用户名: 密码: 验证码:
基于Cr(Ⅲ)回收的制革废水及铬泥处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制革工业迅速发展、出口创汇的同时,含铬废水造成的环境污染,尤其是水环境污染日益加重。含铬污泥是含铬废水处理过程中的必然产物,也带来日益严重的环境问题。针对我国制革行业二级出水排放达标以及含铬污泥处理处置难的现实问题,开发高效经济的除铬工艺与回收技术迫在眉睫。
     本文系统研究了磁性氧化石墨烯磁性氧化石墨烯表面铬离子印迹材料的制备、表征和实际应用,以及含铬污泥中铬的浸出和深度回用技术等科学问题,阐明了氧化石墨烯基纳米复合材料的合成、吸附机制以及实际应用过程中的影响因素和工艺优化策略等问题,建立了含铬污泥中铬的深度资源化回用组合工艺,开发了高效经济的深度除铬工艺及铬资源化回用途径,为皮革行业的可持续发展以及进一步拓宽氧化石墨烯产品和分子印迹技术的应用范围奠定了理论基础。
     通过共价法成功制备了核–壳磁性氧化石墨烯(Fe3O4@SiO2–GO)。以Fe3O4磁性微球为内核,SiO2为外壳的磁性微球(Fe3O4@SiO2)成功的嫁接在氧化石墨烯表面,负载率为54.45wt%左右。吸附性能研究表明,pH6.0左右时,Fe3O4@SiO2–GO对Cr(III)有较强的富集能力;动态吸附过程为膜扩散和颗粒内扩散联合控制的化学过程;等温吸附过程符合Freundlich吸附等温模型,即不均匀表面的吸附过程,饱和吸附量为4.7mg/g;静电吸附和离子交换过程是Fe3O4@SiO2–GO去除Cr(III)的两种主要机制。
     以磁性氧化石墨烯为载体,通过表面离子印迹技术成功制备了磁性氧化石墨烯基表面Cr(III)离子印迹材料(Fe3O4@SiO2–GO–IIP)。吸附性能研究表明,其动态吸附过程属于颗粒内扩散控制的化学过程,等温吸附过程符合Langmuir吸附等温模型,即单分子层吸附,饱和吸附量为0.25mg/g;Fe3O4@SiO2–GO–IIP对目标离子具有较强的识别能力,对Cr(III)的吸附选择性是非印迹材料的两倍多;多离子干扰下Fe3O4@SiO2–GO–IIP仍然具有很好的重复利用性和稳定性。4mL0.1mol/L HCl连续5次洗脱即可实现吸附体的完全洗脱。
     考察了蛋白质、油类(以甘油计)、碳水化合物以及无机盐等4类污染因素对Fe3O4@SiO2–GO–IIP除铬效率的影响。结果表明,蛋白质的存在有利于去除效率的增加,油类、无机盐以及碳水化合物对铬的去除效果有抑制,影响程度的顺序为:蛋白质>油类>无机盐>碳水化合物。随着各污染物负荷的增大,铬的去除效率均呈降低趋势;甘油浓度≤60mg/L、无机盐浓度≤80mg/L以及碳水化合物≤750mg/L可保证Fe3O4@SiO2–GO–IIP对Cr(III)的吸附效果。制革废水二级处理出水中的油类、碳水化合物和无机盐浓度均未达到显著影响离子印迹材料Fe3O4@SiO2–GO–IIP吸附性能的程度。
     二级出水Fe3O4@SiO2–GO–IIP处理结果表明,在Fe3O4@SiO2–GO–IIP投加量达到4g/L、接触时间为2h的条件下,铬的去除率达90%以上,出水铬含量低于0.3mg/L,达到了GB30486–2013排放标准。Fe3O4@SiO2–GO–IIP吸附饱和后,可采用4mL0.1mol/L的HCl洗脱再生,Fe3O4@SiO2–GO–IIP的吸附性能在6次重复利用实验中基本没有发生变化,说明印迹材料具有较好的重复利用性。
     含铬污泥资源化回用试验表明,含铬污泥酸浸最佳条件为:湿泥为浸出基质,4%H2SO4为浸出酸,含铬污泥投加量为23.55g/L,接触时间为60min和温度为30°C。浸出率可达20.86mg/g,铬回收率达91.8%。酸浸水的离子交换实验结果表明,最佳吸附剂浓度为6g/L,吸附效率达80%,以10%的硫酸作为解析剂,洗脱效率达95%以上,可实现IRN77树脂的重复利用。2.5%次氯酸钠的预处理能有效提高树脂对酸浸水的吸附效率和连续吸附–解吸附性能,使树脂保持了较好的重复利用性和稳定性能。动态吸附过程属于膜扩散控制的化学过程,等温吸附过程符合Langmuir吸附等温线模型,吸附机制属于吸热的、熵驱动的离子交换。
     通过本论文研究,建立了二级出水Fe3O4@SiO2–GO–IIP铬回收利用技术;建立了含铬污泥铬的资源化回用体系,有效实现了含铬污泥中资源铬的连续回用。
With the rapid development of the leather industry, it has led to an increased discharged wastewater containing heavy metals (Cr(III)), which have detrimental effects on the environment and human health. Chromium sludge was inevitable outcome along with chromium–containing wastewater treatment process, it also brings the environmental pollution seriously. In order to solve effectively the problem of secondary effluent discharge and chromium sludge treatment and disposal in China's leather industry, the development of chromium removal and recovery technology efficiently become a serious issue.
     This paper studied the scientific issues systematically about the preparation, characterization and application of Fe3O4@SiO2–GO and Fe3O4@SiO2–GO–IIP and the leaching and depth of reuse technology of chromium on chromium sludge, and clarified that the mechanism of synthesis and adsorption about graphene oxide nanocomposites, and the affecting factors in actual application process and process optimization strategies and other issues, and established the depth of chromium resource reuse combined process on chromium sludge, and developed efficient and economical chromium removal and recovery technology, and also laid a theoretical foundation about the sustainable development of the leather industry and further broadening the graphene oxide–based products and the application of molecular imprinting technology.
     Fe3O4@SiO2–GO was developed by covalently immobilizing magnetic core/shell Fe3O4@SiO2on GO surfaces. Fe3O4@SiO2magnetic microspheres grafted successfully onto the shell of the graphene oxide surface, and the load was about54.45wt%. Adsorption studies showed that Fe3O4@SiO2–GO had a strong accumulate ability for Cr(III) about pH6.0; dynamic adsorption process was a chemical processes controlled by membrane diffusion and particle diffusion; in good agreement with Freundlich isotherm model, namely uneven surface adsorption process, and adsorption capacity was about4.7mg/g; electrostatic adsorption and ion exchange process were the two principal mechanisms in Cr(III) removal.
     Fe3O4@SiO2–GO–IIP was prepared successfully with magnetic graphene oxide as the carrier by the surface ion imprinting technique. Adsorption studies showed that dynamic adsorption process was a chemical processes controlled by particle diffusion; in good agreement with Langmuir isotherm model just as the monolayer adsorption, and adsorption capacity was about0.25mg/g; Fe3O4@SiO2–GO–IIP has a strong identified ability for the target ion; the selectivity of Fe3O4@SiO2–GO–IIP was more than twice than that of Fe3O4@SiO2–GO–NIP; at the same time, Fe3O4@SiO2–GO–IIP had good reusability and stability under the multi–ion interference. Elution completely was achieved only through five times consecutive elution using4mL0.1mol/L HCl.
     The effects of four pollutants such as proteins, oils (glycerol), carbohydrates and inorganic salts on chromium removal on Fe3O4@SiO2–GO–IIP were investigated. The results showed that the presence of the protein in favor for chromium removal, while oils, salts and carbohydrates, played a negative impact, the orders of the impact were: protein>oils>inorganic salt>carbohydrate. With pollutant loads increased, the efficiency of chromium removal showed a decreasing trend. Guiding basis for wastewater pre–assessment were glycerol concentration≤60mg/L, salt concentration≤80mg/L and carbohydrates≤750mg/L. The concentrations of oils, carbohydrates and inorganic salts in secondary effluent did not reach the level of significant impact adsorption properties of ion imprinted materials.
     The treatment results of secondary effluent showed that when the dosage of Fe3O4@SiO2–GO–IIP reached4g/L at a contact time of2h, chromium removal was up to90%, chromium content in the treated water was less than0.3mg/L meeting fully the GB30486–2013emission standard. Fe3O4@SiO2–GO–IIP reached adsorption saturation can be regenerated using4mL0.1mol/L HCl, and adsorption efficiency had not changed in six repeated experiments, indicating that reuse of imprinted material is better.
     The leaching results of Cr–sludge showed that the feasible condition for chromium recovery from wet Cr–sludge was as follows:4%H2SO4as the leaching acid, Cr–sludge (dry weight) load23.55g/L, extraction time60min, and reaction temperature30°C. A chromium recovery of20.86mg/g was obtained under the feasible condition with a recovery rate of91.8%. The experimental results of ion exchange about acid–dissolution water showed that the optimum adsorbent concentration about acid–dissolution water was6g/L, and adsorption efficiency was up to80%. The IRN77resin can be eluted effectively up to95%using10%sulfuric acid as eluent, and further realizing IRN77reuse.2.5%NaCLO(v/v) could improve effectively adsorption efficiency and reusability significantly. The dynamic adsorption process was a chemical processes controlled by film diffusion; in good agreement with Langmuir isotherm model; adsorption mechanism was endothermic, entropy–driven ion exchange.
     Through this research, the technology of chromium recovery from secondary effluent using Fe3O4@SiO2–GO–IIP was established; and a complete Cr–sludge resource reuse system was established, which could make the continuous reuse of chromium from Cr–sludge become a reality.
引文
[1]钟安清.皮革加工业绿色发展的思考[J].中国检验检疫,2006,6:52–53.
    [2] China Leather Industry Association. Annual Report [M]. Beijing: China LeatherIndustry Association,2001.
    [3] European Commission. EC water framework directive (2000/60/EC)[J]. OfficialJournal of European Commission,2000,43:1–72.
    [4]高忠柏,苏超英.制革工业废水处理[M].北京:化学工业出版社,2001:8–10.
    [5]李晓星,俞从正,马兴元.制革废水处理的研究进展[J].中国皮革,2003,32(19):26–31.
    [6]吴浩汀.制革废水处理技术探讨及展望[J].中国皮革,2000,29(19):6–8.
    [7]耿士锁.制革废水处理新工艺[J].贵州环保科技,2004,10(1):21–26.
    [8]张志杰,马建中,储芸.我国皮革工业的现状及皮革科技工作者的责任[J].中国皮革,2005,1: l–4.
    [9]化学工业出版社编写.水处理工程典型设计实例[M].北京:化学工业出版社,2005:341–353.
    [10]俞从正,陈永芳,马兴元,等.皮革工业环境污染的对策(I)–世界皮革工业的环境状况[J].中国皮革,2004,17:3–36.
    [11] Madadrang C J, Kim H Y, Gao G, et al. Adsorption behavior of EDTA–grapheneoxide for Pb(II) removal [J]. Applied Materials&Interfaces,2012,4:11861193.
    [12] Hao L, Song H, Zhan L g, et al. SiO2/graphene composite for highly selectiveadsorption of Pb(II) ion [J]. Journal of Colloid and Interface Science,2012,369:381–387.
    [13] Liu L, Li C, Bao C, et al. Preparation and characterization of chitosan/grapheneoxide composites for the adsorption of Au(III) and Pd(II)[J]. Talanta,2012,93:350–357.
    [14] Seredych M, Bandosz T J. Adsorption of ammonia on graphite oxide/Al13composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,353:30–36.
    [15] Seredych M, Bandosz T J. Effects of surface features on adsorption of SO2onGraphite Oxide/Zr(OH)4composites [J]. The Journal of Physical Chemistry C,2010,114:14552–14560.
    [16] Xie G, Xi P, Liu H, et al. A facile chemical method to produce superparamagneticgraphene oxide–Fe3O4hybrid composite and its application in the removal of dyesfrom aqueous solution [J]. Journal of Materials Chemistry,2012,22:1033–1039.
    [17] Chandra V, Park J, Chun Y, et al. Water–dispersible magnetite–reduced grapheneoxide composites for arsenic removal [J]. ACS Nano,2010,4(7):3979–3986.
    [18] Zhu J, Wei S, Gu H, et al. One–pot synthesis of magnetic graphenenanocomposites decorated with core@double–shell nanoparticles for fastchromium removal [J]. Environmental Science and Technology,2012,46:977985.
    [19]齐晶瑶,李欣,边疆. Fe(III)分子印迹聚合物微球制备及性能[J].材料科学与工艺,2007,15(6):767–769.
    [20]李欣,朱建华,齐晶瑶.分子印迹技术选择吸附去除水中Cu(II)离子的研究[J].给水排水,2007,33(5):35–37.
    [21]谭擎天,刘文涛,李国英.制革污泥处理技术的现状及研究进展[J].皮革与化工,2010,27(4):20–24.
    [22]马云,刘存海.高浓度含铬污水中铬的回收及其利用[J].表面技术,2004,33(3):56–58.
    [23]王娟娟,马晓燕,晁小练.镀铬废液的回收及利用[J].电镀与精饰,2004,26(5):32–35.
    [24] Sahu S K, Meshram P, Pandey B D, et al. Removal of chromium(III) by cationexchange resin, Indion790for tannery waste treatment [J]. Hydrometallurgy,2009,99:170–174.
    [25]徐泠,王军,李康魁,等.制革厂铬鞣废液直接循环利用技术[J].工业水处理,1999,19(6):45–46.
    [26]闫晓,汪建根,牛涛涛.铬鞣废水回用技术的研究进展[J].西部皮革,2009,31(1):33–36.
    [27] Mustafa S, Shah K H, Naeem A, et al. Chromium(III) removal by weak acidexchanger Amberlite IRC–50(Na)[J]. Journal of Hazardous Materials,2008,160:1–5.
    [28] Tokal oglu S, Arsav S, Delibas A, et al. Indirect speciation of Cr(III) and Cr(VI) inwater samples by selective separation and preconcentration on a newly synthesizedchelating resin [J]. Analytica Chimica Acta,2009,645:36–41.
    [29] Nakashio F. Recent advances in separation of metals by liquid surfactantmembranes [J]. Journal of Chemical Engineering of Japan,1993,26(2):123–133.
    [30]赵全永,丁绍兰.乳状液膜分离Cr(III)的研究[D].西安:陕西科技大学,2006.
    [31] Hafez A I, El–Manharawy M S, Khedr M A. RO membrane removal of unreactedchromium from spent tanning effluent. A pilot–scale study, Part2[J].Desalination,2002,144:237–242.
    [32] Das C, Patel P, De S, et al. Treatment of tanning effluent using nanofiltrationfollowed by reverse osmosis [J]. Separation and Purification Technology,2006,50:291–299.
    [33] Lambert J, Rakib M, Durand G, et al. Treatment of solutions containing trivalentchromium by electrodialysis [J]. Desalination,2006,191:100–110.
    [34]牛涛涛,汪建根,李振玉,等.膜技术在制革废水处理中的研究进展[J].西部皮革,2008,30(2):27–30.
    [35]赵丽,王成靖.电解还原法处理含铬废水[J].科技导报,2006,24(11):58–60.
    [36] Kakakhel L, Lutfullah G, Bhanger M I, et a1.Electrolytic recovery of chromiumsalts from tannery waste water [J]. Journal of Hazardous Materials,2007,148(11):560–565.
    [37] Golder A K, Samanta A N, Ray S. Removal of trivalent chromium byelectrocoagulation [J]. Separation and Purification Technology,2007,53:33–41.
    [38] Nadhem K H, Chen X, Mohammed M F, et al. Adsorption kineties for the removalof chromium(VI) from aqueous solution by adsorbents derived from used tyres andsawdust [J]. Chemical Engineering Journal,2001,84:95–105.
    [39] Namasivayam C, Kadirvelu K. Activated carbons Prepared from coir pith byPhysical and chemical activation methods [J]. Bioresource Technology,1997,62:123–127.
    [40] Kadirvelu K, Namasivayam C. Activated carbons from coconut coir–Pith as metaladsorbent: adsorption of Cd(II) from aqueous solution [J]. Advances inEnvironmental Research,2003,7:471–478.
    [41] Arulkumar M, Thirumalai K, Sathishkumar P, et al. Rapid removal of chromiumfrom aqueous solution using novel prawn shell activated carbon [J]. ChemicalEngineering Journal,2012,(185–186):178–186.
    [42] Pehlivan E, Kahraman H, Pehlivan E. Sorption equilibrium of Cr(VI) ions on oakwood charcoal (Carbo Ligni) and charcoal ash as low–cost adsorbents [J]. FuelProcessing Technology,2011,92:65–70.
    [43] Kobya M. Removal of Cr(VI) aqueous solution by onto hazelnut shell activatedcarbon: kinetic and equilibrium studies [J]. Bioresource Technology,2004,91:317–321.
    [44] Altun T, Pehlivan E. Removal of Cr(VI) from aqueous solutions by modifiedwalnut shells [J]. Food Chemistry,2012,132:693–700.
    [45] Zhou Y M, Jin Q, Zhu T W, et al. Removal of Chromium(VI) from AqueousSolution by Cellulose Modified with D–Glucose[J]. Separation Science andTechnology,2012,47:157–165.
    [46] Chen S H, Yue Q Y, Gao B Y, et al. Adsorption of hexavalent chromium fromaqueous solution by modified corn stalk: A fixed–bed column study [J].Bioresource Technology,2012,113:114–120.
    [47] Meena A K, Kadirvelu K, Mishra G. K, et al. Adsorptive removal of heavy metalsfrom aqueous solution by treated sawdust (Acacia Arabica)[J], Journal ofHazardous Materials,2008,150:604–611.
    [48] Gupta S, Babu B V, Removal of toxic metal Cr(VI) from aqueous solutions usingsawdust as adsorbent: equilibrium, kinetics and regeneration studies [J], ChemicalEngineering Journal,2009,150:352–365.
    [49] Papandreou A D, Stournaras C J, Panias D, et al. Adsorption of Pb(II), Zn(II) andCr(III) on coal fly ash porous pellets [J]. Minerals Engineering,2011,24:1495–1501.
    [50] Srivastava S K, Gupta VK, Mohan D. Removal of lead and chromium by activatedslag–A blast–furnace waste [J]. Journal of Environmental Engineering,1997,123:461–468.
    [51] Selvaraj K, Manonmani S, Pattabhi S. Removal of hexavalent chromium usingdistillery sludge [J]. Bioresource Technology,2003,89(2):207–211.
    [52] Gupta V K, Gupta M, Sharma S. Process development for the removal of lead andchromium from aqueous solutions using red mud–an aluminium industry waste [J].Water Research,2001,35(5):1125–1134.
    [53] Wu Y, Zhang S, Guo X, et al. Adsorption of chromium(III) on lignin [J].Bioresource Technology,2008,99(16):7709–7715.
    [54] Huang Y H, Hsueh C L, Cheng H P, et al. Thermodynamics and kinetics ofadsorption of Cu(II) onto waste iron oxide [J]. Journal of Hazardous Materials,2007,144(1–2):406–411.
    [55] Malkoc E, Nuhoglu Y. Potential of tea factory waste for chromium(VI) removalfrom aqueous solutions: Thermodynamic and kinetic studies [J]. Separation andPurification Technology,2007,54:291–298.
    [56] Ar ca M Y, Bayramo glu G.. Cr(VI) biosorption from aqueous solutions using freeand immobilized biomass of Lentinus sajor–caju: preparation and kineticcharacterization [J], Colloids and Surfaces A: Physicochemical and EngineeringAspects,2005,253(1–3):203–221.
    [57] Onyancha D, Mavura W, Ngila J C, et al. Studies of chromium removal fromtannery wastewaters by algae biosorbents, Spirogyra condensata and Rhizocloniumhieroglyphicum [J]. Journal of Hazardous Materials,2008,158:605–614.
    [58] Sekhar K C, Subramanian S, Modak J M, et al. Removal of metal ions using anindustrial biomass with reference to environmental control [J], InternationalJournal of Mineral Processing,1998,53(1–2):107–120.
    [59] Rabbani M, Ghafourian H, Sadeghi S, et al. Biosorption of chromium(III) by newbacterial strain (NRC–BT–2)[J], International Congress Series,2005,1276:268–269.
    [60] Santosa S J, Siswanta D, Sudiono S, et al. Chitin–humic acid hybrid as adsorbentfor Cr(III) in effluent of tannery wastewater treatment [J]. Applied Surface Science,2008,254:7846–7850.
    [61] Elangovan R, Philip L, Chandraraj K. Biosorption of chromium species by aquaticweeds: Kinetics and mechanism studies [J]. Journal of Hazardous Materials,2008,152:100–112.
    [62] Moussavi G, Barikbin B. Biosorption of chromium(VI) from industrial wastewateronto pistachio hull waste biomass [J]. Chemical Engineering Journal,2010,162:893–900.
    [63] Wen Y, Tang Z R, Chen Y, et al. Adsorption of Cr(VI) from aqueous solutions usingchitosan–coated fly ash composite as biosorbent [J]. Chemical Engineering Journal,2011,175:110–116.
    [64] Gladysz–Plaska A, Majdan M, Pikus S, et al. Simultaneous adsorption ofchromium(VI) and phenol on natural red clay modified by HDTMA [J]. ChemicalEngineering Journal,2012,179:140–150.
    [65] Mousavi Z H, Hosseinifar A, Jahed V. Studies of the adsorption thermodynamicsand kinetics of Cr(III) and Ni(II) removal by polyacrylamide [J]. Journal of theSerbian Chemical Society,2012,77(3):393–405.
    [66] Calvo L F, Otero M, Jenkins B M, et al. Heating process characteristics andkinetics of sewage sludge in different atmospheres [J]. Thermochimica Acta,2004,409(2):127–135.
    [67]周建红,刘存海,张学忠.含铬污泥的堆肥化处理及其复合肥的应用效果[J].西北轻工业学院学报,2002,20(2):8–10.
    [68] Shen S B, Tyagi R D, Blais J F, et al. Bacterial leaching of metals from tannerysludge by indigenous sulphur–oxidizing bacteria–effect of sludge solidsconcentration [J]. Journal of Environmental Engineering,2003,129(6),513–519.
    [69] Hanay O, Hasar H, Kocer N N. Effect of EDTA as washing solution on removingof heavy metals from sewage sludge by electrokinetic [J]. Journal of HazardousMaterials,2009,169(1–3):703–710.
    [70] Kersch C, Van Roosmalen M J E, Woerlee G F, et al. Extraction of heavy metalsfrom fly ash and sand with ligands and supercritical carbon dioxide [J]. Industrial&Engineering Chemistry Research,2000,39(12):4670–4672.
    [71] Geim A K, Novoselov K S. The rise of grapheme [J]. Nature Materials,2007,6:183–191.
    [72] Brodie B C. Sur le Poids atomique du graphite [J]. Annales De Chimie Et DePhysique,1860,59:466–472.
    [73] Staudenmaier L. Verfahren Zur Darstellung Der Graphitsaure [J]. Berichte derDeutschen Chemischen Gesellschaft,1898,31:1481–1499.
    [74] Hummers W S, Offeman R E. Preparation of Graphitic Oxide [J]. Journal of theAmerican Chemical Society,1958,80(6):1339–1339.
    [75] Peckett J W, Trens P, Gougeon R D, et al. Electrochemically oxidized graphitecharacterization and Some Ion Exchange Properties [J]. Carbon,2000,38(3):345–353.
    [76] Hudson M J, Hunter–Fujita F R, Peckett J W, et al. Electrochemically preparedcolloidal oxidized graphite [J]. Journal of Materials Chemistry,1997,7(2):301–305.
    [77] Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in AtomicallyThin Carbon Films [J]. Science,2004,306(5696):666–669.
    [78] Trepanier M, Tavasoli A, Dalai A K, et al. Co, Ru and K loadings effects on theactivity and selectivity of carbon nanotubes supported cobalt catalyst inFischer–Tropsch synthesis [J]. Applied Catalysis A: General,2009,353(2):193–202.
    [79] Cheng J P, Fernando K A S, Veca L M, et al. Reversible accumulation ofPEGylated single–walled carbon nanotubes in the mammalian uncleus [J]. AcsNano,2008,2(10):2085–2094.
    [80] Yang M H, Kostov Y, Bruck H A, et al. Carbon nanotubes with enhancedchemiluminescence lmmunoassay for CCD–Based detection of staphylococcalenterotoxin B in food [J]. Analytical Chemistry,2008,80(22):8532–8537.
    [81] Viculis L M, Mack J J, Kaner R B. A chemical route to carbon nanoscrolls [J].Science,2003,299(5611):1361.
    [82] Kaniyoor A, Baby T T, Ramaprabhu S. Graphene synthesis via hydrogen inducedlow temperature exfoliation of graphite oxide [J]. Journal of Materials Chemistry,2010,20:8467–8469.
    [83] Li Z J, Cheng Z G, Fang Y, et al. Spontaneous Formation of Nanostructures inGraphene [J]. Nano Letters,2009,9(10):3599–3602.
    [84] Wu Z S, Ren W C, Cheng H M, et al. Synthesis of high–quality graphene with apre–determined number of layers [J]. Carbon,2009,47:493–499
    [85] Wu Z S, Ren W C, Gao L B, et al. Efficient Synthesis of Graphene NanoribbonsSonochemically Cut from Graphene Sheets [J]. Nano Research,2010,3(1):16–22.
    [86] Ramesh P, Bhagyalakshmi S,Sampath S. Preparation and Physicochemical andelectrochemical characterization of exfoliated graphite oxide [J].Journal ofColloid and Interface Science,2004,274(l):95–102.
    [87] Li X, Wang X, Zhang L, et al. Chemically Derived, Ultrasmooth GrapheneNanoribbon Semiconductors [J]. Science,2008,319(5867):1229–1232.
    [88] Cai W, Piner R D, Stadermann F J, et al. Synthesis and solid–state NMR structuralcharacterization of13C–labeled graphite oxide [J]. Science,2008,321(5897):1815–1817.
    [89] Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization ofgraphene oxide paper [J]. Nature,2007,448:457–460.
    [90] Wen Y Q, Xing F F, He S J, et al. A graphene–based fluorescent nanoprobe forsilver(I) ions detection by using grapheme oxide and a silver–specificoligonucleotide [J]. Chemical Communications,2010,46:2596–2598.
    [91] Wang H L, Hao Q L, Yang X J, et al. Graphene oxide doped polyaniline forsupercapacitors [J]. Electrochemistry Communications,2009,11:1158–1161.
    [92] Niyogi S, Bekyarova E, Itkia M E, et al. Solution properties of graphite andgraphene [J]. Journal of the American Chemical Society,2006,128:7720–7721.
    [93] Lomeda J R, Doyle C D, Kosynkin D V, et al. Diazonium functionalization ofsuefactant–wrapped chemically convented graphene sheets [J]. Journal of theAmerican Chemical Society,2008,130:16201–16206.
    [94] Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation ofisocyanate–treated graphene oxide nanoplatelets [J]. Carbon,2006,44:3342–3347.
    [95] Veca L M, Lu F S, Meziani M J, et al. Polymer functionalization andsolubilization of carbon nanosheets [J]. Chemical Communications,2009,2565–2567.
    [96] Shen J F, Hu Y Z, Li C, et al. Synthesis of amphiphilic graphene nanoplatelets [J].Small,2009,5:82–85.
    [97] Xu Y F, Liu Z B, Zhang X L, et al. A grapheme hybrid material covalentlyfunctionalized with porphyrin: synthesis and optical limiting property [J].Advanced Materials,2009,21:1275–1279.
    [98] Zhang X Y, Huang Y, Wang Y, et al. Synthesis and characterization of agraphene–C60hybrid material [J]. Carbon,2008,47:334–337.
    [99] Zhang X Y, Liu Z B, Huang Y, et al. Synthesis, characterization and nonlinearoptical property of graphene–C60hybrid [J]. Journal of Nanoscience andNanotechnology,2009,9:5752–5756.
    [100] Valles C, Drummond C, Saadaoui H, et al. Solutions of negatively chargedgraphene sheets and ribbons [J]. Journal of the American Chemical Society,2008,130:15802–15804.
    [101] Liang Y Y, Wu D Q, Feng X L, et al. Dispersion of graphene sheets in organicsolvent supported by ionic interactions [J]. Advanced Materials,2009,21:1679–1683.
    [102] Yang X Y, Zhang Z Y, Liu Z F, et al. High efficiency loading and controlledrelease of doxorubicin hydro–chloride on graphene oxide [J]. The Journal ofPhysical Chemistry C,2008,112:17554–17558.
    [103] Patil A J, Vickery J L, Scott T B, et al. Aqueous stabilization and self–assemblyof graphene sheets into layered bio–nanocomposites using DNA [J]. AdvancedMaterials,2009,21(31):3159–3164.
    [104] Xu Y X, Bai H, Lu G W, et al. Flexible graphene films via the filtration ofwater–soluble noncovalent functionalized graphene sheets [J]. Journal of theAmerican Chemical Society,2008,130:5856–5857.
    [105] Stankovich S, Piner R D, Chen X Q, et al. Stable aqueous dispersions ofgraphitic nanoplatelets via the reduction of exfoliated graphene oxide in thepresence of poly(sodium4–styrenesulfonate)[J]. Journal of Materials Chemistry,2006,16:155–158.
    [106]柯阳船.聚合物–无机纳米复合材料[M].北京:化学工业出版社,2003:43.
    [107] Bai H, Xu Y, Zhao L, et al. Non–covalent functionalization of graphene sheets bysulfonated polyaniline [J]. Chemical communications,2009,13:1667–1669.
    [108] Zhang L L, Zhao S Y. Layered Graphene Oxide Nanostructures with SandwichedConducting Polymers as Supercapacitor Electrodes [J]. Langmuir,2010,26(22):17624–17628.
    [109] Ramanathan T, Abdala AA, Stankovich S, et al. Functionalized grapheme sheetsfor polymer nanocomposites [J]. Nature Nanotechnology,2008,3(6):327–331.
    [110] Wu Z S, Ren W C, Wen L,et al. Graphene Anchored with Co3O4Nanoparticles asAnode of Lithium Ion Batteries with Enhanced Reversible Capacity and CyclicPerformance [J]. ACS Nano,2010,4(6):3187–3194.
    [111] Wu Z S, Ren W C, Wang D W, et al. High–Energy MnO2Nanowire/Grapheneand Graphene Asymmetric Electrochemical Capacitors [J]. ACS Nano,2010,4(10):5835–5842.
    [112] Wu Z S, Wan D W, Ren W, et al. Anchoring Hydrous RuO2on Graphene Sheetsfor High–Performance Electrochemical Capacitors [J]. Advanced FunctionalMaterials,2010,20(20):3595–3602.
    [113] Zou F, Yu Y, Cao N, et al. A novel approach for synthesis of TiO2–graphenenanocomposites and their photoelectrical properties [J]. Scripta materialia,2011,64(7):621–624.
    [114] Zhou G M, Wang D W, Li F, et al. Graphene–wrapped Fe3O4anode material withimproved reversible capacity and cyclic stability for lithium ion batteries [J].Chemistry of Material,2010,22(18):5306–5313
    [115] Li Y, Tang L, Li J. Preparation and electrochemical performance for methanoloxidation of Pt/Graphene nanocomposites [J]. Electrochemistry Communication,2009,11:846–849.
    [116] Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation ofisocyanate–treated graphene oxide nanoplatelets [J]. Carbon,2006,44(15):3342–3347.
    [117] Zhang D D, Zua S Z, Han B H. Inorganic–organic hybrid porous materials basedon graphite oxide sheets [J]. Carbon,2009,47:2993–3000.
    [118] Schüler D. Formation of magnetosomes in magnetotactic bacteria [J]. Journal ofmolecular microbiology and Biotechnology,1999,1:79–86.
    [119] Walker M, Diebel C, Haugh C, et al, Structure and function of the vertebratemagnetic sense [J]. Nature,1997,390(6658):371–376.
    [120] Fauconnier N, Pons J N, Roger J, et al. Thiolation of maghemite nanoparticles bydimercaptosuccinic acid [J]. Journal of Colloid and Interface Science,1997,194:427–433.
    [121] Liu C, Huang P M. Atomic force microscopy and surface characteristics of ironoxides formed in citrate solutions [J]. Soil Science Society of America Journal,1999,63:65–72.
    [122] Paul K G, Frigo T B, Groman J Y, et al. Synthesis of ultrasmallsuperparamagnetic iron oxides using reduced polysaccharides [J]. BioconjugateChemistry,2004,15:394–401.
    [123] Xu Z C, Gao H J, Sun S H, et al. Oleylamine as both reducing agent and stabilizerin a facile synthesis of magnetite nanoparticles [J]. Chemistry of Materials,2009,21:1778–1780.
    [124] Jana N R, Chen Y, Peng X G. Size and shape–controlled magnetic (Cr, Mn, Fe,Co, Ni) oxide nanocrystals via a simple and general approach [J]. Chemistry ofMaterials,2004,16(20):3931–3935.
    [125] Li Z H, Chen H, Bao H B, et al. One–pot reaction to synthesize water–solublemagnetite nanocrystals [J]. Chemistry of Materials,2004,16(8):1391–1393.
    [126] Li Z, Wei L, Gao M Y, et al. One–pot reaction to synthesize biocompatiblemagnetite nanoparticles [J]. Advanced Materials,2005,17(8):1001–1005.
    [127] Xu H, Cui L L, Gu H C, et al. Development of high magnetizationFe3O4/Polystyrene/Silica nanospheres via combined miniemulsion/emulsionpolymerization [J]. Journal of the American Chemical Society,2006,128(49):15582–15583.
    [128] Wang J, Sun J, Sun Q, et al. One–step hydrothermal process to prepare highlycrystalline Fe3O4nanoparticles [J]. Materials research bulletin,2003,38:1113–1118.
    [129] Mao B, Kang Z, Wang E, et al. Synthesis of magnetite octahedrons from ironpowders through a mild hydrothermal method [J]. Materials research bulletin,2006,41:2226–2231.
    [130] Zhu H, Yang D, Zhu L. Hydrothermal growth and characterization of magnetite(Fe3O4) thin films [J]. Surface and Coatings Technology,2007,201:5870–5874.
    [131] Xuan S H, Hao L Y, Jiang W Q, et al. Preparation of water–soluble magnetitenanocrystals through hydrothermal approach [J]. Journal of Magnetism andMagnetic Materials,2007,308(2):210–213.
    [132] Lu J, Jiao X L, Chen D R, et al. Solvothermal synthesis and characterization ofFe3O4and γ–Fe2O3nanoplates [J]. The Journal of Physical Chemistry C,2009,113:4012–4017.
    [133] Lee J W, Lee Y J, Hyeon T, et al. Simple synthesis of functionalizedsuperparamagnetic magnetite/silica core/shell nanoparticles and their applicationas magnetically separable high–performance biocatalysts [J]. Small,2008,4(1):143–152.
    [134] Cohen H, Gedanken A, Zhong Z Y. One–step synthesis and characterization ofultrastable and amorphous Fe3O4colloids capped with cysteine molecules [J]. TheJournal of Physical Chemistry C,2008,112:15429–15438.
    [135] Morel A L, Nikitenko S I, Simonoff M, et al. Sonochemical approach to thesynthesis of Fe3O4@SiO2core_shell nanoparticles with yunable properties [J].ACS Nano,2008,2(5):847–856.
    [136] Cheon J, Kang N J, Lee S M,et al. Shape evolution of single–crystalline ironoxide nanocrystals [J]. Journal of the American Chemical Society,2004,126(7):1950–1951.
    [137] Butter K, Bomans P H, Frederik P M, et al. Direct observation of dipolar chains iniron ferrofluids by cryogenic electron microscopy [J]. Nature Materials,2003,2(2):88–91.
    [138] Teng X, Yang H, Effects of surfactants and synthetic conditions on the sizes andself–assembly of monodisperse iron oxide nanoparticles [J]. Journal of MaterialsChemistry,2004,14:774–779.
    [139] Tannebaum R, Reich S, Flenniken C L, et al. Shape control of iron oxidenanoclusters in polymeric media [J]. Advanced Materials,2002,14(19):1402–1405.
    [140].刘翠娟,杨治伟,慎爱民.超声化学的发展与应用[J].佳木斯大学学报,2005,23(2):273–277.
    [141] Wu W, He Q G, Chen H, et al. Sonoehemical gold coating of Fe3O4nanoparticlesand its charaeterizations [J]. Huaxue xuebao,2007,65(13):1273–1279.
    [142]. Suslick K S. Applications of ultrasound to materials chemistry [J]. AnnualReview of Materials Science,1999,29:295–236.
    [143] Mukh–Qasem R A, Gedanken A. Sonochemical synthesis of stable hydrosol ofFe3O4nanoparticles [J]. Journal of Colloid and Interface Science,2005,284(2):489–494.
    [144]季业,邵惠萍,郭志猛,等.超声乳化法制备纳米Fe3O4磁性颗粒及壳聚糖表面改性[J].北京科技大学学报,2011,33(6):751–755.
    [145]王冰,张峰,邱建华,等. Fe3O4超顺磁纳米晶的超声共沉淀法制备及表征[J].化学学报,2009,67(11):1211–1216.
    [146]杨咏来,宁桂玲,吕秉玲.液相法制备纳米粉体时防团聚方法概述[J].材料导报,1998,12(2):11–16.
    [147]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社,2003:207–218.
    [148] Goon I Y, Lai L M H, Amal R, et al. Fabrication and dispersion ofgold–shell–protected magnetite nanoparticles: systematic control usingpolyethyleneimine [J]. Chemistry of Materials,2009,21:673–681.
    [149] Yu H, Chen M, Philip M R, et al. Dumbbell–like bifunctional Au–Fe3O4nanoparticles [J]. Nano Letters,2005,5(2):379–382.
    [150] Chin S F, Iyer K S, Raston C L. Facile and green approach to fabricate gold andsilver coated superparamagnetic nanoparticles [J]. Crystal Growth and Design,2009,9(6):2685–2689.
    [151] Wang C, Daimon H, Sun S H. Dumbbell–like Pt–Fe3O4nanoparticles and theirenhanced catalysis for oxygen reduction reaction [J]. Nano Letters,2009,9(4):1493–1496.
    [152] Gu H W, Yang Z M, Xu B, et al. Heterodimers of nanoparticles: formation at aliquid–liquid interface and particle–specific surface modification by functionalmolecules [J]. Journal of the American Chemical Society,2005,127:34–35.
    [153] Tartaj P, Gonzalez C T, Serana C. Magnetic behavior of γ–Fe2O3nanocrystalsdispersed in colloidal silica particles [J]. The Journal of Physical Chemistry B,2003,107(1):20–24.
    [154] Yang H H, Zhang S Q, Chen X L, et al. Magnetite–containing spherical silicananoparticles for biocatalysis and bioseparations [J]. Analytical Chemistry,2004,76(5):1316–1321.
    [155] Im H S, Herricks T, Lee Y T, et al. Synthesis and characterization ofmonodisperse silica colloids loaded with superparamagnetic iron oxidenanoparticles [J]. Chemical physics letters,2005,401:19–23.
    [156] Lee J W, Lee Y J, Hyeon T, et al. Simple synthesis of functionalizedsuperparamagnetic magnetite/silica core/shell nanoparticles and their applicationas magnetically separable high–performance biocatalysts [J]. Small,2008,4(1):143–152.
    [157] Gupta A K, Gupta M. Synthesis and surface engineering of iron oxidenanoparticles for biomedical applications [J]. Biomaterials,2005,26:3995–4021.
    [158] Denizot B, Tanguy G, Hindre F J, et al. Phosphorylcholine coating of iron oxidenanoparticles [J]. Journal of Colloid and Interface Science,1999,209:66–71.
    [159] Shen L, Laibinis P E, Hatton T A. Bilayer surfactant stabilized magneticfluids:Synthesis and interactions at interfaces [J]. Langmuir,1999,15(2):447–453.
    [160] Sousa M H, Tourinho F A, Depeyrot J, et al. New electric double–layeredmagnetic fluids based on copper, nickel and zinc ferrite nanostructures [J]. TheJournal of Physical Chemistry B,2001,105(6):1168–1175.
    [161] Medarova Z, Evgenov N V, Dai G P, et al. In vivo multimodal imaging oftransplanted pancreatic islets [J]. Nature protocols,2006, l(1):429–435.
    [162]姜忠义,吴洪.分子印迹技术[M].北京:化学工业出版社,2003.
    [163] Haupt K. Imprinted polymers–tailor–made mimics of antibodies and receptors[J]. Chemical Communications,2003,2:171–178.
    [164] Suedee R, Srichana T, Chuchome T, et al. Use of molecularly imprintedpolymers from a mixture of tetracycline and its degradation products to produceaffinity membranes for the removal of tetracycline from water [J]. Journal ofChromatography B,2004,811:191–200.
    [165] Mosbach K, Haupt K. Some new developments and challenges in noncovalentmolecular imprinting technology [J]. Journal of Molecular Recognition,1998,11:62–68.
    [166] Wulff G. Selective binding to polymers via covalent bonds: the construction ofchiral cavities as specific receptor sites [J]. Pure and Applied Chemistry,1982,11:2093–2102.
    [167] Ekberg B, Mosbach K. Molecular imprinting: a technique for producing specificseparation materials [J]. Trends in Biotechnology,1989,7:92–96.
    [168] Wulff G., Best W, Akelah A. Enzyme–analogue built polymers:17. investigationson the racemic resolution of aminoacids [J]. Reactive and Functional Polymers,1984,2:167–174.
    [169] Andersson L I, Sellergren B, Mosbach K, et al. Imprinting of amino acidderivatives in macroporous polymers [J]. Tetrahedron Letters,1984,25:5211–5214.
    [170] Benito–Pen E, Moreno–Bondi M C, Aparicio S, et al. Molecular engineering offluorescent penicillins for molecularly imprinted polymer assays [J]. AnalyticalChemistry,2006,78:2019–2027.
    [171] Li S J, Huang X, Zheng M X, et al. Molecularly imprinted polymers: modulatingmolecular recognition by a thermal phase transition in the binding framework [J].Analytical and Bioanalytical Chemistry,2008,392:177–185.
    [172] Boonpangrak S, Prachayasittikul V, Ye L. Molecularly imprinted polymermicrospheres prepared by precipitation polymerization using a sacrificialcovalent bond [J]. Journal of Applied Polymer Science,2006,99:1390–1398.
    [173] Bolisaya L D, Culverb J N, Kofinas P. Molecularly imprinted polymers fortobacco mosaic virus recognition [J]. Biomaterials,2006,27:4165–4168.
    [174] Tan C J, Tong Y W. Molecularly imprinted beads by surface imprinting [J].Analytical and Bioanalytical Chemistry,2007,389:369–376.
    [175] Zhang N, Hu B, Huang C Z. A new ion–imprinted silica gel sorbent for onlineselective solid–phase extraction of dysprosium(III) with detection by inductivelycoupled plasma–atomic emission spectrometry [J]. Analytica Chimica Acta,2007,597:12–18.
    [176] Zhang N, Suleiman J S, He M, et al. Chromium(III)–imprinted silica gel forspeciation analysis of chromium in environmental water samples with ICP–MSdetection [J]. Talanta,2008,75:536–543.
    [177] Randhawa M, Gartner I, Becker C, et al. Imprinted polymers for waterpurification [J]. Journal of Applied Polymer Science,2007,106:3321–3326.
    [178] Dam A H, Kim D. Metal ion–imprinted polymer microspheres derived fromcopper methacrylate for selective separation of heavy metal ions [J]. Journal ofApplied Polymer Science,2008,108:14–24.
    [179] Gao B J, An F Q, Zhu Y. Novel surface ionic imprinting materials prepared viacouple grafting of polymer and ionic imprinting on surfaces of silica gel particles[J]. Polymer,2007,48:2288–2297.
    [180] Zhai Y H, Yang D, Chang X J, et al. Selective enrichment of trace copper(II)from biological and natural water samples by SPE using ionimprinted polymer[J]. Journal of Separation Science,2008,31:195–120.
    [181] Zhang F J, Cheng G X, Ying X G.. Emulsion and macromolecules templatealginate based polymer microspheres [J]. Reactive&Functional Polymers,2006,66:712–719.
    [182]安富强,高保娇,李刚.硅胶表面铜(II)离子印迹聚乙烯亚胺的制备及结合特性研究[J].高分子学报,2007,4:366–373.
    [183] Jin G Y, Tang Y W. Evaluation of a novel silica–supported sol–gel sorbentprepared by a surface molecular imprinting technique for the selective separationof estazolam from human plasma [J]. Microchim Acta,2009,165:143–149.
    [184] Fu G Q, Yu H, Zhu J. Imprinting effect of protein–imprinted polymers composedof chitosan and polyacrylamide: a re–examination [J]. Biomaterials,2008,29:2138–2142.
    [185] Gao B J, Yang Y, Wang J, et al. Preparation and adsorption characteristic ofpolymeric microsphere with strong adsorbability for creatinine [J]. Journal ofBiochemical and Molecular Toxicology,2008,22(3):166–174.
    [186] Liu R G., Li X, Li Y Q, et al. Effective removal of rhodamine B fromcontaminated water using non–covalent imprinted microspheres designed bycomputational approach [J]. Biosensors and Bioelectronics,2009,25:629–634.
    [187] Yao W, Fang Y J, Li G J, et al. Adsorption of carbaryl using molecularlyimprinted microspheres prepared by precipitation polymerization [J]. Polymersfor Advanced Technologies,2008,19:812–816.
    [188]杨律文,刘含茂,屈贺幂,等.硅胶表面熊果酸分子印迹聚合物的制备和分子识别特性[J].应用化学,2008,25:137–141.
    [189] Qin L, He X W, Li W Y, et al. Molecularly imprinted polymer prepared withbonded β–cyclodextrin and acrylamide on functionalized silica gel for selectiverecognition of tryptophan in aqueous media [J]. Journal of Chromatography A,2008,1187:94–102.
    [190] Shen X T, Zhu L H, Liu G X, et al. Enhanced photocatalytic degradation andselective removal of nitrophenols by using surface molecular imprinted titania[J]. Environmental Science and Technology,2008,42:1687–1692.
    [191] Lee E, Park D W, Lee J O, et al. Molecularly imprinted polymers immobilizedon carbon nanotube [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2008,(313–3140):202–206.
    [192]汪剑,高保娇,郭浩鹏,等.硅胶表面抗蚜威分子印迹聚甲基丙烯酸的制备及识别特[J].功能高分子学报,2008,21:44–49.
    [193] Gltekin A, Diltemiz S E, Ersoz A, et al. Gold–silver nanoclusters havingdipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition [J].Talanta,2009,78:1332–1338.
    [194]邱增英,钟世安.烟酸分子印迹复合膜的制备及其分离性能研究[J].化学学报,2010,68:246–250.
    [195] Guan G J, Liu R Y, Wu M H, et al. Protein–building molecular recognition sitesby layer–by–layer molecular imprinting on colloidal particles [J]. Analyst,2009,134:1880–1886.
    [196] Yao Y J, Miao S D, Yu S M, et al. Fabrication of Fe3O4/SiO2core/shellnanoparticles attached to graphene oxide and its use as an adsorbent [J]. Journalof Colloid and Interface Science,2012,379:20–26.
    [197] Pan G Q, Zu B Y, Guo X Z, et al. Preparation of molecularly imprinted polymermicrospheres via reversible addition–fragmentation chain transfer precipitationpolymerization [J]. Polymer,2009,50:2819–2825.
    [198] Li Y, Zhou W H, Yang H H, et al. Grafting of molecularly imprinted polymersfrom the surface of silica gel particles via reversible addition–fragmentationchain transfer polymerization: a selective sorbent for theophylline [J]. Talanta,2009,79:141–145.
    [199]国家环保局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002:27–30.
    [200] Hirata M, Gotou T, Horiuchi S, et al. Thin–film particles of graphite oxide1:high–yield synthesis and flexibility of the particles [J]. Carbon,2004,42:2929–2937.
    [201] Meenakshi S, Viswanathan N. Identification of selective ion–exchange resin forfluoride sorption [J]. Journal of Colloid and Interface Science,2007,308(2):438–450.
    [202]王永菲,王成国.响应面法的理论与应用[J].中央民族大学学报(自然科学版),2005,14(3):236–239.
    [203] Rai D, Sass B M, Moore D A. Chromium(III) hydrolysis constants and solubilityof chromium(III) hydroxide [J]. Inorganic Chemistry,1987,26:345–349.
    [204] Shen S B, Tyagi R D, Blais J F. Extraction of Cr(III) and other metals fromtannery sludge by mineral acids [J]. Environmental Technology,2001,22:1007–1014.
    [205] Scheckel KG, Sparks DL. Temperature effects on nickel sorption kinetics at themineral–water interface [J]. Soil Science Society of America Journal,2001,65:719–28.
    [206] Mustafa S, Shah KH, Naeem A, et al. Counter–ion effect on the kinetics ofchromium(III) sorption by Amberlyst.15in H(+), Li(+), Na(+), Ca(++),Al(+++) forms [J]. Desalination,2010,264:108–14.
    [207] Hubicki Z, Jakowicz A, Lodyga A, Application of the ion–exchange method toremove metallic ions from waters and sewages [J], Studies in surface science andcatalysis,1999,120:497–531.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700