing in plants.Science,2003.301:334-336.
    Pospieszoy H,Zielinska L.Ultrastructure of leaf cells treated withchitosan.Adv Chitin Sci,1997,2:139-144.
    Prapagdee B,Kotchadat K,Kumsop A,Visarathanouth N.The role of chitosan in protection of soybean from sudden death syndrome caused by Fusarium solani f.sp.Glycines.Bioresource Technol,2007,98:1353-1358.
    Prashauth KVH,Tharauathan RN.Chitin/chitosan:modifications and their unlimited application potentialdan- an overview.Trends Food Sci Tech,2007,18:117-131.
    Radman R,Suez T,Bueke C,Keshavarz T.Elicitation of plants and microbial cell systems.Biotechnol Appl Biochem,2003,37:91-102.
    Ralston L,Kwon ST,Schoenbeck M,Ralston J,Schenk DJ,Coates RM,Chappell J.Cloning,heterologous expression,and functional characterization of 5-epi-aristoiochene-1,3-dihydroxylase from tobacco(Nicotiana tabacum).Arch B iochem Biophys,2001,393:222-235.
    Randhir R,Shetty K.Developmental stimulation of total phenolics and related antioxidant activity in light- and dark-germinated corn by natural elicitors.Process Biochemistr,2005,40:1721-1732.
    Rasiu I.Role of salicylic acid in plants.Ann Rev Plant Physiol Mol Biol,1992,43:439-463.
    Reese ET,Mandeis M.Method in Carbohydrate Chemistry.Whistler RL,ed.New York:Academic Press,1963,139.
    Reissig JL,Strominger TL,Leloir IF.A modified colorimetric method for the estimation of N-acetylamino sugars.J Bio Chem,1995,217:959-966.
    Ride JP,Barber MS.Purification and characterization of multiple forms of endochitinase from wheat leaves.Plant Sci,1990,71:185-197.
    Rosenstiel TN,Potosuak MJ,Griffin KL,Fall R,Monson RK.Increased CO_2 uncouples growth from isoprene emission in an agriforest ecosystem.Nature,2003,421,256-259.
    Ross JR,Nam KH,D'Auria JC,Piehersky E.S-adenosyl-Lmethionine:salicylic acid carboxyl methyitransferase,an enzyme involved in floral scent production and plant defense,represents a new class of plant methyltransferases.Arch Biochem Biophys,1999,367:9-16.
    Rota MC,Herrera A,Martinez RM,Sotomayor JA,Jord MJ.Antimicrobial activity and chemical composition of Thymus vulgaris,Thymus zygis and Thymus hyemalis essential oils.Food Control,2008,19:681-687.
    Rusterucci C,Zhao Z,Haines K,Mellersh D,Neumann M,Cameron RK.Age-related resistance to Pseudomonas syringae pv.tomato is associated with the transition to flowering in Arabidopsis and is effective against Peronospora parasitica.Physiol Mol Plant Pathol,2005,66:222-231.
    Sabulal B,Dan M,J AJ,Kurup R,Pradeep NS,Vaisamma RK,George V.Caryophyllene-rich rhizome oil of Zingiber nimmonii from South India:Chemical characterization and antimicrobial activity.Phytochem,2006,67:2469-2473.
    Scalliet G,Journot N,Jullien F,Baudino S,Magnard JL,Channeliere S,Vergne P,Dumas C,Bendahmane M,Cock JM,Hugueney P.Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel rose O-methyltransferases.FEBS Lett,2002,523:113-118.
    Schieatl FP,Ayasse M,Paulus HF,Lofstedt C,Hansson BS,Ibarra F,Francke W.Orchid pollination by sexual swindle.Nature,1999,399:421-422.
    Schoch G,Goepfert S,Morant M,Hehn A,Meyer D,Ullmann P,Werek-Reiehhart D.CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters,a missing link in the phenylpropanoid pathway.J Biol Chem,2001,276:36566-36574.
    Schuhr CA,Radykewicz T,Sagner S,Latzel C,Zenk MH,Arigoni D,Bacher A,Rohdich F,Eisenreich W.Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy.Phytochem Rev,2003,2:3-16.
    Schuler MA.Plant cytochrome P450 monooxygenases.Crit Rev Plant Sci,1996,15:235-284.
    SekiyaJ,Kajiwara T,Hatanaka A.Lipoxygenase,hydroperoxide lyase and volatile C6-aldehyde formation from C18-fatty acids during development of Phaseolus vulgaris L.Plant cell Physiol.1982,23:631-638.
    Seskar M,Shulaev V,Raskin I.Endogenous methyl salicylate in pathogen inoculated tobacco plants.Plant Physiol,1998,116(1):387-392.
    Seyfarth F,Sehliemann S,Eisner P,Hipler UC.Antifungal effect of high- and low-molecular-weight chitosan hydrochloride,carboxymethyl chitosan,chitosan oligosaccharide and N-acetyl-d-glucosamine against Candida albicans,Candida krusei and Candida glabrata.International J Pharmaceutics,2008,353:139-148.
    Shah J.The salicylic acid loop in plant defense.Curr Opin Plant Biol,2003,6:365-371.
    Sharkey TD,Chen XY,Yeh S.Isoprene increases thermotolerance of fosmidomycin-fed leaves.Plant Physiol,2001,125:2001-2006.
    Sharkey TD,Loreto F.Water stress,temperature and light effects on the capacity for isoprene emission and photosynthesis of Kudzu leaves.Oecoiogia,1993,95:328-333.
    Sharkey T,Yeh S.Isoprene emission from plants.Ann Rev Plant Physiol Plant Mol Biol,2001,52:407-436.
    Sharkey TD,Singsaas EL.Why plants emit isoprene? Nature,1995,374:769.
    Shibuya N,Minami E.Oiigosaccharide signalling for defence responses in plant.Physiol Mol Plant Pathol,2001,59:223-233.
    Shulaev V,Silverman P,Ruskin I.Airborne signaling by methyl salicylate in plant pathogen resistance.Nature,1997,385:718-721.
    Staudt M,Bertin N,Hansen U,Senfert G,Cieeioli P,Foster P,Frenzel B,Fugit JL.Seasonal and diurnal patterns of monoterpene emission from Pinus Pinea(L.)under field conditions,Atmos Environ,1997,31:145-156.
    Stratmann JW,Ryan CA.Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors.In:P Nail Acad Sci,1997,94:11085-11089.
    Studart-Guimaraes C,Gibon Y,Frankel N,Wood C,Zanor M,Fernie A,Carrari F.Identification and characterisation of the α and β subunits of succinyl CoA iigase of tomato.Plant Mol Biol,2005,59(5):781-791.
    Tada Y,Rata S,Tahata Y,Nakayashiki H,Tosa Y,Mayama S.Induction and signaling of an apoptotic response typified by DNA laddering in the defense response of oats to infection and elicitors.Mol Plant-Microbe Interact,2001,14:477-486.
    Takahashi H,Chen Z,Du H,Liu Y,Kiessig DF.Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels.Plant J,1997,11(5):993-1005.
    Terry LA,Joyee DC.Elicitors of induced disease resistance in postharvest horticultural crops:a brief review.Postharvest Biol Technol,2004,32:1-13.
    Tholl D,Kish CM,Orlova I,Sherman D,Gershenzon J,Piehersky E,Dudareva N.Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases.Plant Cell,2004,16:977-992.
    Tiuterev S.Mechanism of action and ways of using chitosan as ecologically safe means in enhancement of plant disease resistance.Arch Phytopathol Plant Prot,1996,30:323-332.
    Tornero P,Conejero V,Vera P.A gene encoding a novel isoform of the PR-1 protein family from tomato is induced upon viroid infection.Mol Gen Genet 1994,243(1):47-53.
    Tunc S,Chollet E,Chalier P,Preziosi-Belloy L,Gontard N.Combined effect of volatile antimicrobial agents on the growth of Penicillium notaturn.International J Food Microbiol,2007,113:263-270.
    Tzortzakis NG,Economaki CD.Antifungal activity of lemongrass(Cympopogon citratus L.)essential oil against key postharvest pathogens.Innovative Food Sci Emer Technol.2007.8: 253-258.
    Van der Heijden R, Verpoorte R. Metabolic emzymes of hydroxy-3-methylglutaryl-coenzyme A in Catharanthus roseus. Plant Cell Tiss Org Cult, 1995,43: 85-88.
    Van Poecke RM, Posthumus MA, Dicke M. Herbivoreinduced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene- expression analysis. J Chem Ecol, 2001,27: 1911-1928.
    Vancanneyt G, Sanz C, Farmaki T, Paneque M, Ortego F, Castanera P, Sanchez-Serrano JJ. Hydroperoxide lyase depletion in transgenic potato plants leads to an increase in aphid performance. Proc Natl Acad Sci USA, 2001, 98: 8139-8144.
    Vander P. Comparison of the ability of partially N-acetylated chitosans and chitooliosaccharides to elicit resistance reactions in wheat leaves, Plant Physiol, 1998,118: 1353-1359.
    Vasconsuelo A, Boland R. Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci, 2007,172: 861-875.
    Vasconsuelo A, Giuletti AM, Boland R. Signal transduction events mediating chitosan stimulation of anthraquinone synthesis in Rubia tinctorum. Plant Sci, 2004,166: 405-413.
    Vasconsuelo A, Giuletti AM, Picotto G, Rodriguez-Talou J, Boland R. Involvement of the PLC/PKC pathway in Chitosan-induced anthraquinone production by Rubia tinctorum L. cell cultures. Plant Sci, 2003,165: 429-436.
    
    Vasconsuelo A, Morelli S, Picotto G, Giulietti AM, Boland R. Intracellular calcium mobilization: A key step for chitosan-induced anthraquinone production in Rubia tinctorum L. Plant Sci, 2005. 169:712-720.
    Vaughn SF, Gardner HW. Lipoxygenase-derived aldehydes inhibit fungi pathogenic on soybean. J Chem Ecol, 1993,19(10): 2337-2345.
    Verberne MC, Brouwer N, Delbianco F, Linthorst HJM, Bol JF, Verpoorte R. Methods for the extraction of the volatile compound salicylic acid from tobacco leaf material. Phytochem Analysis, 2002,13: 45-50.
    Vigers AJ, Roberts WK, Selitrennikoff CD. A new family of plant antifungal proteins. MolPlant Microbe Interact, 1991,4: 315-323.
    
    Vila R, Mundina M, Muschietti K, Priestap HA, Bandoni AL, Adzet T, Canigueral S. Volatile constituents of leaves, roots and stems from Aristolochia elegans. Phytochem, 1997, 46: 1127-1129.
    Voda K, Boh B, Vrtacnik M, Pohleven M. Effect of the antifungal activity of oxygenated aromatic essential oil compounds on the white-rot Trametes versicolor and the brown-rot Coniophora puteana. Int Biodeterior Biodegra, 2003, 51: 51-59.
    Voloudakisa AE, Marmey P, Delannoy E, Jalloulc A, Martinezd C, Nicole M. Molecular cloning and characterization of Gossypium hirsutum superoxide dismutase genes during cotton-Xanthomonas campestris pv. malvacearum interaction. Phys Mol Plant Path, 2006, 68: 119-127.
    Walker K,Croteau R.Molecular cloning of a 10-deacetylbaccatin 10-O-acetyl transferase cDNA from Taxus and functional expression Escherichia coli.Proc Natl Acad Sci USA,2000,97:583-587.
    Wang CL,Xing JS,Chin CK,Ho CT,Martin CE.Modification of fatty acids changes the flavor volatiles in tomato leaves.Phytochem,2001,58:227-232.
    Wang J,Dndareva N,Bhakta S,Raguso RA,Pichersky E.Floral scent production in Clarkia breweri(Onagraceae).Ⅱ.Localization and developmental modulation of the enzyme SAM:(Iso)Eugenol O-methyltransferase and phenylpropanoid emission.Plant Physiol,1997,114:213-221.
    Wegener R,Schulz S,Meiners T,Hadwich K,Hilker M.Analysis of volatiles induced by oviposition of elm leaf beetle Xanthogaleruca luteola on Ulmus minor.J Chem Ecol,2001,27:499-515.
    Wein M,Lavid N,Lunkenbein S,Lewinsohn E,Schwab W,Kaldenhoff R.Isolation,cloning and expression of a multifunctional O-methyltransferase capable of forming 2,5-dimethyl-4-methoxy-3(2H)-furanone,one of the key aroma compounds in strawberry fruits.Plant J,2002,31:755-765.
    Wilson CL,Franklin JD,Otto BE.Fruit volatiles inhibitory to Monilinia fructicola and Botrytis cinerea.Plant Disea,1987,71(4):316-319.
    Wink M.Introduction:biochemistry,role and biotechnology of secondary metabolites.In:Wink Med.Biochemistry of Plant Secondary Metabolism.Sheffield:Sheffield Academic Press,1999,1-16.
    Wise ML,Croteau R.Monoterpene biosynthesis.In:Cane DE,Editor.Comprehensive Natural Products Chemistry.Isoprenoids Including Carotenoids and Steroids,Vol 2.Pergamon Press,Oxford,1999,97-153.
    Wolfertz M,Sharkey TD,Boland W,Kuhnemann F.Rapid regulation of the ethylerythritol 4-phosphate pathway during isoprene synthesis.Plant Physiol,2004,135:1939-1945.
    Wobki EA,Maldonado S,Daleo GR,Andren AB.A novel a-1,3-glucan elicits plant defense responses in potato and induces protection against Rhizoctonia solani AG-3 and Fusarium solani f.sp.eumartii.Physiol Mol Plant Pathol,2006,69:93-103.
    Wu SQ,Watanabe N,Mita S,Dohra H,Ueda Y,Shibuya M,Ebizuka Y.The key role of phloroglucinol O-methyltransferase in the biosynthesis of Rosa chinensis volatile 1,3,5-trimethoxybenzene.Plant Physiol,2004,135:95-102.
    Xu JG,Zhao XM,Han XW,Du YG.Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro.Pestic Biochem Phys,2007,87:220-228.
    Yamada A,Shibuya N,Kodama O,Akatsuka T.Induction of phytoalexin formation in suspension cultured rice cell by N-acetyl-chitooligosaccharides.Biosci Biotech Biochem,1993,57(3):405-409.
    Zeier J.Age-dependent variations of local and systemic defence responses in Arabidopsis leaves
    ?towards an avirulent strain of Pseudomonas syringae.Physiol Mol Plant Pathol,2005,66:30-39.
    
    Zeringue HJ.Effect of C_6-C_(10)alkenals and alkanals on eliciting a defence responsible in the developing cotton boll.Phytochem,1992,31:2305-2308.
    Zhang PY,Chen KS,He PQ,Liu SH,Jiang WF.Effects of crop development on the emission of volatile in tomato leaves and its inhibitory activity to Botrytis cinerea Pets.and Fusarium oxysporum Schl..J Integrat Plant Biol,2008,50(1):84-91.
    Zhang YF,Yang LF,Chen KS,Dong L.Effect of Nd on growth,pectinase activity and mycelium permeability of Fusaraum oxysporum.J Rare Earths,2007,25:100-107.
    Zhao J,Davis LC,Verpoorte R.Elicitor signal transduction leading to production of plant secondary metabolites.Biotech Advances,2005,23:283-333.
    Zhuang H,Hamilton-Kemp TR,Andersen RA,Hildebrand DF.Developmental change in C_6-aldehyde formation by soybean leaves.Plant Physiol,1992,100:80-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700