用户名: 密码: 验证码:
纳米材料的可控合成、功能化及其在肿瘤诊疗中应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大规模高效地制备大小均一、形貌可控的纳米材料一直是研究的热点问题,是推动纳米科学和纳米技术发展的关键。接踵而至的纳米材料的表面功能化推动了纳米技术在生物医学领域中的广泛应用。在新兴的纳米生物医学领域中,将具有先进功能的纳米材料及具有智能响应特性的纳米结构用于疾病的诊断和治疗研究,不仅能为疾病的早期诊断以及发生发展过程提供更直观的证据,而且还有望实现影像介导的药物递送和治疗、影像指导的手术切除和实时监控的治疗应答等。
     本论文内容主要分为两个部分:第一部分是关于纳米材料的两种可控合成方法的开发及其机理研究;第二部分是关于纳米材料的功能化及其在肿瘤诊疗中的应用研究。详述如下:
     1.利用液-液两相法可控合成了金属纳米材料和上转换材料。(1)利用室温甲苯(油相)和水(水相)两相体系,成功地合成了单分散的银、铜、镍和铁等金属纳米颗粒,并对其形成机理进行了讨论。(2)利用油酸-离子液体两相体系,成功地合成了一系列不同形貌的尺寸小于25nm的稀土氟化物上转换发光纳米晶体,包括LaF_3、GdF_3、YF_3、YbF_3、NaGdF_4、NaYF_4和NaYbF_4等,并对其形成机理进行了讨论。
     2.利用牛血清白蛋白(BSA)作为辅助,调控硫族半导体纳米材料的成核与生长,成功地合成了硒化银、硒化镉、硒化铅和硒化铜等纳米材料,并对其生长过程和机理进行了深入的研究,在此基础上对其形成机理提出了假说。
     3.设计和制备了光敏剂偶联的磁性纳米探针。该纳米探针在外加磁场作用下具有磁导向性可以实现肿瘤的磁靶向;在交变磁场作用下,能快速升温具有热疗作用;在激光照射下,展现出光动力学治疗作用;同时该纳米探针还具有核磁共振成像和近红外(NIR)成像的功能,最终有望实现磁靶向药物递送和肿瘤磁荧光成像监控的光动力学和磁致热双模式治疗。
     4.设计和制备了叶酸偶联的二氧化硅包覆的金纳米棒纳米探针。该纳米探针具有肿瘤靶向性、对放射治疗具有增敏作用、具有显著的光热治疗作用,同时,还可以作为X-ray/CT成像的对比剂。该纳米探针有望实现对肿瘤的靶向X-ray/CT成像监控的放射增敏和光热双模式治疗。
     5.设计和制备了叶酸偶联的氧化石墨烯纳米载体。通过疏水相互作用和π-π共轭作用成功地将光敏剂药物二氢卟吩(Ce6)装载到氧化石墨烯表面上,该纳米载体能显著地提高Ce6在肿瘤细胞内聚集的效率,在激光照射下具有显著的光动力学治疗作用。该纳米探针有望实现对肿瘤的靶向成像和光动力学治疗。
     6.设计和制备了光敏剂偶联的碳点纳米探针。利用荧光共振能量转移(FRET)原理,碳点能显著提高光敏剂NIR成像的能力。该纳米探针具有很好的稳定性,无细胞毒性,良好的生物相容性,能高效地在肿瘤部位蓄积,最终成功实现了对肿瘤组织的增强荧光成像监控的光动力学治疗。
The development of efficient methods for the controlled synthesis of nanocrystalswith monodispersity, stability, and predictable morphology is one of the key goals in theadvancement of nanoscience and nanotechnology. Afterwards, the surfacefunctionalization of nanomaterials promotes the extensive applications of nanotechnologyin biomedical field. In the burgeoning nano-bio-medicine field, use of advancednanomaterials and smart stimuli-responsive nanostructures for the diagnosis and treatmentof disease can provide the direct evidence to early diagnosis, occurrence and developmentprogresses of disease, and also enables online imaging of drug for the detection of disease,image-guided drug delivery and treatments, guidance of surgical resection, and monitoringof treatment response.
     This dissertation mainly includes (1) two kinds of controlled synthesis methods ofnanomaterials and their mechanism investigation.(2) surface functionalization ofnanomaterials for tumor theranostic applications. The main contributions are as follows:
     1. Controlled synthesis of metallic and upconversion rare earth fluoride nanocrystals vialiquid-liquid two-phase system.(1) Monodisperse metallic nanocrystals with a narrow sizedistribution such as Ag, Cu, Ni and Fe nanoparticles were synthesized in the toluene-watertwo-phase system at room temperature. A possible mechanism for the formation ofmonodisperse nanocrystals is also discussed.(2) Highly uniform and monodisperse REF_3and NaREF_4(RE=La, Gd, Yb and Y) nanocrystals with small size (<25nm) anddifferent morphologies were synthesized in the oleic acid (OA)/ionic liquids (ILs)two-phase system. A possible mechanism for the formation of monodisperse nanocrystalsis also discussed.
     2. Bovine serum albumin (BSA)-conjugated MxSey(M=Ag, Cd, Pb, Cu) nanomaterialswith different shapes and sizes were synthesized in water at room temperature by aprotein-directed, solution-phase, green synthetic method. A possible mechanism for theformation of semiconductor chalcogenides in the BSA solution is discussed.
     3. Design and preparation of photosensitizer-conjugated magnetic nanoparticles. Thisnanoprobe can offer magnetically guided drug delivery under external magnetic field,induce hyperthermia under an alternating magnetic field, and display remarkablephotodynamic efficacy upon laser irradiation. Our results indicated that the synthesizedmultifunctional nanoprobe is potential for magnetically guided drug delivery,simultaneous magnetofluorescent imaging-guided dual-modal photodynamic therapy(PDT) and hyperthermia.
     4. Design and preparation of folic acid-conjugated silica-modified gold nanorods. Thisnanoprobe show highly selective targeting, enhanced radiation therapy (RT) andphoto-thermal therapy (PTT) effects on MGC803gastric cancer cells, and also exhibitedstrong X-ray attenuation for in vivo X-ray and computed tomography (CT) imaging. Thesynthesized nanoprobe is a good candidate with excellent imaging and targeting ability forX-ray/CT imaging-guided targeting dual-modal enhanced RT and PTT.
     5. Design and preparation of folic acid-conjugated graphene oxide (GO). Thephotosensitizer (PS) Chlorin e6(Ce6) was effectively loaded into the system viahydrophobic interactions and π-π stacking. The nanocarriers can significantly increase theaccumulation of Ce6in tumor cells and lead to a remarkable photodynamic efficacy onMGC803cells upon irradiation. These suggested that folic acid-conjugated GO loadedCe6had great potential as effective drug delivery system in targeting PDT.
     6. Design and preparation of chlorin e6-conjugated C-dots (C-dots-Ce6). C-dots canenhance the fluorescence of Ce6on C-dots-Ce6by the F rster (fluorescence) resonanceenergy transfer (FRET). The C-dots-Ce6owns good stability, noncytotoxicity, goodbiocompatibility, enhanced photosensitizer fluorescence detection and remarkablephotodynamic efficacy upon irradiation. The synthesized nanoprobe is effective forsimultaneous enhanced-fluorescence imaging-guided PDT.
引文
[1] Siegel, R.,Naishadham, D.,Jemal, A. Cancer statistics,2012[J]. CA Cancer J. Clin.,2012,6210-29.
    [2] Jemal, A.,Bray, F.,Center, M. M., et al. Global cancer statistics[J]. CA Cancer J Clin.,2011,61(2):69-90.
    [3] Ferlay, J.,Shin, H. R.,Bray, F., et al. Estimates of worldwide burden of cancer in2008:GLOBOCAN2008[J]. Int. J. Cancer,2010,127(12):2893-2917.
    [4] Park, K.,Lee, S.,Kang, E., et al. New generation of multifunctional nanoparticles for cancerimaging and therapy[J]. Adv.Funct. Mater.,2009,19(10):1553-1566.
    [5]崔大祥.肿瘤纳米诊断和治疗技术的研究现状与发展前景[J].中国肿瘤生物治疗杂志,2008,15(5):401-405.
    [6] Song, H.,He, R.,Wang, K., et al. Anti-HIF-1[alpha] antibody-conjugated pluronic triblockcopolymers encapsulated with Paclitaxel for tumor targeting therapy[J]. Biomaterials,2010,31(8):2302-2312.
    [7] Weissleder, R. Molecular imaging in cancer[J]. Science,2006,312(5777):1168-1171.
    [8]乔瑞瑞,曾剑峰,贾巧娟, et al.磁性氧化铁纳米颗粒-通向肿瘤磁共振分子影像的重要基石[J].Acta Phys.-Chim. Sin.,2012,28(5):993-1011.
    [9] Celli, J. P.,Spring, B. Q.,Rizvi, I., et al. Imaging and photodynamic therapy: mechanisms,monitoring and optimization[J]. Chem. Rev.,2010,110(5):2795-2838.
    [10]吴晨希,朱朝晖,李方, et al.分子影像:转化医学的重要工具和主要路径[J].生物物理学报,2011,27(4):327-334.
    [11] Weissleder, R. Molecular imaging: exploring the next frontier[J]. Radiology,1999,212(3):609-614.
    [12] Thakur, M. L.,Lentle, B. C.,SNM, R. Joint SNM/RSNA molecular imaging summit statement[J]. JNucl Med,2005,46(9):11N-13N.
    [13] Mankoff, D. A. A definition of molecular imaging[J]. J. Nucl. Med.,2007,48(6):18N-21N.
    [14]龚英,汪登斌.分子影像学对比剂的研究进展[J].国外医学:临床放射学分册,2006,29(5):94-298.
    [15]张莉,李俊峡,祝玉芬, et al.分子影像学的研究进展[J].临床误诊误治,2008,21(006):75-78.
    [16]张贵祥,赵京龙,张峰, et al.研究MRI分子影像学发展的必备条件[J].中国医疗器械信息,2008,14(005):18-20.
    [17] Saji, H. Development of radiopharmaceuticals for molecular imaging[A]. In International congressseries[C],2004;139-147.
    [18]居胜红,陈峰,郑凯尔. MR分子影像学研究的进展[J].中华放射学杂志,2002,36(8):747-750.
    [19]俎栋林.核磁共振成像学[M].高等教育出版社,2004.
    [20] Janib, S. M.,Moses, A. S.,MacKay, J. A. Imaging and drug delivery using theranosticnanoparticles[J]. Adv. Drug Deliver Rev.,2010,62(11):1052-1063.
    [21]黄鹏.磁靶向药物纳米制剂的合成及性能研究[D].东华大学2008.
    [22]杨文胜,高明远,白玉白.纳米材料与生物技术[M].化学工业出版社,2005.
    [23] Fischer, U. Practical MR mammography[M]. medbook,2004.
    [24] Dave, S. R.,Gao, X. Monodisperse magnetic nanoparticles for biodetection, imaging, and drugdelivery: a versatile and evolving technology[J]. Wiley Interdisciplinary Rev. Nanomed.Nanobiotechnol.,2009,1(6):583-609.
    [25]乔瑞瑞,贾巧娟,曾剑峰, et al.磁性氧化铁纳米颗粒及其磁共振成像应用[J].生物物理学报,2011,27(4):272-288.
    [26] Qiao, R.,Yang, C.,Gao, M. Superparamagnetic iron oxide nanoparticles: from preparations to invivo MRI applications[J]. J. Mater. Chem.,2009,19(35):6274-6293.
    [27] De Leon-Rodriguez, L. M.,Lubag, A. J. M.,Malloy, C. R., et al. Responsive MRI agents forsensing metabolism in vivo[J]. Acc. Chem. Res.,2009,42(7):948-957.
    [28] Tanaka, K.,Narita, A.,Kitamura, N., et al. Preparation for highly sensitive MRI contrast agentsusing core/shell type nanoparticles consisting of multiple SPIO cores with thin silica coating[J].Langmuir,2010,26(14):11759-11762.
    [29] Rad, A. M.,Arbab, A. S.,Iskander, A., et al. Quantification of superparamagnetic iron oxide(SPIO)‐labeled cells using MRI[J]. J. Magn. Reson. Imaging,2007,26(2):366-374.
    [30] Gurker, N. X-Ray Imaging[J]. Adv. X-ray Anal.,1980,23263-272.
    [31]郭兴明.医学成像技术[M].重庆大学出版社,2005.
    [32]李月卿.医学影像成像理论[J].北京:人民卫生出版社,2003,4290-302.
    [33] Popovtzer, R.,Agrawal, A.,Kotov, N. A., et al. Targeted gold nanoparticles enable molecular CTimaging of cancer[J]. Nano Lett.,2008,8(12):4593-4596.
    [34] Li, J.,Chaudhary, A.,Chmura, S. J., et al. A novel functional CT contrast agent for molecularimaging of cancer[J]. Phys. Med. Biol.,2010,554389.
    [35]Hainfeld, J.,Slatkin, D.,Focella, T., et al. Gold nanoparticles: a new X-ray contrast agent[J]. Brit. J.Radiol.,2006,79(939):248-253.
    [36] Kim, D.,Park, S.,Lee, J. H., et al. Antibiofouling polymer-coated gold nanoparticles as a contrastagent for in vivo X-ray computed tomography imaging[J]. J. Am. Chem. Soc.,2007,129(24):7661-7665.
    [37] Cai, Q. Y.,Kim, S. H.,Choi, K. S., et al. Colloidal gold nanoparticles as a blood-pool contrastagent for X-ray computed tomography in mice[J]. Invest. Radiol.,2007,42(12):797-806.
    [38]申宝忠.分子影像学是未来医学影像学发展的方向和主导[J].中华放射学杂志,2008,42(1).
    [39]张怡,韩彧,赵春林.活体动物体内光学成像技术的研究进展[J].生命科学,2006,18(1):25-30.
    [40] Matz, M. V.,Fradkov, A. F.,Labas, Y. A., et al. Fluorescent proteins from nonbioluminescentAnthozoa species[J]. Nat. Biotechnol.,1999,17(10):969-973.
    [41]吴心云,王占科.超声微泡及其在分子影像诊断和靶向治疗中的应用[J].现代诊断与治疗,2012,22(6):353-357.
    [42] Tinkov, S.,Bekeredjian, R.,Winter, G., et al. Microbubbles as ultrasound triggered drug carriers[J].J. Pharm. Sci.,2009,98(6):1935-1961.
    [43] Hernot, S.,Klibanov, A. L. Microbubbles in ultrasound-triggered drug and gene delivery[J]. Adv.Drug deliver. Rev.,2008,60(10):1153-1166.
    [44]王志刚.超声造影剂基础研究现状与进展[J].中华医学超声杂志2011,8(5):924-926.
    [45] Alkan‐Onyuksel, H.,Demos, S. M.,Lanza, G. M., et al. Development of inherently echogenicliposomes as an ultrasonic contrast agent[J]. J. Pharm. Sci.,1996,85(5):486-490.
    [46]王志刚.超声分子影像学研究进展[J].中国医学影像技术,2009,(006):921-924.
    [47] Lee, D. E.,Koo, H.,Sun, I. C., et al. Multifunctional nanoparticles for multimodal imaging andtheragnosis[J]. Chem. Soc. Rev.,2012,412656-2672.
    [48]孙燕,周际昌.临床肿瘤内科手册[M].人民卫生出版社,2003.
    [49]万德森.临床肿瘤学[M].科学出版社,1999.
    [50] Hainfeld, J. F.,Dilmanian, F. A.,Slatkin, D. N., et al. Radiotherapy enhancement with goldnanoparticles[J]. J. Pharm. Pharmacol.,2008,60(8):977-985.
    [51]殷蔚伯,谷铣之.肿瘤放射治疗学[M].中国协和医科大学出版社,2002.
    [52]王一娜,张洪波.抗肿瘤药的研究进展[J].黑龙江医药,2009,22(4):521-522.
    [53]章扬培.甲基转移酶与肿瘤耐药预见性,个体化化疗的研究.[J].癌症,2004,23(6):724-734.
    [54]罗荣城,韩焕兴.肿瘤生物治疗学[M].人民卫生出版社,2006.
    [55] Huang, X.,Jain, P. K.,El-Sayed, I. H., et al. Plasmonic photothermal therapy (PPTT) using goldnanoparticles[J]. Laser Med. Sci.,2008,23(3):217-228.
    [56] DeNardo, G. L.,DeNardo, S. J. Update: Turning the Heat on Cancer[J]. Cancer Biother.Radiopharm.,2008,23(6):671-680.
    [57] Burke, A.,Ding, X.,Singh, R., et al. Long-term survival following a single treatment of kidneytumors with multiwalled carbon nanotubes and near-infrared radiation[J]. P. Natl. Acad. Sci. USA,2009,106(31):12897-12902.
    [58] Yang, K.,Zhang, S.,Zhang, G., et al. Graphene in mice: ultrahigh in vivo tumor uptake andefficient photothermal therapy[J]. Nano Lett.,2010,10(9):3318-3323.
    [59] Li, Y.,Lu, W.,Huang, Q., et al. Copper sulfide nanoparticles for photothermal ablation of tumorcells[J]. Nanomedicine,2010,5(8):1161-1171.
    [60]李智铭. RGD偶联PAMAM树形分子—金纳米棒探针基础上的恶性黑素瘤在体靶向和光热治疗[D].安徽医科大学2010.
    [61] Gobin, A. M.,Lee, M. H.,Halas, N. J., et al. Near-infrared resonant nanoshells for combinedoptical imaging and photothermal cancer therapy[J]. Nano Lett.,2007,7(7):1929-1934.
    [62] Li, Z.,Huang, P.,Zhang, X., et al. RGD-conjugated dendrimer-modified gold nanorods for in vivotumor targeting and photothermal therapy[J]. Mol. Pharm.,2009,7(1):94-104.
    [63] Kelkar, S.,Reineke, T. M. Theranostics: combining imaging and therapy[J]. Bioconjugate Chem.,2011,22(10):1879-1903.
    [64] Rai, P.,Mallidi, S.,Zheng, X., et al. Development and applications of photo-triggered theranosticagents[J]. Adv. Drug Deliver Rev.,2010,62(11):1094-1124.
    [65] Fleige, E.,Quadir, M.,Haag, R. Stimuli-responsive polymeric nanocarriers for the controlledtransport of active compounds: Concepts and applications[J]. Adv. Drug Deliver Rev.,2012, DOI:j.addr.2012.01.020.
    [66] Du, J.,O'Reilly, R. Anisotropic particles with patchy, multicompartment and Janus architectures:preparation and application[J]. Chem. Soc. Rev.,2011,402402-2416.
    [67] Xie, J.,Lee, S.,Chen, X. Nanoparticle-based theranostic agents[J]. Adv. Drug Deliver Rev.,2010,62(11):1064-1079.
    [68] Xie, J.,Liu, G.,Eden, H., et al. Surface-engineered magnetic nanoparticle platforms for cancerimaging and therapy[J]. Acc. Chem. Res.,2011,44(10):883-892.
    [69] Sun, C.,Lee, J. S. H.,Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery[J]. Adv.Drug Deliver. Rev.,2008,60(11):1252-1265.
    [70] Kohler, N.,Sun, C.,Fichtenholtz, A., et al. Methotrexate-immobilized poly (ethylene glycol)magnetic nanoparticles for MR imaging and drug delivery[J]. Small,2006,2(6):785-792.
    [71] Kohler, N.,Fryxell, G. E.,Zhang, M. A bifunctional poly (ethylene glycol) silane immobilized onmetallic oxide-based nanoparticles for conjugation with cell targeting agents[J]. J. Am. Chem. Soc.,2004,126(23):7206-7211.
    [72] Kohler, N.,Sun, C.,Wang, J., et al. Methotrexate-modified superparamagnetic nanoparticles andtheir intracellular uptake into human cancer cells[J]. Langmuir,2005,21(19):8858-8864.
    [73] Hwu, J. R.,Lin, Y. S.,Josephrajan, T., et al. Targeted paclitaxel by conjugation to iron oxide andgold nanoparticles[J]. J. Am. Chem. Soc.,2008,131(1):66-68.
    [74] Gu, H.,Xu, K.,Yang, Z., et al. Synthesis and cellular uptake of porphyrin decorated iron oxidenanoparticles—a potential candidate for bimodal anticancer therapy[J]. Chem. Commun.,2005,(34):4270-4272.
    [75] Kopelman, R.,Lee Koo, Y. E.,Philbert, M., et al. Multifunctional nanoparticle platforms for invivo MRI enhancement and photodynamic therapy of a rat brain cancer[J]. J. Magn. Magn. Mater.,2005,293(1):404-410.
    [76] Jain, T. K.,Richey, J.,Strand, M., et al. Magnetic nanoparticles with dual functional properties:drug delivery and magnetic resonance imaging[J]. Biomaterials,2008,29(29):4012-4021.
    [77] Oliveira, D.,Macaroff, P.,Ribeiro, K., et al. Studies of zinc phthalocyanine/magnetic fluid complexas a bifunctional agent for cancer treatment[J]. J. Magn. Magn. Mater.,2005,289476-479.
    [78] Kuznetsov, A. A.,Filippov, V. I.,Alyautdin, R. N., et al. Application of magnetic liposomes formagnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs[J]. J. Magn.Magn. Mater.,2001,225(1):95-100.
    [79] Cinteza, L. O.,Ohulchanskyy, T. Y.,Sahoo, Y., et al. Diacyllipid micelle-based nanocarrier formagnetically guided delivery of drugs in photodynamic therapy[J]. Mol. Pharm.,2006,3(4):415-423.
    [80] Sun, Y.,Chen, Z.,Yang, X., et al. Magnetic chitosan nanoparticles as a drug delivery system fortargeting photodynamic therapy[J]. Nanotechnology,2009,20135102.
    [81] Pan, B.,Cui, D.,Sheng, Y., et al. Dendrimer-modified magnetic nanoparticles enhance efficiencyof gene delivery system[J]. Cancer Res.,2007,67(17):8156.
    [82] Medarova, Z.,Pham, W.,Farrar, C., et al. In vivo imaging of siRNA delivery and silencing intumors[J]. Nat. Med.,2007,13(3):372-377.
    [83] Yang, D. P.,Cui, D. X. Advances and prospects of gold nanorods[J]. Chem. Asian J.,2008,3(12):2010-2022.
    [84] Qian, X.,Peng, X. H.,Ansari, D. O., et al. In vivo tumor targeting and spectroscopic detection withsurface-enhanced Raman nanoparticle tags[J]. Nat. Biotechnol.,2007,26(1):83-90.
    [85] Yavuz, M. S.,Cheng, Y.,Chen, J., et al. Gold nanocages covered by smart polymers for controlledrelease with near-infrared light[J]. Nat. Mater.,2009,8(12):935-939.
    [86] Sun, I. C.,Eun, D. K.,Koo, H., et al. Tumor-targeting gold particles for dual computedtomography/optical cancer imaging[J]. Angew. Chem.,2011,123(40):9520-9523.
    [87] Mallidi, S.,Wang, B.,Mehrmohammadi, M., et al. Ultrasound-based imaging of nanoparticles:From molecular and cellular imaging to therapy guidance[A]. In2009;27-36.
    [88] Park, J. H.,von Maltzahn, G.,Ong, L. L., et al. Cooperative nanoparticles for tumor detection andphotothermally triggered drug delivery[J]. Adv. Mater.,2010,22(8):880-885.
    [89] Von Maltzahn, G.,Park, J. H.,Agrawal, A., et al. Computationally guided photothermal tumortherapy using long-circulating gold nanorod antennas[J]. Cancer Res.,2009,69(9):3892.
    [90] Zhang, Z.,Wang, L.,Wang, J., et al. Mesoporous silica-coated gold nanorods as a light-mediatedmultifunctional theranostic platform for cancer treatment[J]. Adv. Mater.,2012,24(11):1418-1423.
    [91]张佳利.化学还原氧化石墨烯及其衍生物的制备,性质和应用研究[D].上海交通大学2011.
    [92] Cao, L.,Wang, X.,Meziani, M. J., et al. Carbon dots for multiphoton bioimaging[J]. J. Am. Chem.Soc.,2007,129(37):11318-11319.
    [93] Tao, H.,Yang, K.,Ma, Z., et al. In vivo NIR fluorescence imaging, biodistribution, and toxicologyof photoluminescent carbon dots produced from carbon nanotubes and graphite[J]. Small,2011,8(2):281-290.
    [94] Liu, Z.,Chen, K.,Davis, C., et al. Drug delivery with carbon nanotubes for in vivo cancertreatment[J]. Cancer Res.,2008,68(16):6652-6660.
    [95] Liu, Z.,Fan, A. C.,Rakhra, K., et al. Supramolecular stacking of doxorubicin on carbon nanotubesfor in vivo cancer therapy[J]. Angew. Chem. Int. Ed.,2009,48(41):7668-7672.
    [1] Zhu, Y.,Qian, Y. Solution-phase synthesis of nanomaterials at low temperature[J]. Sci. China Ser.G,2009,52(1):13-20.
    [2] Park, J.,Joo, J.,Kwon, S., et al. Synthesis of monodisperse spherical nanocrystals[J]. Angew. Chem.Int. Ed.,2007,46(25):4630-4661.
    [3] Wang, D.,Zheng, W.,Hao, C., et al. General synthesis of I–III–VI2ternary semiconductornanocrystals[J]. Chem. Comm.,2008,(22):2556-2558.
    [4] Cushing, B.,Kolesnichenko, V.,O'Connor, C. Recent advances in the liquid-phase syntheses ofinorganic nanoparticles[J]. Chem. Rev,2004,104(9):3893-3946.
    [5] Wang, X.,Zhuang, J.,Peng, Q., et al. A general strategy for nanocrystal synthesis[J]. Nature,2005,7055121.
    [6] Pan, D.,Wang, Q.,An, L. Controlled synthesis of monodisperse nanocrystals by a two-phaseapproach without the separation of nucleation and growth processes[J]. J. Mater. Chem.,2009,19(8):1063-1073.
    [7] Yang, J.,Ying, J. A general phase-transfer protocol for metal ions and its application in nanocrystalsynthesis[J]. Nat. Mater.,2009,8683-689.
    [8] Pan, D.,Ji, X.,An, L., et al. Observation of nucleation and growth of CdS nanocrystals in atwo-phase system[J]. Chem. Mater,2008,20(11):3560-3566.
    [9] Jana, N. R.,Peng, X. Single-phase and gram-scale routes toward nearly monodisperse Au andother noble metal nanocrystals[J]. J. Am. Chem. Soc.,2003,125(47):14280–14281.
    [10] Zheng, N.,Fan, J.,Stucky, G. One-step one-phase synthesis of monodisperse noble-metallicnanoparticles and their colloidal crystals[J]. J. Am. Chem. Soc.,2006,128(20):6550-6551.
    [11] Wang, M.,Liu, J. L.,Zhang, Y. X., et al. Two-phase solvothermal synthesis of rare-earth dopedNaYF4upconversion fluorescent nanocrystals[J]. Mater. Lett.,2009,63(2):325-327.
    [12] Wei, Y.,Lu, F.,Zhang, X., et al. Synthesis of oil-dispersible hexagonal-phase and hexagonal-shapedNaYF4: Yb, Er nanoplates[J]. Chem. Mater.,2006,18(24):5733-5737.
    [13] Rao, C.,Cheetham, A. Science and technology of nanomaterials: current status and futureprospects[J]. J. Mater. Chem.,2001,11(12):2887-2894.
    [14] Sun, Y.,Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science,2002,298(5601):2176-2179.
    [15] Tao, A.,Habas, S.,Yang, P. Shape control of colloidal metal nanocrystals[J]. Small,2008,4(3):310-325.
    [16] Wang, F.,Liu, X. Recent advances in the chemistry of lanthanide-doped upconversionnanocrystals[J]. Chem. Soc. Rev.,2009,38(4):976-989.
    [17] Wang, F.,Banerjee, D.,Liu, Y., et al. Upconversion nanoparticles in biological labeling, imaging,and therapy[J]. Analyst,2010,135(8):1839-1854.
    [18] Mao, Y.,Tran, T.,Guo, X., et al. Luminescence of nanocrystalline erbium-doped yttria[J]. Adv.Funct. Mater.,2009,19(5):748-754.
    [19] Cheng, L.,Yang, K.,Li, Y., et al. Facile preparation of multifunctional upconversion nanoprobes formultimodal imaging and dual-targeted photothermal therapy[J]. Angew. Chem.,2011,123(32):7523-7528.
    [20] Wang, C.,Cheng, L.,Liu, Z. Drug delivery with upconversion nanoparticles for multi-functionaltargeted cancer cell imaging and therapy[J]. Biomaterials,2011,32(4):1110-1120.
    [21]Zhou, J.,Liu, Z.,Li, F. Upconversion nanophosphors for small-animal imaging[J]. Chem. Soc. Rev.,2012,41(3):1323-1349.
    [22] Li, C.,Lin, J. Rare earth fluoride nano-/microcrystals: synthesis, surface modification andapplication[J]. J. Mater. Chem.,2010,20(33):6831-6847.
    [23] Voorhees, P. The theory of Ostwald ripening[J]. J. Stat. Phys.,1985,38(1):231-252.
    [24] Oskam, G.,Hu, Z.,Penn, R., et al. Coarsening of metal oxide nanoparticles[J]. Phys. Rev. E,2002,66(1):11403.
    [25] Faraday, M. The Bakerian lecture: experimental relations of gold (and other metals) to light[J].Philos. Trans..R. Soc. London,1857,147145-181.
    [26] Brust, M.,Walker, M.,Bethell, D., et al. Synthesis of thiol-derivatised gold nanoparticles in atwo-phase liquid¨Cliquid system[J]. J. Chem. Soc., Chem. Comm.,1994,1994(7):801-802.
    [27] Kasuya, A.,Sivamohan, R.,Barnakov, Y., et al. Ultra-stable nanoparticles of CdSe revealed frommass spectrometry[J]. Nat. Mater.,2004,3(2):99-102.
    [28] Zhao, N.,Pan, D.,Nie, W., et al. Two-phase synthesis of shape-controlled colloidal zirconiananocrystals and their characterization[J]. J. Am. Chem. Soc,2006,128(31):10118-10124.
    [29] Yu, Q.,Liu, C.,Zhang, Z., et al. Facile synthesis of semiconductor and noble metal nanocrystals inhigh-boiling two-phase liquid/liquid systems[J]. J. Phys. Chem. C,2008,112(7):2266-2270.
    [30] Swami, A.,Kumar, A.,D'Costa, M., et al. Variation in morphology of gold nanoparticlessynthesized by the spontaneous reduction of aqueous chloroaurate ions by alkylated tyrosine at aliquid-liquid and air-water interface[J]. J. Mater. Chem.,2004,14(17):2696-2702.
    [31] Jian, D.,Gao, Q. Synthesis of CdS nanocrystals and Au/CdS nanocomposites through ultrasoundactivation liquid¨Cliquid two-phase approach at room temperature[J]. Chem. Eng. J.,2006,121(1):9-16.
    [32] Wan, J.,Chen, X.,Wang, Z., et al. Synthesis of uniform PbS nanorod bundles via asurfactant-assisted interface reaction route[J]. Mater. Chem. Phys.,2004,88(1):217-220.
    [33] Leff, D.,Brandt, L.,Heath, J. Synthesis and characterization of hydrophobic, organically-solublegold nanocrystals functionalized with primary amines[J]. Langmuir,1996,12(20):4723-4730.
    [34] Horswell, S.,Kiely, C.,O'Neil, I., et al. Alkyl isocyanide-derivatized platinum nanoparticles[J]. J.Am. Chem. Soc,1999,121(23):5573-5574.
    [35] Liu, W.,Wang, X.,Fu, S. Process for producing copper nanoparticles. In Google Patents:2004.
    [36] Pan, D.,Jiang, S.,An, L., et al. Controllable synthesis of highly luminescent and monodisperse CdSnanocrystals by a two-phase approach under mild conditions[J]. Adv. Mater.,2004,16(12):982-984.
    [37] Chen, S.,Huang, K.,Stearns, J. Alkanethiolate-protected palladium nanoparticles[J]. Chem. Mater,2000,12(2):540-547.
    [38] Kovalenko, M.,Bodnarchuk, M.,Lechner, R., et al. Fatty acid salts as stabilizers in size-andshape-controlled nanocrystal synthesis: The case of inverse spinel iron oxide[J]. J. Am. Chem. Soc,2007,129(20):6352-6353.
    [39] Wu, N.,Fu, L.,Su, M., et al. Interaction of fatty acid monolayers with cobalt nanoparticles[J]. NanoLett.,2004,4(2):383-386.
    [1] Chen, S. F., Zhu, J. H., Jiang, J., et al. Polymer-controlled crystallization of unique mineralsuperstructures[J]. Adv. Mater.,2010,22(4):540-545.
    [2] Yu, S. Bio-inspired crystal growth by synthetic templates[J]. Biomineralization II,79-118.
    [3] Meldrum, F., Colfen, H. Controlling mineral morphologies and structures in biological andsynthetic systems[J]. Chem. Rev,2008,108(11):4332-4432.
    [4] Yang, D. P., Chen, S., Huang, P., et al. Bacteria-template synthesized silver microspheres withhollow and porous structures as excellent SERS substrate[J]. Green Chem.,2010,12(11):2038-2042.
    [5] Aizenberg, J. Crystallization in patterns: a bio-inspired approach[J]. Adv. Mater.,2004,16(15):1295-1302.
    [6] Fan, T., Chow, S., Zhang, D. Biomorphic mineralization: from biology to materials[J]. Prog. Mater.Sci.,2009,54(5):542-659.
    [7] Dickerson, M., Sandhage, K., Naik, R. Protein-and peptide-directed syntheses of inorganicmaterials[J]. Chem. Rev,2008,108(11):4935-4978.
    [8] Lagziel-Simis, S., Cohen-Hadar, N., Moscovich-Dagan, H., et al. Protein-mediated nanoscalebiotemplating[J]. Curr. Opin. Biotechnol.,2006,17(6):569-573.
    [9] Niemeyer, C. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science[J].Angew. Chem. Int. Ed,2001,40(22):4128-4158.
    [10] Dahl, J., Maddux, B., Hutchison, J. Toward greener nanosynthesis[J]. Chem. Rev,2007,107(6):2228-2269.
    [11] Yang, L., Wang, H., Yang, H., et al. Shape-controlled synthesis of protein-conjugated silver sulfidenanocrystals and study on the inhibition of tumor cell viability[J]. Chem. Comm.,2008,(26):2995-2997.
    [12] Singh, A., Bandgar, B., Kasture, M., et al. Synthesis of gold, silver and their alloy nanoparticlesusing bovine serum albumin as foaming and stabilizing agent[J]. J. Mater. Chem.,2005,15(48):5115-5121.
    [13] Au, L., Lim, B., Colletti, P., et al. Synthesis of Gold Microplates Using Bovine Serum Albumin asa Reductant and a Stabilizer[J]. Chem. Asian J.,2009,5(1):123-129.
    [14] Peters, T. Structure of serum albumin[J]. Advan. Protein. Chem,1985,37161-245.
    [15] Bakshi, M., Thakur, P., Kaur, G., et al. Stabilization of PbS nanocrystals by Bovine SerumAlbumin in its native and denatured states[J]. Adv. Funct. Mater.,2009,19(9):1451-1458.
    [16] Bakshi, M., Jaswal, V., Kaur, G., et al. Biomineralization of BSA-chalcogenide bioconjugatenano-and microcrystals[J]. J. Phys. Chem. C,2009,113(21):9121-9127.
    [17] Kaur, G., Lqbal, M., Bakshi, M. Biomineralization of fine selenium crystalline rods andamorphous spheres[J]. J. Phys. Chem. C,2009,113(31):13670-13676.
    [18] Tkachenko, A. G., Xie, H., Coleman, D., et al. Multifunctional gold nanoparticle-peptidecomplexes for nuclear targeting[J]. J. Am. Chem. Soc.,2003,125(16):4700-4701.
    [19] Derfus, A. M., Chan, W. C. W., Bhatia, S. N. Probing the cytotoxicity of semiconductor quantumdots[J]. Nano Lett.,2004,4(1):11-18.
    [20] Singh, A., Patil, R., Kasture, M., et al. Synthesis of Ag-Pt alloy nanoparticles in aqueous bovineserum albumin foam and their cytocompatibility against human gingival fibroblasts[J]. Colloids Surf. B,2009,69(2):239-245.
    [21] Yang, L., Xing, R., Shen, Q., et al. Fabrication of protein-conjugated silver sulfide nanorods in thebovine serum albumin solution[J]. J. Phys. Chem. B,2006,110(21):10534-10539.
    [22] Zhang, J., Ma, X., Guo, Y., et al. Size-controllable preparation of bovine serumalbumin-conjugated PbS nanoparticles[J]. Mater. Chem. Phys.,2009,119112-117.
    [23] Qin, D., Ma, X., Yang, L., et al. Biomimetic synthesis of HgS nanoparticles in the bovine serumalbumin solution[J]. J. Nanopart. Res.,2008,10(4):559-566.
    [24] Xie, J., Lee, J. Y., Wang, D. I. C. Synthesis of single-crystalline gold nanoplates in aqueoussolutions through biomineralization by serum albumin protein[J]. J. Phys. Chem. C,2007,111(28):10226-10232.
    [25] Xie, J., Zheng, Y., Ying, J. Protein-directed synthesis of highly fluorescent gold nanoclusters[J]. J.Am. Chem. Soc,2009,131(3):888-889.
    [26]朱俊杰.超声化学法合成金属硫族半导体纳米材料[J].微纳电子技术,2002,39(12):21-27.
    [27] Yu, S., Wu, Y., Yang, J., et al. A novel solventothermal synthetic route to nanocrystalline CdE (E=S, Se, Te) and morphological control[J]. Chem. Mater,1998,10(9):2309-2312.
    [28] Zhu, J., Palchik, O., Chen, S., et al. Microwave assisted preparation of CdSe, PbSe, and Cu2-x Senanoparticles[J]. J. Phys. Chem. B,2000,104(31):7344-7347.
    [29]于雪莲,安晓强.生物分子模板法制备不同形貌硫化铅纳米材料[J].硅酸盐通报,2010,(002):450-453.
    [30] Lakowicz, J. R., Gryczynski, I., Gryczynski, Z., et al. Luminescence spectral properties of CdSnanoparticles[J]. J. Phys. Chem. B,1999,103(36):7613-7620.
    [31] Li, H., Zhu, Y., Chen, S., et al. A novel ultrasound-assisted approach to the synthesis of CdSe andCdS nanoparticles[J]. J. Solid State Chem.,2003,172(1):102-110.
    [32] Xia, Y., Yang, P., Sun, Y., et al. One‐Dimensional Nanostructures: Synthesis, Characterization,and Applications[J]. Adv. Mater.,2003,15(5):353-389.
    [33] Gates, B., Mayers, B., Wu, Y., et al. Synthesis and characterization of crystalline Ag2Se nanowiresthrough a template-engaged reaction at room temperature[J]. Adv. Funct. Mater.,2002,12(10):679-686.
    [34] Malik, M. A., O'brien, P., Revaprasadu, N. A novel route for the preparation of CuSe and CuInSe2nanoparticles[J]. Adv. Mater.,1999,11(17):1441-1444.
    [35] Ge, J., Xu, S., Liu, L., et al. A positive-microemulsion method for preparing nearly uniform Ag2Senanoparticles at low temperature[J]. Chem. Eur. J.,2006,12(13):3672-3677.
    [36] Ge, J., Xu, S., Zhuang, J., et al. Synthesis of CdSe, ZnSe, and ZnxCd1-xSe nanocrystals and theirsilica sheathed core/shell structures[J]. Inorg. Chem,2006,45(13):4922-4927.
    [37] Wang, G., Li, J. Interfacial bioelectrochemistry: Fabrication, properties and applications offunctional nanostructured biointerfaces[J]. Ultrason. Sonochem.,2006,1641-49.
    [38] Kandagal, P., Seetharamappa, J., Ashoka, S., et al. Study of the interaction between doxepinhydrochloride and bovine serum albumin by spectroscopic techniques[J]. Int. J. Biol. Macromol.,2006,39(4):234-239.
    [39] Yang, Q., Liang, J., Han, H. Probing the interaction of magnetic iron oxide nanoparticles withbovine serum albumin by spectroscopic techniques[J]. J. Phys. Chem. B,2009,113(30):10454-10458.
    [40] Zhang, Y. Z., Dai, J., Zhang, X. P., et al. Studies of the interaction between Sudan I and bovineserum albumin by spectroscopic methods[J]. J. Mol. Struct.,2008,888(1-3):152-159.
    [41] Dzagli, M. M., Canpean, V., Iosin, M., et al. Study of the interaction between CdSe/ZnS core-shellquantum dots and bovine serum albumin by spectroscopic techniques[J]. J. Photochem. Photobiol. A,2010,215(1):118-122.
    [42] Wang, J., Wu, J., Zhang, Z. H., et al. Sonocatalytic damage of bovine serum albumin (BSA) in thepresence of nanometer titanium dioxide (TiO2) catalyst[J]. Chin. Chem. Lett.,2005,16(8):1105.
    [43] Shang, L., Wang, Y., Jiang, J., et al. pH-dependent protein conformational changes in albumin:gold nanoparticle bioconjugates: a spectroscopic study[J]. Langmuir,2007,23(5):2714-2721.
    [44] Wangoo, N., Suri, C. R., Shekhawat, G. Interaction of gold nanoparticles with protein: Aspectroscopic study to monitor protein conformational changes[J]. Appl. Phys. Lett.,2008,92133104.
    [45] Shen, X., Yuan, Q., Liang, H., et al. Hysteresis effects of the interaction between serum albuminsand silver nanoparticles[J]. Sci. China Ser. B,2003,46(4):387-398.
    [46] Yu, C. H., Al-Saadi, A., Shih, S. J., et al. Immobilization of BSA on silica-coated magnetic ironoxide nanoparticle[J]. J. Phys. Chem. C,2008,113(2):537-543.
    [1]黄鹏.磁靶向药物纳米制剂的合成及性能研究[D].东华大学2008.
    [2]杨浩.量子点和纳米磁性微球在生物医学检测中的应用研究[D].上海交通大学2010.
    [3] Chertok, B.,Moffat, B.,David, A., et al. Iron oxide nanoparticles as a drug delivery vehicle forMRI monitored magnetic targeting of brain tumors[J]. Biomaterials,2008,29(4):487-496.
    [4] Cinteza, L.,Ohulchanskyy, T.,Sahoo, Y., et al. Diacyllipid micelle-based nanocarrier formagnetically guided delivery of drugs in photodynamic therapy[J]. Mol. Pharm,2006,3(4):415-423.
    [5] Pan, B.,Cui, D.,Sheng, Y., et al. Dendrimer-modified magnetic nanoparticles enhance efficiency ofgene delivery system[J]. Cancer Res.,2007,67(17):8156.
    [6]乔瑞瑞,曾剑峰,贾巧娟, et al.磁性氧化铁纳米颗粒-通向肿瘤磁共振分子影像的重要基石[J].物理化学学报,2012,28(05):993-1011.
    [7] LaConte, L.,Nitin, N.,Bao, G. Magnetic nanoparticle probes[J]. Mater. Today,2005,8(5):32-38.
    [8] Janib, S. M.,Moses, A. S.,MacKay, J. A. Imaging and drug delivery using theranosticnanoparticles[J]. Adv. Drug Deliver. Rev.,2010,62(11):1052-1063.
    [9] Lee, D. E.,Koo, H.,Sun, I. C., et al. Multifunctional nanoparticles for multimodal imaging andtheragnosis[J]. Chem. Soc. Rev.,2011, DOI:10.1039/c2cs15261d.
    [10] Sun, Y.,Chen, Z.,Yang, X., et al. Magnetic chitosan nanoparticles as a drug delivery system fortargeting photodynamic therapy[J]. Nanotechnology,2009,20135102.
    [11] Chen, Z.,Sun, Y.,Huang, P., et al. Studies on Preparation of Photosensitizer Loaded MagneticSilica Nanoparticles and Their Anti-Tumor Effects for Targeting Photodynamic Therapy[J]. NanoscaleRes. Lett.,2009,4(5):400-408.
    [12]Shi, D. Integrated multifunctional nanosystems for medical diagnosis and treatment[J]. Adv. Funct.Mater.,2009,19(21):3356-3373.
    [13] Han, M.,Gao, X.,Su, J., et al. Quantum-dot-tagged microbeads for multiplexed optical coding ofbiomolecules[J]. Nat. Biotechnol.,2001,19(7):631-635.
    [14] Gao, X.,Cui, Y.,Levenson, R., et al. In vivo cancer targeting and imaging with semiconductorquantum dots[J]. Nat. Biotechnol.,2004,22(8):969-976.
    [15] Gao, X.,Yang, L.,Petros, J., et al. In vivo molecular and cellular imaging with quantum dots[J].Curr. Opin. Biotechnol.,2005,16(1):63-72.
    [16] Cui, D.,Han, Y.,Li, Z., et al. Fluorescent Magnetic Nanoprobes for in vivo Targeted Imaging andHyperthermia Therapy of Prostate Cancer[J]. Nano Biomed. Eng.,2009,1(1):88.
    [17] Hardman, R. A toxicologic review of quantum dots: toxicity depends on physicochemical andenvironmental factors[J]. Environ. Health Perspect.,2006,114(2):165.
    [18] Smith, A.,Mancini, M.,Nie, S. Second window for in vivo imaging[J]. Nat. Nanotechnol.,2009,4(11):710.
    [19]Dreaden, E. C.,Mackey, M. A.,Huang, X., et al. Beating cancer in multiple ways using nanogold[J].Chem. Soc. Rev.,2011,40(7):3391-3404.
    [20] Hintersteiner, M.,Enz, A.,Frey, P., et al. In vivo detection of amyloid-β deposits by near-infraredimaging using an oxazine-derivative probe[J]. Nat. Biotechnol.,2005,23(5):577-583.
    [21] Svensson, T.,Andersson-Engels, S.,Einarsdóttír, M., et al. In vivo optical characterization ofhuman prostate tissue using near-infrared time-resolved spectroscopy[J]. J. Biomed. Opt.,2007,12014022.
    [22] Park, K.,Lee, S.,Kang, E., et al. New generation of multifunctional nanoparticles for cancerimaging and therapy[J]. Adv. Funct. Mater.,2009,19(10):1553-1566.
    [23] Park, J. H.,von Maltzahn, G.,Ruoslahti, E., et al. Micellar hybrid nanoparticles for simultaneousmagnetofluorescent imaging and drug delivery[J]. Angew. Chem.,2008,120(38):7394-7398.
    [24] Ke, J. H.,Lin, J. J.,Carey, J. R., et al. A specific tumor-targeting magnetofluorescent nanoprobe fordual-modality molecular imaging[J]. Biomaterials,2010,31(7):1707-1715.
    [25] Celli, J.,Spring, B.,Rizvi, I., et al. Imaging and Photodynamic Therapy: Mechanisms, Monitoring,and Optimization[J]. Chem. Rev.,2010,110(5):2795-2838.
    [26] Choi, Y.,Weissleder, R.,Tung, C. Selective antitumor effect of novel protease-mediatedphotodynamic agent[J]. Cancer Res.,2006,66(14):7225-7229.
    [27] Johnsson, B.,Lofas, S.,Lindquist, G. Immobilization of proteins to acarboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmonresonance sensors[J]. Anal. Biochem.,1991,198(2):268-277.
    [28] Zhu, Z.,Tang, Z.,Phillips, J., et al. Regulation of singlet oxygen generation using single-walledcarbon nanotubes[J]. J. Am. Chem. Soc.,2008,130(33):10856-10857.
    [29] Flors, C.,Fryer, M.,Waring, J., et al. Imaging the production of singlet oxygen in vivo using a newfluorescent sensor, Singlet Oxygen Sensor Green(R)[J]. J. Exp. Bot.,2006,57(8):1725-1734.
    [30] Li, Z.,Huang, P.,Zhang, X., et al. RGD-Conjugated Dendrimer-Modified Gold Nanorods for inVivo Tumor Targeting and Photothermal Therapy[J]. Mol. Pharm.,2009,7(1):94-104.
    [31] Song, H.,He, R.,Wang, K., et al. Anti-HIF-1[alpha] antibody-conjugated pluronic triblockcopolymers encapsulated with Paclitaxel for tumor targeting therapy[J]. Biomaterials,2010,31(8):2302-2312.
    [32] Liu, F.,Zhou, X.,Chen, Z., et al. Preparation of purpurin-18loaded magnetic nanocarriers incottonseed oil for photodynamic therapy[J]. Mater. Lett.,2008,62(17-18):2844-2847.
    [33] Gollmer, A.,Arnbjerg, J.,Blaikie, F. H., et al. Singlet oxygen sensor green: photochemicalbehavior in solution and in a mammalian cell[J]. Photochem. Photobiol.,2011,87(3):671-679.
    [34] Zhang, S.,Chen, X.,Gu, C., et al. The effect of iron oxide magnetic nanoparticles on smoothmuscle cells[J]. Nanoscale Res. Lett.,2009,4(1):70-77.
    [1] Hainfeld, J. F.,Dilmanian, F. A.,Slatkin, D. N., et al. Radiotherapy enhancement with goldnanoparticles[J]. J. Pharm. Pharmacol.,2008,60(8):977-985.
    [2] Rahman, W. N.,Bishara, N.,Ackerly, T., et al. Enhancement of radiation effects by goldnanoparticles for superficial radiation therapy[J]. Nanomed-Nanotechnol.,2009,5(2):136-142.
    [3] Nishioka, A.,Ohizumi, Y.,Lam, G., et al. The effects of nicotinamide plus carbogen or pions formicroscopic SCCVII tumors[J]. Oncol. Rep.,1999,6(3):583-586.
    [4] Murayama, C.,Suzuki, A.,Sato, C., et al. Radiosensitization by a new potent nucleoside analog:1-(1',3',4'-trihydroxy-2'-butoxy) methyl-2-nitroimidazole (RP-343)[J]. Int. J. Radiat. Oncol.,1993,26(3):433-443.
    [5] Hainfeld, J. F.,Dilmanian, F. A.,Zhong, Z., et al. Gold nanoparticles enhance the radiation therapyof a murine squamous cell carcinoma[J]. Phys. Med. Biol.,2010,553045.
    [6] Hainfeld, J. F.,Slatkin, D. N.,Smilowitz, H. M. The use of gold nanoparticles to enhanceradiotherapy in mice[J]. Phys. Med. Biol.,2004,49N309-315.
    [7] Bourhis, J.,Rosine, D. Radioprotective effect of amifostine in patients with head and necksquamous cell carcinoma[A]. In Semin. Oncol.[C],2002;61-62.
    [8] Wasserman, T. Radioprotective effects of amifostine[A]. In Semin. Oncol.[C],1999;89-94.
    [9] Atkinson, R. L.,Zhang, M.,Diagaradjane, P., et al. Thermal enhancement with optically activatedgold nanoshells sensitizes breast cancer stem cells to radiation therapy[J]. Sci. Transl. Med.,2010,2(55):55-79.
    [10] Huang, P.,Yang, D. P.,Zhang, C., et al. Protein-directed one-pot synthesis of Ag microspheres withgood biocompatibility and enhancement of radiation effects on gastric cancer cells[J]. Nanoscale,2011,3(9):3623-3626.
    [11] Brun, E.,Duchambon, P.,Blouquit, Y., et al. Gold nanoparticles enhance the X-ray-induceddegradation of human centrin2protein[J]. Radiat. Phys. Chem.,2009,78(3):177-183.
    [12] Zerulla, D.,Chasse, T. X-ray induced damage of self-assembled alkanethiols on gold and indiumphosphide[J]. Langmuir,1999,15(16):5285-5294.
    [13] Huang, P.,Li, Z.,Lin, J., et al. Photosensitizer-conjugated magnetic nanoparticles for in vivosimultaneous magnetofluorescent imaging and targeting therapy[J]. Biomaterials,2011,323447-3458.
    [14] Song, H.,He, R.,Wang, K., et al. Anti-HIF-1[alpha] antibody-conjugated pluronic triblockcopolymers encapsulated with Paclitaxel for tumor targeting therapy[J]. Biomaterials,2010,31(8):2302-2312.
    [15] Huang, P.,Bao, L.,Yang, D., et al. Protein-directed solution-phase green synthesis ofBSA-conjugated MxSey(M=Ag, Cd, Pb, Cu) nanomaterials[J]. Chem. Asian J.,2011,6(5):1156-1162.
    [16] Cui, D.,Han, Y.,Li, Z., et al. Fluorescent magnetic nanoprobes for in vivo targeted imaging andhyperthermia therapy of prostate cancer[J]. Nano Biomed. Eng.,2009,1(1):61-74.
    [17] Zhang, X.,Xing, J. Z.,Chen, J., et al. Enhanced radiation sensitivity in prostate cancer bygold-nanoparticles[J]. Clin. Investig. Med.,2008,31(3): E160-E167.
    [18] Regulla, D.,Hieber, L.,Seidenbusch, M. Physical and biological interface dose effects in tissue dueto X-ray-induced release of secondary radiation from metallic gold surfaces[J]. Radiat. Res.,1998,150(1):92-100.
    [19] Regulla, D.,Schmid, E.,Friedland, W., et al. Enhanced values of the RBE and H ratio forcytogenetic effects induced by secondary electrons from an X-irradiated gold surface[J]. Radiat. Res.,2002,158(4):505-515.
    [20] Herold, D.,Das, I.,Stobbe, C., et al. Gold microspheres: a selective technique for producingbiologically effective dose enhancement[J]. Int. J Radiat. Biol.,2000,76(10):1357-1364.
    [21] Xia, Y.,Xiong, Y.,Lim, B., et al. Shape-Controlled Synthesis of Metal Nanocrystals: SimpleChemistry Meets Complex Physics?[J]. Angew. Chem. Int. Ed.,2009,48(1):60-103.
    [22] Wang, Z.,Zhang, J.,Ekman, J. M., et al. DNA-mediated control of metal nanoparticle shape:one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers[J]. Nano Lett.,2010,10(5):1886-1891.
    [23] Halas, N. J. Plasmonics: an emerging field fostered by Nano Letters[J]. Nano Lett.,2010,103816-3822.
    [24] Ye, E.,Win, K. Y.,Tan, H. R., et al. Plasmonic gold nanocrosses with multi-directional excitationand strong photothermal effect[J]. J. Am. Chem. Soc.,2011,1338506-8509.
    [25] Jain, P. K.,Huang, X.,El-Sayed, I. H., et al. Noble metals on the nanoscale: optical andphotothermal properties and some applications in imaging, sensing, biology, and medicine[J]. Acc.Chem. Res.,2008,41(12):1578-1586.
    [26] Carpin, L. B.,Bickford, L. R.,Agollah, G., et al. Immunoconjugated gold nanoshell-mediatedphotothermal ablation of trastuzumab-resistant breast cancer cells[J]. Breast Cancer Res. Treat.,2011,1-8.
    [27] Huang, X.,El-Sayed, I. H.,Qian, W., et al. Cancer cell imaging and photothermal therapy in thenear-infrared region by using gold nanorods[J]. J. Am. Chem. Soc.,2006,128(6):2115-2120.
    [28] Huang, X.,Neretina, S.,El-Sayed, M. A. Gold nanorods: from synthesis and properties tobiological and biomedical applications[J]. Adv. Mater.,2009,21(48):4880-4910.
    [29] Janib, S. M.,Moses, A. S.,MacKay, J. A. Imaging and drug delivery using theranosticnanoparticles[J]. Adv. Drug del. Rev.,2010,621052-1063.
    [30] Popovtzer, R.,Agrawal, A.,Kotov, N. A., et al. Targeted gold nanoparticles enable molecular CTimaging of cancer[J]. Nano Lett.,2008,8(12):4593-4596.
    [31] Li, J.,Chaudhary, A.,Chmura, S. J., et al. A novel functional CT contrast agent for molecularimaging of cancer[J]. Phys. Med. Biol.,2010,554389-4397.
    [32] Hainfeld, J.,Slatkin, D.,Focella, T., et al. Gold nanoparticles: a new X-ray contrast agent[J]. Brit. J.Radiol.,2006,79(939):248-253.
    [33] Yang, D. P.,Cui, D. X. Advances and prospects of gold nanorods[J]. Chem. Asian J.,2008,3(12):2010-2022.
    [34] Chen, Y. S.,Frey, W.,Kim, S., et al. Enhanced thermal stability of silica-coated gold nanorods forphotoacoustic imaging and image-guided therapy[J]. Opt. Express,2010,18(9):8867-8878.
    [35] Li, Z.,Huang, P.,Zhang, X., et al. RGD-conjugated dendrimer-modified gold nanorods for in vivotumor targeting and photothermal therapy[J]. Mol. Pharm.,2009,7(1):94-104.
    [36] Huang, P.,Zhang, C.,Xu, C., et al. Preparation and characterization of near-infrared regionabsorption enhancer carbon nanotubes hybridmaterials[J]. Nano Biomed..Eng.,2010,2(4):225-230.
    [37] Pan, B.,Cui, D.,Ozkan, C., et al. DNA-templated ordered array of gold nanorods in one and twodimensions[J]. J. Phys. Chem. C,2007,111(34):12572-12576.
    [38] Johnsson, B.,Lofas, S.,Lindquist, G. Immobilization of proteins to acarboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmonresonance sensors[J]. Anal. Biochem.,1991,198(2):268-277.
    [39] Franken, N. A. P.,Rodermond, H. M.,Stap, J., et al. Clonogenic assay of cells in vitro[J]. Nat.Protoc.,2006,1(5):2315-2319.
    [40] Yang, Z.,Ni, W.,Kou, X., et al. Incorporation of Gold Nanorods and Their Enhancement ofFluorescence in Mesostructured Silica Thin Films[J]. J. Phys. Chem. C,2008,112(48):18895-18903.
    [41] Zhang, Z.,Wang, L.,Wang, J., et al. Theranostics: mesoporous silica-coated gold ganorods as alight-mediated multifunctional theranostic platform for cancer treatment[J]. Adv. Mater.,2012,24(11):1349-1349.
    [42] He, Y.,Wang, X.,Jin, P., et al. Complexation of anthracene with folic acid studied by FTIR and UVspectroscopies[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc.,2009,72(4):876-879.
    [43] Luo, T.,Huang, P.,Gao, G., et al. Mesoporous silica-coated gold nanorods with embeddedindocyanine green for dual mode X-ray CT and NIR fluorescence imaging[J]. Opt. Express,2011,19(18):17030-17039.
    [1] Huang, Z. A review of progress in clinical photodynamic therapy[J]. Technol. Cancer Res.Treat.,2005,4(3):283.
    [2] Huang, Z.,Xu, H.,Meyers, A., et al. Photodynamic therapy for treatment of solid tumors-potentialand technical challenges[J]. Technol. Cancer Res. Treat.,2008,7(4):309-320.
    [3] Lovell, J.,Liu, T.,Chen, J., et al. Activatable photosensitizers for imaging and therapy[J]. Chem.Rev.,2010,110(5):2839-2857.
    [4] Celli, J.,Spring, B.,Rizvi, I., et al. Imaging and photodynamic therapy: mechanisms, monitoring,and optimization[J]. Chem. Rev.,2010,110(5):2795-2838.
    [5] Dougherty, T.,Gomer, C.,Jori, G., et al. Photodynamic therapy[J]. J. Natl. Cancer I.,1998,90(12):889-905.
    [6] Macdonald, I.,Dougherty, T. Basic principles of photodynamic therapy[J]. J. Porphyr. Phthalocya.,2001,5(2):105-129.
    [7] Bonnett, R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamictherapy[J]. Chem. Soc. Rev.,1995,24(1):19-33.
    [8] McCaughan, J. Photodynamic therapy: a review[J]. Drugs&Aging,1999,15(1):49-68.
    [9] Sun, Y.,Chen, Z.,Yang, X., et al. Magnetic chitosan nanoparticles as a drug delivery system fortargeting photodynamic therapy[J]. Nanotechnology,2009,20135102.
    [10] Bechet, D.,Couleaud, P.,Frochot, C., et al. Nanoparticles as vehicles for delivery of photodynamictherapy agents[J]. Trends Biotechnol.,2008,26(11):612-621.
    [11] Wang, S.,Gao, R.,Zhou, F., et al. Nanomaterials and singlet oxygen photosensitizers: potentialapplications in photodynamic therapy[J]. J. Mater. Chem.,2004,14(4):487-493.
    [12] Huang, P.,Li, Z.,Lin, J., et al. Photosensitizer-conjugated magnetic nanoparticles for in vivosimultaneous magnetofluorescent imaging and targeting therapy[J]. Biomaterials,2011,323447-3458.
    [13] Panchapakesan, B. Nanotechnology: part2tiny technology-tremendous therapeutic potential[J].Oncol. Issues,2005,20(6):20-23.
    [14] Levi-Polyachenko, N.,Carroll, D.,Stewart, J. Applications of carbon-based nanomaterials for drugdelivery in oncology[J]. Medicinal Chemistry and Pharmacological Potential of Fullerenes and CarbonNanotubes,2008,223-266.
    [15]Ajima, K.,Yudasaka, M.,Murakami, T., et al. Carbon nanohorns as anticancer drug carriers[J]. Mol.Pharm,2005,2(6):475-480.
    [16] Mroz, P.,Tegos, G.,Gali, H., et al. Fullerenes as photosensitizers in photodynamic therapy[J].Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes,2008,79-106.
    [17] Mroz, P.,Tegos, G.,Gali, H., et al. Photodynamic therapy with fullerenes[J]. Photochem. Photobiol.Sci.,2007,6(11):1139-1149.
    [18] Zhu, Z.,Tang, Z.,Phillips, J., et al. Regulation of singlet oxygen generation using single-walledcarbon nanotubes[J]. J. Am. Chem. Soc.,2008,130(33):10856-10857.
    [19] Huang, P.,Lin, J.,Yang, D., et al. Photosensitizer-loaded dendrimer-modified multi-walled carbonnanotubes for photodynamic therapy[J]. J. Control. Release,2011,152e33-e34.
    [20] Zhang, M.,Murakami, T.,Ajima, K., et al. Fabrication of ZnPc/protein nanohorns for doublephotodynamic and hyperthermic cancer phototherapy[J]. Proc. Natl. Acad. Sci. USA,2008,105(39):14773-14778.
    [21]张佳利.化学还原氧化石墨烯及其衍生物的制备,性质和应用研究[D].上海交通大学2011.
    [22] Wang, K.,Ruan, J.,Song, H., et al. Biocompatibility of graphene oxide[J]. Nanoscale Res. Lett.,2011,6(1):1-8.
    [23] Chen, D.,Tang, L.,Li, J. Graphene-based materials in electrochemistry[J]. Chem. Soc. Rev.,2010,39(8):3157-3180.
    [24] Sun, X.,Liu, Z.,Welsher, K., et al. Nano-graphene oxide for cellular imaging and drug delivery[J].Nano Res.,2008,1(3):203-212.
    [25] Liu, Z.,Robinson, J.,Sun, X., et al. PEGylated nanographene oxide for delivery of water-insolublecancer drugs[J]. J. Am. Chem. Soc.,2008,130(33):10876-10877.
    [26] Zhang, L.,Xia, J.,Zhao, Q., et al. Functional graphene oxide as a nanocarrier for controlled loadingand targeted delivery of mixed anticancer drugs[J]. Small,2010,6(4):537-544.
    [27] Zhang, J.,Zhang, F.,Yang, H., et al. Graphene oxide as a matrix for enzyme immobilization[J].Langmuir,2010,26(9):6083-6085.
    [28] Yang, X.,Zhang, X.,Liu, Z., et al. High-efficiency loading and controlled release of doxorubicinhydrochloride on graphene oxide[J]. J. Phys.Chem. C,2008,112(45):17554-17558.
    [29] Yang, K.,Zhang, S.,Zhang, G., et al. Graphene in mice: ultrahigh in vivo tumor uptake andefficient photothermal therapy[J]. Nano Lett.,2010,103318-3323.
    [30] Zhang, J.,Yang, H.,Shen, G., et al. Reduction of graphene oxide vial-ascorbic acid[J]. Chem.Commun.,2010,46(7):1112-1114.
    [31] Hummers Jr, W.,Offeman, R. Preparation of graphitic oxide[J]. J. Am. Chem. Soc.,1958,80(6):1339-1339.
    [32] Johnsson, B.,Lofas, S.,Lindquist, G. Immobilization of proteins to acarboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmonresonance sensors[J]. Anal. Biochem.,1991,198(2):268-277.
    [33] Xu, Y.,Liu, Z.,Zhang, X., et al. A graphene hybrid material covalently functionalized withporphyrin: synthesis and optical limiting property[J]. Adv. Mater.,2009,21(12):1275-1279.
    [34] Karousis, N.,Economopoulos, S.,Sarantopoulou, E., et al. Porphyrin counter anion inimidazolium-modified graphene-oxide[J]. Carbon,2010,48(3):854-860.
    [35] Zhang, X.,Feng, Y.,Tang, S., et al. Preparation of a graphene oxide-phthalocyanine hybrid throughstrong [pi]-[pi] interactions[J]. Carbon,2010,48(1):211-216.
    [36] Geng, J.,Kong, B.,Yang, S., et al. Preparation of graphene relying on porphyrin exfoliation ofgraphite[J]. Chem. Commun.,2010,46(28):5091-5093.
    [1] Kelkar, S.,Reineke, T. M. Theranostics: combining imaging and therapy[J]. Bioconjugate Chem.,2011,22(10):1879-1903.
    [2] Ng, K. K.,Lovell, J. F.,Zheng, G. Lipoprotein-inspired nanoparticles for cancer theranostics[J].Acc. Chem. Res.,2011,44(10):1105-1113.
    [3] Lovell, J.,Jin, C.,Huynh, E., et al. Porphysome nanovesicles generated by porphyrin bilayers foruse as multimodal biophotonic contrast agents[J]. Nat. Mater.,2011,20:324-332.
    [4] Chen, X. S. Introducing Theranostics Journal-From the Editor-in-Chief[J]. Theranostics,2011,11.
    [5] Fleige, E.,Quadir, M.,Haag, R. Stimuli-responsive polymeric nanocarriers for the controlledtransport of active compounds: Concepts and applications[J]. Adv. Drug Deliver Rev.,2012, DOI:j.addr.2012.01.020.
    [6] Du, J.,O'Reilly, R. Anisotropic particles with patchy, multicompartment and Janus architectures:preparation and application[J]. Chem. Soc. Rev.,2011,40:2402-2416.
    [7] Du, J.,O'Reilly, R. K. Advances and challenges in smart and functional polymer vesicles[J]. SoftMatter,2009,5(19):3544-3561.
    [8] Rai, P.,Mallidi, S.,Zheng, X., et al. Development and applications of photo-triggered theranosticagents[J]. Adv. Drug Deliver Rev.,2010,62(11):1094-1124.
    [9] Chen, F.,Huang, P.,Zhu, Y. J., et al. The photoluminescence, drug delivery and imaging propertiesof multifunctional Eu3+/Gd3+dual-doped hydroxyapatite nanorods[J]. Biomaterials,2011,32(34):9031-9039.
    [10] Xie, J.,Lee, S.,Chen, X. Nanoparticle-based theranostic agents[J]. Adv. Drug Deliver Rev.,2010,62(11):1064-1079.
    [11] Celli, J. P.,Spring, B. Q.,Rizvi, I., et al. Imaging and photodynamic therapy: mechanisms,monitoring and optimization[J]. Chem. Rev.,2010,110(5):2795-2838.
    [12] Huang, P.,Xu, C.,Lin, J., et al. Folic acid-conjugated graphene oxide loaded with photosensitizersfor targeting photodynamic therapy[J]. Theranostics,2011,1240-250.
    [13] Li, Z.,Huang, P.,Zhang, X., et al. RGD-conjugated dendrimer-modified gold nanorods for in vivotumor targeting and photothermal therapy[J]. Mol. Pharm.,2009,7(1):94-104.
    [14] Huang, X.,Jain, P.,El-Sayed, I., et al. Plasmonic photothermal therapy (PPTT) using goldnanoparticles[J]. Laser Med. Sci.,2008,23(3):217-228.
    [15] Huang, Z.,Li, L.,Wang, H., et al. Photodynamic therapy–an update on clinical applications[J]. J.Innov. Opt. Health Sci,2009,2(1):73-92.
    [16] Huang, P.,Li, Z.,Lin, J., et al. Photosensitizer-conjugated magnetic nanoparticles for in vivosimultaneous magnetofluorescent imaging and targeting therapy[J]. Biomaterials,2011,32(13):3447-3458.
    [17] He, X.,Wu, X.,Wang, K., et al. Methylene blue-encapsulated phosphonate-terminated silicananoparticles for simultaneous in vivo imaging and photodynamic therapy[J]. Biomaterials,2009,30(29):5601-5609.
    [18] Sun, Y.,Chen, Z.,Yang, X., et al. Magnetic chitosan nanoparticles as a drug delivery system fortargeting photodynamic therapy[J]. Nanotechnology,2009,20(13):135102.
    [19] Chen, Z. L.,Sun, Y.,Huang, P., et al. Studies on preparation of photosensitizer loaded magneticsilica nanoparticles and their anti-tumor effects for targeting photodynamic therapy[J]. Nanoscale Res.Lett.,2009,4(5):400-408.
    [20] Jeong, H.,Huh, M. S.,Lee, S. J., et al. Photosensitizer-conjugated human serum albuminnanoparticles for effective photodynamic therapy[J]. Theranostics,2011,1:230-239.
    [21] Liang, X.,Li, X.,Yue, X., et al. Conjugation of porphyrin to nanohybrid cerasomes forphotodynamic diagnosis and therapy of cancer[J]. Angew. Chem. In. Ed.,2011, DOI:10.1002/anie.201103557.
    [22] Cheng, Y.,Meyers, J.,Broome, A., et al. Deep penetration of a PDT drug into tumors bynoncovalent drug-gold nanoparticle conjugates[J]. J. Am. Chem. Soc.,2011,133(8):2583-2591.
    [23] Chan, J. M.,Zhang, L.,Tong, R., et al. Spatiotemporal controlled delivery of nanoparticles toinjured vasculature[J]. P. Natl. Acad. Sci. USA,2010,107(5):2213.
    [24] Wang, S.,Gao, R.,Zhou, F., et al. Nanomaterials and singlet oxygen photosensitizers: potentialapplications in photodynamic therapy[J]. J. Mater. Chem.,2004,14(4):487-493.
    [25] Bechet, D.,Couleaud, P.,Frochot, C., et al. Nanoparticles as vehicles for delivery of photodynamictherapy agents[J]. Trends Biotechnol.,2008,26(11):612-621.
    [26] Juzenas, P.,Chen, W.,Sun, Y. P., et al. Quantum dots and nanoparticles for photodynamic andradiation therapies of cancer[J]. Adv. Drug Deliver Rev.,2008,60(15):1600-1614.
    [27] Samia, A.,Dayal, S.,Burda, C. Quantum dot-based energy transfer: perspectives and potential forapplications in photodynamic pherapy[J]. Photochem. Photobiol.,2006,82(3):617-625.
    [28] Samia, A. C. S.,Chen, X.,Burda, C. Semiconductor quantum dots for photodynamic therapy[J]. J.Am. Chem. Soc.,2003,125(51):15736-15737.
    [29] Gao, X.,Cui, Y.,Levenson, R. M., et al. In vivo cancer targeting and imaging with semiconductorquantum dots[J]. Nat. Biotechnol.,2004,22(8):969-976.
    [30] Li, Z.,Huang, P.,He, R., et al. Aptamer-conjugated dendrimer-modified quantum dots for cancercell targeting and imaging[J]. Mater. Lett.,2010,64(3):375-378.
    [31] Huang, P.,Bao, L.,Yang, D., et al. Protein-directed solution-phase green synthesis ofBSA-conjugated MxSey(M=Ag, Cd, Pb, Cu) nanomaterials[J]. Chem. Asian J.,2011,6(5):1156-1162.
    [32] Sun, Y. P.,Zhou, B.,Lin, Y., et al. Quantum-sized carbon dots for bright and colorfulphotoluminescence[J]. J. Am. Chem. Soc.,2006,128(24):7756-7757.
    [33] Cao, L.,Wang, X.,Meziani, M. J., et al. Carbon dots for multiphoton bioimaging[J]. J. Am. Chem.Soc.,2007,129(37):11318-11319.
    [34]Yang, S. T.,Cao, L.,Luo, P. G., et al. Carbon dots for optical imaging in vivo[J]. J. Am. Chem. Soc.,2009,131(32):11308-11309.
    [35] Yang, S. T.,Wang, X.,Wang, H., et al. Carbon dots as nontoxic and high-performance fluorescenceimaging agents[J]. J. Phys. Chem. C,2009,113(42):18110-18114.
    [36] Wang, X.,Cao, L.,Yang, S. T., et al. Bandgap-like strong fluorescence in functionalized carbonnanoparticles[J]. Angew. Chem. In. Ed.,2010,122(31):5438-5442.
    [37] Wang, F.,Xie, Z.,Zhang, H., et al. Highly luminescent organosilane-functionalized carbon dots[J].Adv. Funct. Mater.,2011,21(6):1027-1031.
    [38] Cao, L.,Yang, S. T.,Wang, X., et al. Competitive performance of carbon “Quantum” Dots inoptical bioimaging[J]. Theranostics,2012, in press.
    [39] Zhu, H.,Wang, X.,Li, Y., et al. Microwave synthesis of fluorescent carbon nanoparticles withelectrochemiluminescence properties[J]. Chem. Comm.,2009,34:5118-5120.
    [40] Liu, R.,Wu, D.,Liu, S., et al. An aqueous route to multicolor photoluminescent carbon dots usingsilica spheres as carriers[J]. Angew. Chem. In. Ed.,2009,121(25):4668-4671.
    [41] Tao, H.,Yang, K.,Ma, Z., et al. In vivo NIR fluorescence imaging, biodistribution, and toxicologyof photoluminescent carbon dots produced from carbon nanotubes and graphite[J]. Small,2011,8(2):281-290.
    [42] Anilkumar, P.,Wang, X.,Cao, L., et al. Toward quantitatively fluorescent carbon-based “quantum”dots[J]. Nanoscale,2011,32023-2027.
    [43] Johnsson, B.,L f s, S.,Lindquist, G. Immobilization of proteins to acarboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmonresonance sensors[J]. Anal. Biochem.,1991,198(2):268-277.
    [44] Zhu, Z.,Tang, Z.,Phillips, J. A., et al. Regulation of singlet oxygen generation using single-walledcarbon nanotubes[J]. J. Am. Chem. Soc.,2008,130(33):10856-10857.
    [45] Clegg, R. M. Fluorescence resonance energy transfer[J]. Curr. Opin. Biotechnol.,1995,6(1):103-110.
    [46] Clapp, A. R.,Medintz, I. L.,Mauro, J. M., et al. Fluorescence resonance energy transfer betweenquantum dot donors and dye-labeled protein acceptors[J]. J. Am. Chem. Soc.,2004,126(1):301-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700