用户名: 密码: 验证码:
纳米四氧化三铁及其复合材料的制备与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁性纳米粒子与块体不同,具有独特的化学和物理性质,其中Fe304磁性纳米粒子具有生物相容性良好、无溶血活性、遗传毒性以及超顺磁性等特性,在生物医药、催化、环境等领域应用前景广阔。但是在实际应用时,一般要求纳米粒子尺寸均一、化学性质稳定、生物相容性和分散性好。为了解决这些问题并赋予其更多的功能,需要对其进行表面修饰。本学位论文重点研究了Fe304磁性纳米粒子及其复合物的制备以及它们在催化分析、酶固载、生物标记、环境控制领域的应用,主要集中在以下五个方面:
     (1)采用共沉淀法制备了Fe304磁性纳米粒子,利用其具有类似辣根过氧化氢酶的特性建立了一种快速测定H202的紫外可见分光光度法。所制备的Fe304纳米粒子可以催化活化H202产生·OH氧化N,N.二乙基对苯二胺硫酸盐(DPD), H2O2氧化DPD的表观活化能从62.5 kJ mol-1降低至21.8 kJ mol-1;DPD的氧化产物在550 nm处有很强的吸收,其吸光度A与样品中H202的浓度之间存在良好的线性关系。在优化反应条件下,H202的线性范围为0.5-150×10-6 mol L-1,检出限为2.5×10-7mol L-1。该方法已成功应用于雨水中,蜂蜜和牛奶样品中H202的测定。
     (2)以包覆纳米Fe304的氨基化Si02纳米颗粒(Fe3O4/SiO2)为载体固定辣根过氧化物酶(HRP),制备了固定化辣根过氧化物酶。这种以纳米Fe3O4/SiO2为载体的固定化辣根过氧化物酶较纳米Fe304和辣根过氧化物酶相比,具有高活性及高稳定性。该固定化酶可以活化H202产生·OH将无荧光对羟基苯丙酸氧化为在409 nm处有最大发射的荧光二聚体,该反应可以与葡萄糖氧化酶催化氧化葡萄糖的体系偶联,利用固定化酶的高催化活性建立快速测定H202及葡萄糖的荧光光度法。在优化条件下,H202和葡萄糖的线性范围分别为5×10-9-1.0×10-5 mol L-1和5.0×10-8-5.0×10-5 molL-1,检出限分别为2.1×10-9 mol L-1和1.8×10-8 mol L-1。固定化酶通过外加磁场可以方便地磁分离、回收及再利用。
     (3)采用原位沉淀法合成了Fe304/氧化石墨烯纳米颗粒,并以其为载体固定葡萄糖氧化酶。Fe3O4/氧化石墨烯纳米颗粒可催化活化由负载在其上的葡萄糖氧化酶催化氧化葡萄糖生成的H202,将其均裂为·OH,·OH将DPD氧化为在550 nm处有强吸收的DPD+,从而建立了一种一步法同时测定葡萄糖和H2O2的紫外可见分光光度法。在优化条件下,葡萄糖和H202的线性范围分别为5.0×10-7-6.0×10-4 mol L-1和1.0×10-7-1.0×10-4 mol L-1,检出限分别为2.0×10-7 mol L-1和4.0×10-8 mol L-1。
     (4)采用改进的Stober法合成具有磁性和荧光特性的双功能纳米粒子Fe3O4/SiO2/dye/SiO2。包覆纳米Fe304的内层Si02可防止纳米颗粒的团聚,而外层Si02可保护染料分子不受外界干扰,使其具有良好的光稳定性,硅层的厚度可通过改变前驱体正硅酸乙酯的浓度来调控。该纳米粒子具有荧光强度高,光稳定性好和超顺磁性的特点;其荧光强度随合成过程中所加入染料浓度的增加而增强。通过包覆不同的染料可调控纳米粒子的荧光波长,从而改变其发射光的颜色。与染料溶液相比,染料掺杂的荧光纳米颗粒的荧光发射光谱发生部分红移或蓝移,其原因可能是由于染料分子聚集在硅壳中或聚集态的染料分子共平面性降低所致。
     (5)采用超声辅助共沉淀法制备了具有典型层状结构的磁性镁铝水滑石(MLDHs),用于去除废水中氟离子的吸附材料。制备过程中超声的引入不但可加速水滑石相的形成,而且能极大缩短合成MLDHs的时间。结果表明,超声法合成的MLDHs粒径小、比表面积大,有利于吸附性能的提高,氟离子的饱和吸附容量为47.7mg g-1。吸附动力学数据和等温吸附数据分别符合准一级吸附动力学模型和Langmuir等温模型。磁性水滑石材料可有效地进行磁分离,经过解吸再生后可以重复利用。
Magnetic nanoparticles are different from the bulk material with unique chemical and physical properties. Fe3O4 magnetic nanoparticles are the very promising and popular candidates because they are known to be biocompatible, displaying no hemolytic activity or genotoxicity with superparamagnetic properties, which have been widely used in biomedicine, catalysis, environment and so on. For many applications, the Fe3O4 nanoparticles are necessary to be chemically stable, well dispersed in liquid environment, biocompatible and uniform in size. This problem can be solved by modifing magnetic nanoparticles with the functional materials. We focus on the synthesis of Fe3O4 magnetic nanoparticles and their composite nanoparticles and their application in catalytic analysis, enzyme immobilization, biological imaging and environment protection. The major contents are summarized as follows:
     (1) Fe3O4 magnetic nanoparticles were prepared by the co-precipitation method and used as a mimetic peroxidase for the determination of hydrogen peroxide (H2O2) based on their catalytic effect on the oxidation of N, N-diethyl-p-phenylenediamine sulfate (DPD). Because of the peroxidase-like activating effect, Fe3O4 nanoparticles decreased the activation energy of the oxidation of DPD by H2O2 from 62.5 kJ mol-1 to 21.8 kJ mol-1 at room temperature, promoting greatly the oxidation of DPD by H2O2. Fe3O4 nanoparticles were found to be able to activate H2O2 and oxidize DPD to a colored product with a strong absorption maximum at 550 nm, which yielded a satisfactory linear correlation between the absorbance (A) and H2O2 concentration. The parameters for the determination of H2O2 were optimized by the investigations of the effects of reaction conditions on the absorbance of DPD+ produced by the catalytic oxidation of DPD. Under optimized conditions, the absorbance of the product responded linearly to H2O2 concentration in the range from 0.5 to 150×10-6 mol L-1 H2O2 with a detection limit as low as 2.5×10-7 mol L-1.The method was successfully applied to the determination of H2O2 in rainwater, honey and milk samples.
     (2) Sensitive fluorescent probes for the determination of hydrogen peroxide and glucose were developed by immobilizing enzyme horseradish peroxidase (HRP) on Fe3O4/SiO2 magnetic core-shell nanoparticles in the presence of glutaraldehyde. Compared with Fe3O4 magnetic nanoparticles and HRP, the immobilized enzyme catalyst has high activity and stability. The HRP immobilized nanoparticles were able to activate H2O2 to produce·OH radicals, which oxidized non-fluorescent 3-(4-hydroxyphenyl)propionic acid to a fluorescent dimmer with an emission maximum at 409 nm. Under optimized conditions, a linear calibration curve was obtained over the H2O2 concentrations ranging from 5.0×10-9 to 1.0×10-5 mol L-1, with a detection limit of 2.1×10-9 mol L-1. By simultaneously using glucose oxidase and HRP-immobilized Fe3O4/SiO2 nanoparticles, a sensitive and selective analytical method for the glucose detection was established. The fluorescence intensity of the product responded well linearly to glucose concentration in the range from 5.0×10-8 to 5.0×10-5 mol L-1 with a detection limit of 1.8×10-8 mol L-1. Besides its excellent catalytic activity, the immobilized enzyme could be easily and completely recovered by a magnetic separation, and the recovered HRP immobilized Fe3O4/SiO2 nanoparticles were able to be used repeatedly as catalysts without deactivation.
     (3) Magnetic Fe3O4/GO nanoparticles were synthesized by in situ precipitation method and used as a substrate for the immobilization of glucose oxidase. The Fe3O4/GO nanoparticles were used as an enzyme-like catalyst to activate H2O2 to produce·OH radicals by homolytic cleavage, which could be produced by the glucose oxidation with glucose oxidase-immobilized nanoparticles.·OH radicals will catalytically oxidize the substrate DPD to the radical cation DPD+ with a strong absorption maximum at 550 nm. We have developed a one-step method for determination of trace concentrations of glucose or H2O2 based on a bienzyme system. Under the optimized conditions, this method could give linear responses to glucose in a range of 5.0×10-7 to 6.0×10-4 mol L-1 with adetection limit of 2.0×10-7 mol L-1. And a linear calibration curve was obtained over the H2O2 concentrations ranging from 1.0×10-7 to 1.0×10-4 mol L-1 with a detection limit of 4.0×10-8 mol L-1.
     (4) Based on the Stober method, we have developed a simple and reproducible method to synthesize a novel class of Fe3O4/SiO2/dye/SiO2 composite nanoparticles. The inner silica layer is introduced to enhance the adherence of the dye-doped silica layer to the surface of magnetic Fe3O4 particles, and the outer dye-doped silica layer enables the nanoparticles with excellent fluorescent properties. The thickness of the outer shell of silica could be tuned by changing the concentration of the silicon precursor tetraethyl orthosilicate during the synthesis. These multifunctional nanoparticles were found to be highly luminescent, photostable and superparamagnetic. The luminescence intensity of the nanoparticles was increased as the dye concentration was increased in the preparation process. The color of the luminescence was successfully tuned by incorporating different dyes into the nanoparticles. The measurements of the emission spectra indicated that relative to the dye molecules dissolved in ethanol, the emission of the dye-doped nanoparticles exhibited either a red shift or a blue shift owing to the aggregation of dye molecules in the silica matrix or destroyed the coplanar.
     (5) A simple ultrasound-assisted co-precipitation method in combination with a calcination treatment was developed to prepare magnetic Mg-Al layered double hydroxides composite with layered structure as an adsorbent material to remove fluoride ions from aqueous solutions. The application of ultrasound in the preparation process promoted the formation of the hydrotalcite-like phase and drastically shortened the time being required for preparation of the crystalline composite. It was found that the ultrasound irradiation assistance decreased the size of the composite particles and increased the specific surface area, being favorable to the improvement of the adsorption capacity. The composite prepared under the ultrasound irradiation exhibited fairly high maximum adsorption capacity of fluoride (47.7 mg g-1). Equilibrium adsorption and kinetic data were fitted well with the Langmuir isotherm model and the pseudo-first-order kinetic model. In addition, the magnetic composite can be effectively and simply separated by using an external magnetic field, and then regenerated by desorption and calcination.
引文
[1]Kim D K, Zhang Y, Voit W, et al. Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater. 2001,225:30-36.
    [2]Gotic M, Jurkin T, Music S. Factors that may influence the micro-emulsion synthesis of nanosize magnetite particles. Colloid Polym. Sci.2007,285:793-800.
    [3]Wang J, Sun J, Sun Q, et al. One-step hydrothermal process to prepare highly crystalline Fe3O4 nanoparticles with improved magnetic properties. Mater. Res. Bull. 2003,38:1113-1118.
    [4]Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 2002,124:8204-8205.
    [5]Tang N J, Zhong W, Jiang H Y, et al. Nanostructured magnetite (Fe3O4) thin films prepared by sol-gel method. J. Magn. Magn. Mater.2004,282:92-95.
    [6]Vijayakumar R, Koltypin Y, Felner I, et al. Sonochemical synthesis and characterization of pure nanometer-sized Fe3O4 particles. Mater. Sci. Eng. A 2000, 286:101-105.
    [7]Cabrera L, Gutierrez S, Menendez N, et al. Magnetite nanoparticles:Electrochemical synthesis and characterization. Electrochim. Acta 2008,53:3436-3441.
    [8]Ye E, Liu B, Fan W Y. Preparation of graphite-coated iron nanoparticles using pulsed laser decomposition of Fe3(CO)12 and PPh3 in hexane. Chem. Mater.2007,19: 3845-3849.
    [9]Roh Y, Vali H, Phelps T J, et al. Extracellular synthesis of magnetite and metal-substituted magnetite nanoparticles. J. Nanosci. Nanotechnol.2006,11: 3517-3520.
    [10]Horak D, Babic M, MackovaH, et al. Preparation and properties of magnetic nano-and microsized particles for biological and environmental separations. J. Sep. Sci. 2007,30:1751-1772.
    [11]Iwasaki T, Kosaka K, Yabuuchi T, et al. Novel mechanochemical process for synthesis of magnetite nanoparticles using coprecipitation method. Adv. Powder Technol.2009,20:521-528.
    [12]Peng F F, Zhang Y, Gu N. Size-dependent peroxidase-like catalytic activity of nanoparticles. Chinese Chem. Lett.2008,19:730-733.
    [13]Wu J H, Ko S P, Liu H L, et al. Sub 5 nm Fe3O4 nanocrystals via coprecipitation method. Colloid. Surface. A 2008,313-314:268-272.
    [14]Chang Q, Zhu L, Yu C, et al. Synthesis and properties of magnetic and luminescent Fe3O4/SiO2/Dye/SiO2 nanoparticles. J. Lumin.2008,128:1890-1895.
    [15]Pileni M P. Reverse micelles as microreactors. J. Phys. Chem.1993,97:6961-6973.
    [16]Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles:synthesis and surface functionalization strategies. Nanoscale Res. Lett.2008,3:397-415.
    [17]Zhou Z H, Wang J, Liu X, et al. Synthesis of Fe3O4 nanoparticles from emulsions. J. Mater. Chem.2001,11:1704-1709.
    [18]Feltin N, Pileni M P. New technique for synthesizing iron ferrite magnetic nanosized particles. Langmuir 1997,13:3927-3933.
    [19]周孙英,林晨,芮兴.反相微乳液法制备纳米四氧化三铁颗粒.福建医科大学学报 2009,43:148-152.
    [20]Mizutani N, Iwasaki T, Watano S, et al. Effect of ferrous/ferric ions molar ratio on reaction mechanism for hydrothermal synthesis of magnetite nanoparticles. Bull. Mater. Sci.2008,31:713-717.
    [21]Chen D, Xu R. Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders. Mater. Res. Bull.1998,33:1015-1021.
    [22]Si S F, Li C H, Wang X, Magnetic monodisperse Fe3O4 nanoparticles. Cryst. Growth Des.2005,5:391-393.
    [23]Ni S, Wang X, Zhou G, et al. Hydrothermal synthesis of Fe3O4 nanoparticles and its application in lithium ion battery. Mater. Lett.2009,63:2701-2703.
    [24]李成魁,祁红璋,严彪.磁性纳米四氧化三铁颗粒的化学制备及应用进展.上海金属2009,31:54-58.
    [25]Pei W, Kumada H, Natusme T, et al. Study on magnetite nanoparticles synthesized by chemical method. J. Magn. Magn. Mater.2007,310:2375-2377.
    [26]Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev.2008,108:2064-2110.
    [27]Amara D, Felner I, Nowik I, et al. Synthesis and characterization of Fe and nanoparticles by thermal decomposition of triiron dodecacarbonyl. Colloid. Surface. A 2009,339:106-110.
    [28]Li Z, Sun Q, Gao M Y. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-Pyrrolidone:mechanism leading to Fe3O4. Angew. Chem. Int. Ed.2005,44:123-126.
    [29]Ma Z, Liu H. Synthesis and surface modification of magnetic particles for application in biotechnology and biomedicine. China Part.2007,5:1-10.
    [30]Duraes L, Costa B F O, Vasques J, et al. Phase investigation of as-prepared iron oxide/hydroxide produced by sol-gel synthesis. Mater. Lett.2005,59:859-863.
    [31]Xu J, Yang H, Fu W, et al. Preparation and magnetic properties of magnetite nanoparticles by sol-gel method. J. Magn. Magn. Mater.2007,309:307-311.
    [32]Kuijpers M W A, Eck D V, Kemmere M F, et al. Cavitation-induced reactions in high-pressure carbon dioxide. Science 2002,298:1969-1971.
    [33]何寿杰,哈静,王云明等.超声化学在纳米材料制备中的应用.化学通报 2008,11:846-851.
    [34]Mukh-Qasem R A, Gedanken A. Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J. Colloid Interf. Sci.2005,284:489-494.
    [35]Yan J, Lei M, Zhu L, et al. Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate. J. Hazard. Mater.2011,186: 1398-1404.
    [36]Wang N, Zhu L, Wang D, et al. Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason. Sonochem.2010,17:526-533.
    [37]Thompson L H, Doraiswamy L K. Sonochemistry:science and engineering. Ind. Eng. Chem. Res.1999,38:1215-1249.
    [38]Bagwe R P, Hilliard L R, Tan W. Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 2006,22:4357-4362.
    [39]Nagao D, Yokoyama M, Saeki S, et al. Preparation of composite particles with magnetic silica core and fluorescent polymer shell. Colloid Polym. Sci.2008,286: 959-964.
    [40]Stjerndahl M, Andersson M, Hall H E, et al. Superparamagnetic Fe3O4/SiO2 nanocomposites:Enabling the tuning of both the iron oxide load and the size of the nanoparticles. Langmuir 2008,24:3532-3536.
    [41]Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interf. Sci.1968,26:62-69.
    [42]Lu Z, Dai J, Song X, et al. Facile synthesis of Fe3O4/SiO2 composite nanoparticles from primary silica particles. Colloid. Surface. A 2008,317:450-456.
    [43]Deng Y, Qi D, Deng C, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc.2008,130:28-29.
    [44]Iijima S. Helical microtubules of graphitic carbon. Nature 1991,354:56-58.
    [45]Correa-Duarte M A, Grzelczak M, Salgueirino-Maceira V, et al. Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles. J. Phys. Chem. B 2005,109:19060-19063.
    [46]陈玉新,肖旺钏,古宏晨.碳纳米管/磁性氧化铁纳米颗粒复合研究的进展.东南大学学报(医学版)2011,30:240-247.
    [47]Peng X, Luan Z, Di Z, et al. Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb(Ⅱ) and Cu(Ⅱ) from water. Carbon 2005,43:855-894.
    [48]Wan J, Cai W, Feng J, et al. In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols. J. Mater. Chem.2007,17: 1188-1192.
    [49]Liu H L, Sonn C H, Wu J H. Synthesis of streptavidin-FITC-conjugated core-shell Fe3O4-Au nanocrystals and their application for the purification of CD4+ lymphocytes. Biomaterials 2008,29:4003-4011.
    [50]郑静,程圭芳,冯婉娟等.纳米金和磁性纳米颗粒在生物传感器中的应用.化学世界 2010,5:310-313.
    [51]Mikhaylova M, Kim D K, Bobrysheva N, et al. Superparamagnetism of magnetite nanoparticles:dependence on surface modification. Langmuir 2004,20:2472-2477.
    [52]Lyon J L, Fleming D A, Stone M B, et al. Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett.2004,4:719-723.
    [53]Lee D K, Kim Y H, Kim C W, et al. Vast magnetic monolayer film with surfactant-stabilized Fe3O4 nanoparticles using Langmuir-Blodgett technique. J. Phys. Chem. B 2007,111:9288-9293.
    [54]Hong R Y, Feng B, Chen L L. Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles. Biochem. Eng. J.2008,42:290-300.
    [55]Xu H, Cui L, Tong N, et al. Development of high magnetization Fe3O4/polystyrene/silica nanospheres via combined miniemulsion/emulsion polymerization. J. Am. Chem. Soc.2006,128:15582-15583.
    [56]徐海娥,闫翠娥.水溶性量子点的制备及应用.化学进展 2005,17:800-808.
    [57]Wang S, Jarrett B R, Kauzlarich S M, et al. Core/shell quantum dots with high relaxivity and photoluminescence for multimodality imaging. J. Am. Chem. Soc. 2007,129:3848-3856.
    [58]Yi D K, Selvan S T, Lee S S, et al. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J. Am. Chem. Soc.2005,127:4990-4991.
    [59]Wang D, He J, Rosenzweig N, et al. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation. Nano Lett.2004, 4:409-413.
    [60]Salgueirino-Maceira V, Correa-Duarte M A, Spasova M, et al. Composite silica spheres with magnetic and luminescent functionalities. Adv. Funct. Mater.2006,16: 509-514.
    [61]Wang L, Tan W. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett.2006,6:84-88.
    [62]Yao G, Wang L, Wu Y, et al. FloDots:luminescent nanoparticles. Anal. Bioanal. Chem.2006,385:518-524.
    [63]Ethiraj A S, Hebalkar N, Kharrazi S, et al. Photoluminescent core-shell particles of organic dye in silica. J. Lumin.2005,114:15-23.
    [64]Ma D, Guan J, Normandin F, et al. Multifunctional nano-architecture for biomedical applications. Chem. Mater.2006,18:1920-1927.
    [65]Zhao X, Tan W. Development of organic-dye-doped silica nanoparticles in a reverse microemulsion. Adv. Mater.2004,16:173-176.
    [66]Bagwe R P, Yang C, Hilliard L R, et al. Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method. Langmuir 2004,20: 8336-8342.
    [67]Montalti M, Prodi L, Zaccheroni N, et al. Size effect on the fluorescence properties of dansyl-doped silica nanoparticles. Langmuir 2006,22:5877-5881.
    [68]Lu Y, Yin Y, Mayers B T, et al. Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett. 2002,2:183-186.
    [69]Deng Y, Wang C, Shen X, et al. Preparation, characterization, and application of multistimuli-responsive microspheres with fluorescence-labeled magnetic cores and thermoresponsive shells. Chem. Eur. J.2005,11:6006-6013.
    [70]辛宝娟,邢国文.氧化铁磁性纳米粒子固定化酶.化学进展 2010,22:593-602.
    [71]Wolfbeis O S, Oehme I, Papkovskaya N, et al. Sol-gel based glucose biosensors employing optical oxygen transducers, and a method for compensating for variable oxygen background. Biosens. Bioelectron.2000,15:69-76.
    [72]Lei Z, Bi S, Yang H. Chitosan-tethered the silica particle from a layer-by-layer approach for pectinase immobilization. Food Chem.2007,104:577-584.
    [73]胡燚,刘维明,邹彬等.介孔材料固定化酶.化学进展 2010,22:1656-1664.
    [74]Lee J, Lee Y, Youn J K, et al. Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small 2008,4:143-152.
    [75]石慧,何晓晓,王柯敏等.二氧化硅纳米与微米颗粒作为固定化酶载体的生物效应.高等学校化学学报 2007,28:1690-1695.
    [76]Libertino S, Scandurra A, Aiello V, et al. Layer uniformity in glucose oxidase immobilization on SiO2 surfaces. Appl. Surf. Sci.2007,253:9116-9123.
    [77]Ma M, Zhang Y, Yu W, et al. Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloid. Surface. A 2003,212:219-226.
    [78]Libertino S, Giannazzo F, Aiello V, et al. XPS and AFM characterization of the enzyme glucose oxidase immobilized on SiO2 surfaces. Langmuir 2008,24: 1965-1972.
    [79]Yang H, Zhang S, Chen X, et al. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem.2004,76:1316-1321.
    [80]Lei Z, Bi S, Hu B, et al. Combined magnetic and chemical covalent immobilization of pectinase on composites membranes improves stability and activity. Food Chem. 2007,105:889-896.
    [81]Deng Y, Deng C, Qi D,et al. Synthesis of core/shell colloidal magnetic zeolite microspheres for the immobilization of Trypsin. Adv. Mater.2009,21:1377-1382.
    [82]Zeng L, Luo K, Gong Y.Preparation and characterization of dendritic composite magnetic particles as a novel enzyme immobilization carrier. J. Mol. Catal. B-Enzym. 2006,38:24-30.
    [83]Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol.2007,2:577-583.
    [84]Wei H, Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem.2008,80:2250-2254.
    [85]Zhang J B, Zhuang J, Gao L Z, et al. Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 2008,73:1524-1528.
    [86]Zhang S, Zhao X, Niu H, et al. Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. J. Hazard. Mater. 2009,167:560-566.
    [87]Wang N, Zhu L, Wang M, et al. Sono-enhanced degradation of dye pollutants with the use of H2O2 activated by Fe3O4 magnetic nanoparticles as peroxidase mimetic. Ultrason. Sonochem.2010,17:78-83.
    [88]丁建芳,姜继森.核壳结构二氧化硅/磁性纳米粒子的制备及应用.材料导报2006,20:201-205.
    [89]Hung C W, Holoman T R P, Kofinas P, et al. Towards oriented assembly of proteins onto magnetic nanoparticles. Biochem. Eng. J.2008,38:164-170.
    [90]Tayor J I, Hurst C D, Davies M J, et al. Application of magnetite and silica-magnetite composites to the isolation of genomic DNA. J. Chromatogr. A 2000,890:159-166.
    [91]Dong X, Zheng Y, Huang Y, et al. Synthesis and characterization of multifunctional poly(glycidyl methacrylate) microspheres and their use in cell separation. Anal. Biochem.2010,405:207-212.
    [92]Kemer B, Ozdes D, Gundogdu A, et al. Removal of fluoride ions from aqueous solution by waste mud. J. Hazard. Mater.2009,168:888-894.
    [93]Ma W, Ya F, Han M, et al. Characteristics of equilibrium, kinetics studies for adsorption of fluoride on magnetic-chitosan particle. J. Hazard. Mater.2007,143: 296-302.
    [94]Chang Q, Zhu L, Luo Z, et al. Sono-assisted preparation of magnetic magnesium-aluminum layered double hydroxides and their application for removing fluoride. Ultrason. Sonochem.2011,18:553-561.
    [95]赵永纲,沈昊宇,李勃等.氨基功能化纳米Fe3O4磁性高分子吸附剂对废水中Cr(Ⅵ)的吸附研究.化学学报2009,67:1509-1514.
    [96]Chang C F, Lin P H, Holl W. Aluminum-type superparamagnetic adsorbents: Synthesis and application on fluoride removal. Colloid. Surface. A 2006,280: 194-202.
    [97]徐星星,朱宏.磁性纳米颗粒及其在生物医学领域中的应用.磁性材料及器件2010,41:7-11.
    [98]Zhao W, Gu J, Zhang L, et al. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J. Am. Chem. Soc. 2005,127:8916-8917.
    [99]Zhu Y, Shi J, Shen W, et al. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. Angew. Chem. Int. Ed.2005,44:5083-5087.
    [100]Arruebo M, Galan M, Navascues N, et al. Development of magnetic nanostructured silica-based materials as potential vectors for drug-delivery applications. Chem. Mater.2006,18:1911-1919.
    [101]刘冰,王德平,黄文旵等.核壳结构磁性复合纳米粒的制备及研究进展.材料导报 2007,21:185-188.
    [102]邢臻真,朱宏.肿瘤磁热疗用产热材料的研究现状及评价.材料导报 2010 24:63-66.
    [103]Jordan A, Wust P, Fahlin H, et al. Inductive heating of ferrimagnetic particles and magnetic fluids:Physical evaluation of their potential for hyperthermia. Int. J. Hyperther.1993,9:51-68.
    [104]Ito A, Kuga Y, Honda H. Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. Cancer Lett.2004,212:167-175.
    [1]Luo Y, Sui Y, Wang X, et al.2-Chlorophenol induced hydroxyl radical production in mitochondria in carassius auratus and oxidative stress-an electron paramagnetic resonance study. Chemosphere 2008,71:1260-1268.
    [2]Wolfbeis O S, Duerkop A, Wu M, et al. A Europium-ion-based luminescent sensing probe for hydrogen peroxide. Angew. Chem. Int. Ed.2002,41:4495-4498.
    [3]Manzoori J, Amjadi M, Orooji M. Application of crude extract of kohlrabi (brassica oleracea gongylodes) as a rich source of peroxidase in the spectrofluorometric determination of hydrogen peroxide in honey samples. Anal. Sci.2006,22: 1201-1206.
    [4]Tang B, Zhang L, Xu K. FIA-near-infrared spectrofluorimetric trace determination of hydrogen peroxide using tricarchlorobocyanine dye (Cy.7.Cl) and horseradish peroxidase (HRP). Talanta 2006,68:876-882.
    [5]Chai X, Hou Q, Luo Q, et al. Rapid determination of hydrogen peroxide in the wood pulp bleaching streams by a dual-wavelength spectroscopic method. Anal. Chim. Acta 2004,507:281-284.
    [6]Wei H, Wang E K. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem.2008,80:2250-2254.
    [7]Wang Y H, Gu H Y. Hemoglobin co-immobilized with silver-silver oxide nanoparticles on a bare silver electrode for hydrogen peroxide electroanalysis. Microchim. Acta 2008,164:41-47.
    [8]Zhang J, Oyama M. A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode. Electrochim. Acta 2004,50:85-90.
    [9]Yuan J, Shiller A M. Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection. Anal. Chem.1999,71: 1975-1980.
    [10]Hanaoka S, Lin J, Yamada M. Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(Ⅱ)-ethanolamine complex immobilized on resin. Anal. Chim. Acta 2001,426:57-64.
    [11]George P. Chemical nature of the secondary hydrogen peroxide compounds formed by cytochrome c peroxidase and horseradish peroxidase. Nature 1952,169:612-613.
    [12]Holm T R, George G K, Barcelona M. Fluorometric determination of hydrogen peroxide in groundwater. Anal. Chem.1987,59:582-586.
    [13]Zhang G F, Dasgupta P K. Hematin as a peroxidase substitute in hydrogen peroxide determinations. Anal. Chem.1992,64:517-522.
    [14]Huang X, Zhu M, Mao L, et al. Catalytic determination of hydrogen peroxide by using the molybdenum-porphyrin complex as a mimetic enzyme of peroxidase. Anal. Sci.1997,13:145-147.
    [15]Aissaoui H, Bachmann R, Schweiger A, et al. On the origin of the low-spin character of cytochrome P450cam in the resting state-investigations of enzyme models with pulse EPR and ENDOR spectroscopy. Angew. Chem. Int. Ed.1998,37:2998-3002.
    [16]Tang B, Du M, Sun Y, et al. The study and application of biomimic peroxidase ferric 2-hydroxy-l-naphthaldehyde thiosemicarbazone (FeⅢ-HNT). Talanta 1998,47: 361-366.
    [17]Chen Q, Li D, Zhu Q, et al. Application of iron tetrasulfonatophthalocyanine as a new mimetic peroxidase in the determination of hydrogen peroxide with p-hydroxyphenylpropionic acid as a substrate. Anal. Chim. Acta 1999,381:175-182.
    [18]Deng Y, Qi D, Deng C, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc.2008,130:28-29.
    [19]Veiseh O, Sun C, Gunn J, et al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett.2005,5:1003-1008.
    [20]Lv G, He F, Wang X, et al. Novel nanocomposite of nano Fe3O4 and polylactide nanofibers for application in drug uptake and induction of cell death of leukemia cancer cells. Langmuir 2008,24:2151-2156.
    [21]Baselt D R, Lee G U, Natesan M, et al. A biosensor based on magnetoresistance technology. Biosens. Bioelectron.1998,13:731-739.
    [22]Gao L, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol.2007,2:577-583.
    [23]Bader H, Sturzenegger V, Hoigne J. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine(DPD). Water Res.1988,22:1109-1115.
    [24]Chang Q, Zhu L, Yu C, et al. Synthesis and properties of magnetic and luminescent Fe3O4/SiO2/Dye/SiO2 nanoparticles. JLumin.2008,128:1890-1895.
    [25]Guo Z, Shen H, Li L. Spectrophotometric determination of hydrogen peroxide and glucose based on hemin peroxidase-like catalyzed oxidation of bromopyrogallol red. Mikrochim. Acta 1999,131:171-176.
    [26]Li B, Zhang Z, Jin Y. Chemiluminescence flow biosensor for hydrogen peroxide with immobilized reagents. Sens. Actuators B 2001,72:115-119.
    [27]Fan C, Gao Q, Zhu D, et al. An unmediated hydrogen peroxide biosensor based on hemoglobin incorporated in a montmorillonite membrane. Analyst 2001,126: 1086-1089.
    [1]Guilbault G G, Brignac P J, Zimmer M. Homovanillic acid as a fluorometric substrate for oxidative enzymes. Analytical applications of the peroxidase, glucose oxidase, and xanthine oxidase systems. Anal. Chem.1968,40:190-196.
    [2]Chen X L, Li D H, Yang H H, et al. Study of tetra-substituted amino aluminum phthalocyanine as a new red-region substrate for the fluorometric determination of peroxidase and hydrogen peroxide. Anal. Chim. Acta 2001,434:51-58.
    [3]Wolfbeis O S, Duerkop A, Wu M, et al. A Europium-ion-based luminescent sensing probe for hydrogen peroxide. Angew. Chem. Int. Ed.2002,41:4495-4498.
    [4]Tang B, Zhang L, Xu K H. FIA-near-infrared spectrofluorimetric trace determination of hydrogen peroxide using tricarchlorobocyanine dye (Cy.7.Cl) and horseradish peroxidase (HRP). Talanta 2006,68:876-882.
    [5]Wolfbeis O S, Schaferling M, Durkop A. Reversible optical sensor membrane for hydrogen peroxide using an immobilized fluorescent probe, and its application to a glucose biosensor. Microchim. Acta 2003,143:221-227.
    [6]Wu Z S, Zhang S B, Guo M M, et al. Homogeneous, unmodified gold nanoparticle-based colorimetric assay of hydrogen peroxide. Anal. Chim. Acta 2007, 584:122-128.
    [7]Chai X S, Hou Q X, Luo Q, et al. Rapid determination of hydrogen peroxide in the wood pulp bleaching streams by a dual-wavelength spectroscopic method. Anal. Chim. Acta 2004,507:281-284.
    [8]Wei H, Wang E K. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem.2008,80:2250-2254.
    [9]Zhang H L, Lai G S, Han D Y, et al. An amperometric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres. Anal. Bioanal. Chem.2008,390:971-977.
    [10]Wang F C, Yuan R, Chai Y Q, et al. Probing traces of hydrogen peroxide by use of a biosensor based on mediator-free DNA and horseradish peroxidase immobilized on silver nanoparticles. Anal. Bioanal. Chem.2007,387:709-717.
    [11]Nozaki O, Kawamoto H. Determination of hydrogen peroxide by micro-flow injection-chemiluminescence using a coupled fow cell reactor chemiluminometer. Luminescence 2000,15:137-142.
    [12]Yuan J, Shiller A M. Determination of subnanomolar levels of hydrogen peroxide in seawater by reagent-injection chemiluminescence detection. Anal. Chem.1999,71: 1975-1980.
    [13]Hanaoka S, Lin J M, Yamada M. Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(Ⅱ)-ethanolamine complex immobilized on resin. Anal. Chim. Acta 2001,426:57-64.
    [14]Lan D, Li B X, Zhang Z J. Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens. Bioelectron.2008,24:934-938.
    [15]Chen M, Cai W P, Zhu Q Z, et al. Determination of glucose based on the effect of photons as a substitute for glucose oxidase. Anal. Chim. Acta 1999,388:11-17.
    [16]Libertino S, Giannazzo F, Aiello V, et al. XPS and AFM characterization of the enzyme glucose oxidase immobilized on SiO2 surfaces. Langmuir 2008,24: 1965-1972.
    [17]Wolfbeis O S, Oehme I, Papkovskaya N, et al. Sol-gel based glucose biosensors employing optical oxygen transducers, and a method for compensating for variable oxygen background. Biosens. Bioelectron.2000,15:69-76.
    [18]Stanciu L, Won Y H, Ganesana M, et al. Magnetic particle-based hybrid platforms for bioanalytical sensors. Sensors 2009,9:2976-2999.
    [19]Deng Y H, Qi D W, Deng C H, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc.2008,130:28-29.
    [20]Veiseh O, Sun C, Gunn J, et al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett.2005,5:1003-1008.
    [21]Lv G, He F, Wang X M, et al. Novel nanocomposite of nano Fe3O4 and polylactide nanofibers for application in drug uptake and induction of cell death of leukemia cancer cells. Langmuir 2008,24:2151-2156.
    [22]Baselt D R, Lee G U, Natesan M, et al. A biosensor based on magnetoresistance technology. Biosens. Bioelectron.1998,13:731-739.
    [23]Ma M, Zhang Y, Yu W, et al. Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloid Surface A 2003,212:219-226.
    [24]Yang H P, Zhu Y F. Size dependence of SiO2 particles enhanced glucose biosensor. Talanta 2006,68:569-574.
    [25]Yang H H, Zhang S Q, Chen X L, et al. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem.2004,76:1316-1321.
    [26]Stober W, Fink A, Bohn E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci.1968,26:62-69.
    [27]Zhang Y, Zeng G M, Tang L, et al. A hydroquinone biosensor using modified core-shell magnetic nanoparticles supported on carbon paste electrode. Biosens. Bioelectron.2007,22:2121-2126.
    [28]Chang Q, Zhu L H, Yu C, et al. Synthesis and properties of magnetic and luminescent Fe3O4/SiO2/Dye/SiO2 nanoparticles. JLumin.2008,128:1890-1895.
    [29]Chang Q, Deng K J, Zhu L H, et al. Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst. Microchim. Acta 2009,165:299-305.
    [30]Bader H, Sturzenegger V, Hoigne J. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-diethyl-p-phenylenediamine(DPD). Water Res.1988,22:1109-111.
    [1]Wei H, Wang E K. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem.2008,80:2250-2254.
    [2]Chang Q, Zhu L, Jiang G, et al. Sensitive fluorescent probes for determination of hydrogen peroxide and glucose based on enzyme-immobilized magnetite/silica nanoparticles. Anal. Bioanal. Chem.2009,395:2377-2385.
    [3]Wolfbeis O S, Oehme I, Papkovskaya N, et al. Sol-gel based glucose biosensors employing optical oxygen transducers, and a method for compensating for variable oxygen background. Biosens. Bioelectron.2000,15:69-76.
    [4]Lei Z, Bi S, Hu B, et al. Combined magnetic and chemical covalent immobilization of pectinase on composites membranes improves stability and activity. Food Chem. 2007,105:889-896.
    [5]Stanciu L, Won Y H, Ganesana M, et al. Magnetic particle-based hybrid platforms for bioanalytical sensors. Sensors 2009,9:2976-2999.
    [6]Lv G, He F, Wang X M, et al. Novel nanocomposite of nano Fe3O4 and polylactide nanofibers for application in drug uptake and induction of cell death of leukemia cancer cells. Langmuir 2008,24:2151-2156.
    [7]Baselt D R, Lee G U, Natesan M, et al. A biosensor based on magnetoresistance technology. Biosens. Bioelectron.1998,13:731-739.
    [8]Wang N, Zhu L, Wang D, et al. Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason. Sonochem.2010,17:526-533.
    [9]Lee J, Lee Y, Youn J K, et al. Simple synthesis of functionalized superparamagnetic magnetite/silica core/shell nanoparticles and their application as magnetically separable high-performance biocatalysts. Small 2008,4:143-152.
    [10]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science 2004,306:666-669.
    [11]Geim A K, Novoselov K S. The rise of graphene. Nat. Mater.2007,6:183-191.
    [12]Lu C H, Yang H H, Zhu C L, et al. A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed.2009,121:4879-4881.
    [13]Zhang L M, Xia J G, Zhao Q H, et al. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 2010,6: 537-544.
    [14]Zhang J, Zhang F, Yang H, et al. Graphene oxide as a matrix for enzyme immobilization. Langmuir 2010,26:6083-6085.
    [15]Hummers W S, Offeman R E. Preparation of graphite oxide. J. Am. Chem. Soc.1958, 80:1339-1339.
    [16]Tang B, Zhang L, Xu K H. FIA-near-infrared spectrofluorimetric trace determination of hydrogen peroxide using tricarchlorobocyanine dye (Cy.7.Cl) and horseradish peroxidase (HRP). Talanta 2006,68:876-882.
    [17]Chen Q Y, Li D H, Zhu Q Z, et al. Application of iron-tetrasulfonatophthalocyanine as a new mimetic peroxidase in the determination of hydrogen peroxide with p-hydroxyphenylpropionic acid as a substrate. Anal. Chim. Acta 1999,381:175-182.
    [18]Lan D, Li B X, Zhang Z J. Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens. Bioelectron.2008,24:934-938.
    [19]Guo Z X, Shen H X, Li L. Spectrophotometric determination of hydrogen peroxide and glucose based on hemin peroxidase-like catalyzed oxidation of bromopyrogallol red. Mikrochim. Acta 1999,131:171-176.
    [20]Chang Q, Deng K J, Zhu L H, et al. Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst. Microchim. Acta 2009,165:299-305.
    [21]Yang H P, Zhu Y F. Size dependence of SiO2 particles enhanced glucose biosensor. Talanta 2006,68:569-574.
    [1]Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998,281:2016-2018.
    [2]Quinlan F T, Kuther J, Tremel W, et al. Reverse micelle synthesis and characterization of ZnSe nanoparticles. Langmuir 2000,16:4049-4051.
    [3]Pathak S, Choi S, Arnheim N, et al. Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc.2001,123:4103-4104.
    [4]Taylor J R, Fang M M, Nie S M. Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Anal. Chem.2000,72:1979-1986.
    [5]Ow H, Larson D R, Srivastava M, et al. Bright and Stable Core-Shell Fluorescent Silica Nanoparticles. Nano Lett.2005,5:113-117.
    [6]Santra S, Liesenfeld B, Dutta D, et al. Folate conjugated fluorescent silica nanoparticles for labeling neoplastic cells. J. Nanosci. Nanotech.2005,5:899-904.
    [7]Rossi L M, Shi L F, Quina F H, et al. Stober synthesis of monodispersed luminescent silica nanoparticles for bioanalytical assays. Langmuir 2005,21:4277-4280.
    [8]Montalti M, Prodi L, Zaccheroni N, et al. Size effect on the fluorescence properties of dansyl-doped silica nanoparticles. Langmuir 2006,22:5877-5881.
    [9]Deng Y, Qi D, Deng C, et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J. Am. Chem. Soc.2008,130:28-29.
    [10]Veiseh O, Sun C, Gunn J, et al. Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett.2005,5:1003-1008.
    [11]Lv G, He F, Wang X, et al. Novel nanocomposite of nano Fe3O4 and polylactide nanofibers for application in drug uptake and induction of cell death of leukemia cancer cells. Langmuir 2008,24:2151-2156.
    [12]Baselt D R, Lee G U, Natesan M, et al. A biosensor based on magnetoresistance technology. Biosens. Bioelectron.1998,13:731-739.
    [13]Zhao X J, Tan W H. Development of Organic-Dye-Doped Silica Nanoparticles in a Reverse Microemulsion. Adv. Mater.2004,16:173-176.
    [14]Santra S, Zhang P, Wang K, et al. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers. Anal. Chem. 2001,73:4988-4993.
    [15]Yang H H, Zhang S Q, Chen X L, et al. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem.2004,76:1316-1321.
    [16]Stober W, Fink A, Bohn E. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. J. Colloid Interface Sci.1968,26:62-69.
    [17]Ma D L, Veres T, Clime L, et al. Superparamagnetic FexOy@SiO2 core-shell nanostructures:controlled synthesis and magnetic characterization. J. Phys. Chem. C 2007,111:1999-2007.
    [18]Wang L, Tan W H. Multicolor FRET silica nanoparticles by single wavelength excitation. Nano Lett.2006,6:84-88.
    [19]Santra S, Liesenfeld B, Bertolino C, et al. Fluorescence lifetime measurements to determine the core-shell nanostructure of FITC-doped silica nanoparticles:An optical approach to evaluate nanoparticle photostability. J. Lumin.2006,117:75-82.
    [20]Barnakov Y A, Yu M H, Rosenzweig Z. Manipulation of the magnetic properties of magnetite-silica nanocomposite materials by controlled stober synthesis. Langmuir 2005,21:7524-7527.
    [21]Salgueirino-Maceira V, Correa-Duarte M A, Spasova M, et al. Composite silica spheres with magnetic and luminescent functionalities. Adv. Funct. Mater.2006,16: 509-514.
    [22]Wang F, Tan W B, Zhang Y, et al. Luminescent nanomaterials for biological labeling. Nanotechnology 2006,17:R1-R13.
    [23]Song L, Hennink E J, Young I T, et al. Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J.1995,68:2588-2600.
    [1]Tor A, Danaoglu N, Arslan G, et al. Removal of fluoride from water by using granular red mud:Batch and column studies. J. Hazard. Mater.2009,164:271-278.
    [2]Wu X M, Zhang Y, Dou X M, et al. Fluoride removal performance of a novel Fe-Al-Ce trimetal oxide adsorbent. Chemosphere 2007,69:1758-1764.
    [3]World Health Organization (WHO). Guidelines for drinking water quality. vol.1. Geneva:World Health Organization,1993.45-46.
    [4]Shen F, Chen X M, Gao P, et al. Electrochemical removal of fluoride ions from industrial wastewater. Chem. Eng. Sci.2003,58:987-993.
    [5]Mandal S, Mayadevi S. Cellulose supported layered double hydroxides for the adsorption of fluoride from aqueous solution. Chemosphere 2008,72:995-998.
    [6]Das D P, Das J, Parida K. Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution. J. Colloid Interface Sci.2003,261:213-220.
    [7]Yang M, Hashimoto T, Hoshi N, et al. Fluoride removal in a fixed bed packed with granular calcite. Water Res.1999,33:3395-3402.
    [8]Castel C, Schweizer M, Simonnot M O, et al. Selective removal of fluoride ions by a two-way ion-exchange cyclic process. Chem. Eng. Sci.2000,55:987-993.
    [9]Garmes H, Persin F, Sandeaux J, et al. Defluoridation of groundwater by a hybrid process combining adsorption and Donnan dialysis. Desalination 2002,145: 287-291.
    [10]Amor Z, Bariou B, Mameri N, et al. Fluoride removal from brackish water by electrodialysis. Desalination 2001,133:215-223.
    [11]Joshi S V, Mehta S H, Rao A P, et al. Esitimation of sodium fluoride using HPLC in reverse osmosis experiments. Water Treat.1992,7:207-211.
    [12]Hu K, James M D. Nanofiltration membrane performance on fluoride removal from water. J. Membr. Sci.2006,279:529-538.
    [13]Kemer B, Ozdes D, Gundogdu A, et al. Removal of fluoride ions from aqueous solution by waste mud. J. Hazard. Mater.2009,168:888-894.
    [25]Lv L, He J, Wei M, et al. Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides. J. Hazard. Mater. B 2006,133:119-128.
    [26]Poinern G E, Brundavanam R K, Mondinos N, et al. Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method. Ultrason. Sonochem.2009, 16:469-474.
    [27]Ghows N, Entezari M H. Ultrasound with low intensity assisted the synthesis of nanocrystalline TiO2 without calcinations. Ultrason. Sonochem.2010,17:878-883.
    [28]Abbasi A R, Morsali A. Synthesis and properties of silk yarn containing Ag nanoparticles under ultrasound irradiation. Ultrason. Sonochem.2011,18:282-287.
    [29]Kustrowski P, Sulkowska D, Chmielarz L, et al. Influence of thermal treatment conditions on the activity of hydrotalcite-derived Mg-Al oxides in the aldol condensation of acetone. Micropor. Mesopor. Mat.2005,78:11-22.
    [30]Ma Y, Wang S G, Fan M, et al. Characteristics and defluoridation performance of granular activated carbons coated with manganese oxides. J. Hazard. Mater.2009, 168:1140-1146.
    [31]Onal Y, Akmil-Basar C, Sanci-Ozdemir C. The results show that both boundary layer diffusion and intra-particle diffusion contributes to the rate-controlling step. J. Hazard. Mater.2007,148:727-734.
    [32]Goh K, Lim T, Dong Z. Enhanced arsenic removal by hydrothermally treated nanocrystalline Mg/Al layered double hydroxide with nitrate intercalation. Environ. Sci. Technol.2009,43:2537-2543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700