用户名: 密码: 验证码:
类沸石咪唑骨架膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属有机骨架(MOFs)化合物作为一种新型的多孔晶态材料,基于其结构多样、孔径可调以及拥有可化学修饰的孔道,突破了沸石分子筛孔道尺寸和化学组成的局限性,成为具有潜在应用价值的新一代膜材料。目前,金属有机骨架材料的成膜化研究刚刚起步,主要以较高稳定性的一类MOFs材料:类沸石咪唑骨架(ZIFs)为研究对象,集中在片状小孔载体上成膜或有机膜中掺杂ZIFs晶体制备混合基质膜。相较于小孔片状载体,大孔管状载体更有利于工业化应用。但大孔载体表面缺陷多,缺乏MOFs生长的异相成核点,不利于膜的生长。本文以改变载体表而性质为出发点,降低载体表面粗糙度和增加异相成核点,克服了大孔载体难以制备MOFs膜的技术难点,成功地制备出高性能的ZIFs膜,并创新性地提出修补缺陷膜的方法。主要结果如下:
     (1)以水取代有机溶剂作为反应介质,不添加模板剂的条件下得到大小为500nm、粒径分布均匀的[Co(Im)2]。。晶种,采用二次生长法在大孔管状载体表而制备连续致密、厚度约为9μmm的[Co(Im)2]。膜,并考察了成膜时间、合成液浓度对膜的形貌和性能的影响。室温下H2的渗透速率达1.1×10-8molm-2s-1Pa-1, H2/CO2, H2/N2和H2/CH4的理想分离系数分别为7.8,9.1和7.9,超过努森扩散选择性。
     (2)采用高分子聚乙二醉(PEG)包裹的方法,将ZIF-8纳米晶种涂覆至大孔载体表面,解决了晶种尺寸与载体孔径不匹配以及晶种层与载体结合力差的问题,制备出高性能的ZIF-8膜。考察了晶种分散剂、PEG和ZIF-8晶种浓度对涂覆晶种与膜质量和性能的影响,得出体积比为1/1/1的混合溶剂水/乙醇/N,N-二甲基甲酰胺(H2O/EtOH/DMF)为分散剂、PEG浓度为5%、ZIF-8浓度为1.5%,成膜液配方为1.1ZnCl2-4H20:1.7mlm:4.5NaCHO2:985CH3OH时制备的ZIF-8膜质量最好,H2渗透速率达到5.6×10-7mol·m-2s-1Pa-1, H2/CO2、H2/N2、 H2/CH4、 H2/C3H6、和H2/SF6分别达5.96、4.09、6.12、10.74、8.8和16.52,均超过努森扩散选择性,具有潜在的应用价值。
     (3)针对弱配位键、MOFs(?)与载体间膨胀系数相差大使MOFs膜易产生缺陷的问题,提出一种将ZIF-8缺陷膜进行打磨并提拉含有ZIF-8晶种的PEG溶液,经过晶化反应修补缺陷的方法。打磨使缺陷膜表面产生大量的ZIF-8小晶粒填补到缺陷处,提拉PEG-ZIF-8溶液能进一步提高载体表而的Z1F-8晶种含量,具有粘稠性的PEG固定载体表面的ZIF-8晶粒并使载体表面平整,晶化反应后,得到致密无缺陷的ZIF-8膜,厚度为19μm,单组分气体渗透速率随着分子尺寸地增加而降低,H2/N2, H2/CH4和CO2/CH4的混合气分离性能分别为6.5,6.7和3.5,H2的渗透速率达1.17×10-7mol·m-2s-1Pa-1。
     (4)发展了一种新颖的二合一法,即将经过化学修饰的无机粒子涂覆到载体表面,不仅能够修补大孔载体表面的缺陷,同时增加异相成核点,解决了大孔结构导致膜缺陷化和异相成核点低下的问题。通过内外扩散法获得了厚度小于2gm、高渗透性能和高选择性的ZIF-8膜,在保持较高选择性的条件下,H2/CO2和H2/N2的理想分离系数达17.05和15.44,H2渗透速率高达5.73×10-5mol·m-2·S-1Pa-1,是迄今为止报道的ZIF-8膜的一至两个数量级,在报道的多孔透氢膜中,该膜的分离指数最高。涂覆无机粒子能够使载体有效外表面积从28.56cm2提高到215.38cm2,经元素分析表征,无机粒子表面APTES含量达到16nm-2。而原位法在涂覆无机粒子的载体表而制备的膜容易产生缺陷,主要原因是无机粒子与载体以及无机粒子间结合力比较差。
     (5)结合文献中报道的双金属源法,将ZnO粒子涂覆到大孔载体表面形成连续的ZnO层,并经过高温固载。ZnO粒子不仅修补了载体表面,同时能够提供过饱和的Zn2+作为金属源诱导ZIF-8在载体表面成核生长。经过原位晶化反应制备出高性能的ZIF-8膜,厚度在15μm, H2渗透速率达3.4×10-7molm-2s-1Pa-1, H2/CO2, H2/N2, H2/CH4, H2/C3H8和H2/SF6的理想分离系数分别为7.4,8.8,8.2,37.8和20.7,都远大于相应的努森扩散选择性。如果将涂覆ZnO层的载体与配体溶液前处理后再晶化成膜,膜容易产生缺陷。
Metal-organic frameworks (MOFs) as hybrid organic-inorganic nanoporous materials exhibiting regular crystalline lattices with relatively well-defined pore structures have been widely used in catalysis, gas storage, drug delivery and photo/electron/magnetic areas. Chemical functionalization of the organic linkers in the structures of MOFs affords facile control over pore size and chemical/physical properties, making MOFs attractive as new separation membrane materials. Different from the discontinuous and limited range of available pore sizes of zeolites, MOFs could be designed or tailored in gas separation applications due to their ultramicropores in the scale of gas molecules.
     The processing of MOFs as films is a domain that has only recently been initiated. The avenues of MOFs membrane researches focus on fabricating pure MOFs phases on the microporous or nonporous supports and the mixed matrix membranes which are generally polymer/inorganic composites consisting of a primary polymer phase and a secondary phase of dispersed MOFs particles. In contrast, the macroporous tubular supports are more conducive to industrial applications, due to the easier assembly, larger loading density and lower cost. A thin and dcfects/pinholes free membrane on the support with large pore size is desirable for high flux and high selectivity. However, the larger the pore size of the support, the larger the risk of forming defects which decrease the separation factor. On the other hand, the poor bonding between the inorganic substrates and the organic ligand and tubular geometry of the support increased the difficulties in the preparation of defect-free MOFs membranes. Despite of the much progress on preparation of MOFs membranes, there is still a long way ahead for the facile synthesis of MOFs membranes with high performance before robust synthetic strategies can be developed.
     In views of the problems in preparation of MOFs membranes on macroporous support, we combined the seeded growth method with chemical modification method into one for the synthesis of MOFs membranes. High performance MOFs membranes were successfully obtained. We also proposed the innovative strategy for elimination the cracks in the MOFs layers and obtainment the defect-free membranes. The main research contents are listed below.
     [Co(lm)2]∞seeds with size of500nm were obtained in aqueous solution at room temperature. The characterization of SEM, XRD showed that the [Co(lm)2]∞. crystals with uniform particle size distribution is suitable as seeds for the selected macroporous support. Through secondary growth method in aqueous solutions, continuous and crack-free [Co(lm)2]∞membrane was successfully obtained on the low-cost macroporous α-Al2O3support, exhibiting H2permeance of1.1x10-8mol m-2s-1Pa-1with ideal selectivity for H2/CO2, H2/N2and H2/CH4system of7.8,9.1and7.9at room temperature. Moreover, the effects of other parameters including the concentration of solution and synthesis time on the formation of [Co(Im)2]∞were also investigated. Through deposition of PEG solution containing ZIF-8particles on the macroporous support, continuous and defect-free ZIF-8membranes were successfully obtained, solving the issue of seed size unmatched with the aperture of the support. The effects of the solvents as dispersing agent, the concentration of PEG and ZIF-8seeds on the formation seed layer and ZIF-8membrane were investigated. While the mixed solvent (DMF/EtOH/H2O, v/v/v=1/1/1) as solvent, the concentration of PEG and ZIF-8seeds reaching5%and1.5%, the ZIF-8membrane obtained under recipe of1.1ZnCl2-4H2O:1.7mlm:4.5NaCHO2:985CH3OH showed the best separation performance, exhibiting H2permeance of5.6rme"7mol m-2s-1Pa-1with ideal selectivity exceeding Knudesen selectivity at room temperature.
     The formation of cracks within the MOFs layers is a big challenge to their practical applications. Here, a new strategy, namely through polishing the cracked ZIF-8membrane and dip-coating PEG solution containing ZIF-8seeds was developed to eliminate cracks and form a continuous and crack-free ZIF-8membranes on coarse macroporous tubes. After polishing, rhombic crystals of the thick cracked ZIF-8membrane were crushed into small and irregularly shaped particles, leading to form a much thinner ZIF-8layer. The dip-coated PEG solution served to fix plenty of "seeds" in the cracks and give a flat surface through the glutinosity of PEG. When the cracked ZIF-8membrane was subject to both of polishing and dip-coating PEG solution and one more crystallization growth, continuous and defect-free ZIF-8membrane showing molecular sieving selectivity for H2/N2, H2/CH4and CO2/CH4of6.5,6.7and3.5was obtained. In contrast, only polishing without dip-coating the PEG solution, the secondly synthesized ZIF-8membrane showed a few cracks and a Knudesen selectivity for the light gas.
     Through deposition of APTES-functionalized A12O3particles onto a coarse macroporous support, a new strategy to reduce the pore size and simultaneously promote high heterogeneous nucleation sites was developed, and a continuous and thin ZIF-8membrane exhibiting remarkably high H2permeance of5.73×10-5mol m-2s-1Pa-1,with ideal selectivity for H2/N2and H2/CO2system of17.05and15.44, respectively, was achieved. Moreover, the density of hetergeneous nucleation sites on the APTES-a-Al2O3particle deposited support is higher than that on the support directly modified with APTES, due to the resulting larger amount of APTES molecules considering the large surface area (215.38cm2·g-1) of the deposited α-Al2O3particles, which is about8times of that of the corresponding bare support(28.56cm2·g-1). Due to the lack of bonding force between the bare inorganic particles and the support, the ZIF-8membranes obtained by in situ growth method always form cracks.
     The enormous flexibility in pore size, shape, structure and myriad opportunities for functionalization and grafting make metal organic frameworks (MOFs) as excellent candidate of membrane materials. In the article, we report a modified "two in one" strategy through deposition ZnO particles onto low-cost and large-pore tubular supports with average pore size of3-4μm for the synthesis of ZIF-8membranes. The ZnO particles were directly deposited on the support to act as filler to reduce the pore size and simultaneously as "metal source" to create a high supersaturation degree to promote high heterogeneous nucleation sites. Through such simultaneous surface and pore structure modification, continuous and crack-free ZIF-8membrane was successfully obtained, exhibiting H2permeance of3.4×10-7mol m-2-1Pa-1with ideal selectivities for H2/CO2, H2/N2, H2/CH4, H2/C3H8, and H2/SF6system of7.4,8.8,8.2,37.8and20.7, respectively at150℃. When.the supports deposited with ZnO particles were treated by pre-reacting with the ligand of2-methylimidazole, big cracks/gaps occurred at the interface between the ZIF-8membrane and the support. The work demonstrates the high flexibility and universality of the modified "two in one" strategy for synthesis of MOFs membranes on large-pore supports through the rational selection of metal oxides.
引文
[1]Bauer C. A.,Timofeeva T. V., Settersten T. B., et al. Influence of connectivity and porosity on ligand-based luminescence in zinc metal-organic frameworks [J]. J. Am. Chem. Soc,2007,129: 7136-7144.
    [2]James S. L. Metal-organic frameworks [J]. Chem. Soc. Rev.,2003,32:276-288.
    [3]Li J. R., Sculley J., Zhou H. C. Metal-Organic Frameworks for Separations [J]. Chem. Rev.,2012, 112:869-932.
    [4]Han S., Ma Z., Wei Y., et al. A single-crystalline microporous coordination polymer with mixed parallel and diagonal interpenetrating α-Po networks [J]. CrystEngComm,2011,13: 4838-4840.
    [5]Wells A. F. The geometrical basis of crystal chemistry. Part 1 [J]. Acta Crystallogr.,1954,7: 535-544.
    [6]Wells A. F. The geometrical basis of crystal chemistry. Part 1 [J]. Acta Crystallogr.,1954,7: 545-554.
    [7]Wells A. F. In three dimensional nets and polyhedral [M]. Wiley, New York,1977.
    [8]Wells A. F. In structural inorganic chemistry [M]. Oxford University Press,5th ed. London,1984.
    [9]游效曾,孟庆金,韩万书.配位化学进展[M].北京:高等教育出版社,2000.
    [10]Li J. R., Kuppler R. J., Zhou H. C. Selective gas adsorption and separation in metal-organic frameworks [J]. Chem. Soc. Rev.,2009,38:1477-1504.
    [11]Bae Y. S., Snurr R. Q. Development and evaluation of porous materials for carbon dioxide separation and capture [J]. Angew. Chem. Int. Ed.,2011,50:11586-11596.
    [12]Sumida K., Rogow D. L., Mason J. A., et al. Carbon Dioxide Capture in Metal-Organic Frameworks [J]. Chem. Rev.,2012,112:724-781.
    [13]Lee J., Farha O. K., Roberts J., et al. Metal-organic framework materials as catalysts [J]. Chem. Soc. Rev.,2009,38:1450-1459.
    [14]Banerjee R., Furukawa H., Britt D., et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties [J]. J. Am. Chem. Soc,2009,131:3875-3877.
    [15]Yuan B., Ma D., Wang X., et al. A microporous, moisture-stable, and amine-functionalized metal-organic framework for highly selective separation of CO2 from CH4 [J]. Chem. Commun., 2012,48:1135-1137.
    [16]Zhao Y., Wu H., Emge T. J., et al. Enhancing gas adsorption and separation capacity through ligand functionalization of microporous metal-organic framework structures [J]. Chem. Eur. J., 2011,17:5101-5109.
    [17]Nune S. K., Thallapally P. K., Dohnalkova A., et al. Synthesis and properties of nano zeolitic imidazolate frameworks [J]. Chem. Commun.,2010,46:4878-4880.
    [18]Kanoo P., Mostafa G., Matsuda R., et al. A pillared-bilayer porous coordination polymer with a ID channel and a 2D interlayer space, showing unique gas and.vapor sorption [J]. Chem. Commun.,2011,47:8106-8108.
    [19]Herm Z. R., Swisher J. A., Smit B., et al. Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture [J]. J. Am. Chem. Soc,2011,133: 5664-5667.
    [20]Zhang Z., Huang S., Xian S., et al. Adsorption of CO2, N2, and O2 on Natural Zeolites [J]. Energy Fuels,2011,25:835-842.
    [21]Bourrelly S., Llewellyn P. L., Serre C., et al. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47 [J]. J. Am. Chem. Soc,2005,127:13519-13521.
    [22]Corma A., Garcia H., Xamena F. X. L., et al. Engineering metal organic frameworks for heterogeneous catalysis [J].Chem. Rev.,2010,110:4606-4655.
    [23]Schroder F., Fischer R. A. Doping of metal-organic frameworks with functional guest molecules and nanoparticles [J]. Top. Curr. Chem.,2010,293:77-133.
    [24]Yuan B., Pan Y., Li Y., et al. A Highly Active Heterogeneous Palladium Catalyst for the Suzuki-Miyaura and Ullmann Coupling Reactions [J]. Angew. Chem., Int. Ed.,2010,49: 4054-4058.
    [25]Hughes J. T., Navrotsky A. MOF-5:enthalpy of formation and energy landscape of porous materials [J]. J. Am. Chem. Soc,2011,133:9184-9187.
    [26]Yaghi O. M., Li H. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels [J]. J. Am. Chem. Soc,1995,117:10401-10402.
    [27]Li H., Eddaoudi M., Keeffe M. O., et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature,1999,402:276-279.
    [28]Tranchemontagne D. J., Mendoza-Cortes J. L., Keeffe M. O., et al. Secondary building units, nets and bonding in the chemistry of metal-organic frameworks [J]. Chem. Soc. Rev.,2009,38: 1257-1283.
    [29]Furukawa H., Cordova K. E., O'Keeffe M., et al. The Chemistry and Applications of Metal-Organic Frameworks [J]. Science,2013,341:1230444.
    [30]Liu S., Xiang Z.,Hu Z., et al. Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules [J]. J. Mater. Chem.,2011,21:6649-6653.
    [31]Rowsell C., Yaghi O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks [J]. J. Am. Chem. Soc,2006,128:1304-1315.
    [32]B lake A. J., Champness N. R., Easun T. L., et al. Photoreactivity examined through incorporation in metal-organic frameworks [J]. Nat. Chem.,2010,2:688-694.
    [33]Lee P. H., K O. C., Zhu N., et al. Metal coordination-assisted near-Infrared photochromic behavior; a large perturbation on absorption wave length properties o f N, N-donor ligands containing diarylethene derivatives by coordination to the rhenium (1) metal center [J]. J. Am. Chem. Soc,2007, 129;6058-6059.
    [34]Rowsell J. L., Spencer E. C., Eckert J., et al. Gas adsorption sites in a large-pore metal-organic framework [J]. Science,2005,309:1350-1354.
    [35]Zhao X., Xiao B., Fletcher A. J., et al. Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks [J]. Science,2004,306:1012-1015.
    [36]Chen B., Eddaoudi M., Hyde S. T., et al. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores [J]. Science,2001,291:1021-1023.
    [37]Mandal S. K., Roesky H. W. Assembling Heterometals through Oxygen:An Efficient Way To Design Homogeneous Catalysts [J]. Ace. Chem. Res.,2010,43:248-259.
    [38]Chen B. L.,Xiang S. C., Qian G. D. Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules [J]. Ace. Chem. Res.,2010,43:1115-1124.
    [39]Phan A., Doonan C. J., Uribe-Romo F. J., et al. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks [J]. Ace. Chem. Res.,2010,43:58-67.
    [40]Yaghi 0. M., Rowsell J. L. Strategies for hydrogen storage in metal-organic frameworks [J]. Angew. Chem. Int. Ed.,2005,44:4670-4679.
    [41]Yaghi O. M., Wang B.,Cote A. P., et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs [J]. Nature,2008,453:207-212.
    [42]Hermes S., Schroder F., Chelmowski R., et al. Selective nucleation and growth of metalorganic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111) [J]. J. Am. Chem. Soc,2005,127:13744-13745.
    [43]Angelique B., Fischer R. A. Metal-Organic Framework Thin Films:From Fundamentals to Applications [J]. Chem. Rev.2012,112:1055-1083.
    [44]Bradshaw D., Garai A., Huo J. Metal-organic framework growth at functional interfaces:thin films and composites for diverse applications [J]. Chem. Soc. Rev.,2012,41:2344-2381.
    [45]Shekhah O., Liu J., Fischer R. A., et al. MOF thin films:existing and future applications [J]. Chem. Soc. Rev.,2011,40:1081-1106.
    [46]Barthelet K., Marrot J., Riou D., et al. A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics [J]. Angew. Chem. Int. Ed.,2002,41:281-284.
    [47]Huang A., Wang N., Kong C., et al. Organosilica-Functionalized Zeolitic Imidazolate Framework ZIF-90 Membrane with High Gas-Separation Performance [J]. Angew. Chem. Int. Ed.,2012, 51:10551-10555.
    [48]Decher G. Fuzzy Nanoassemblies:Toward Layered Polymeric Multicomposites [J]. Science,1997, 277:1232-1237.
    [49]BeIl C. M., Arendt M. F., Gomez L., et al. Growth of lamellar Hofmann clathrate films by sequential ligand exchange reactions:assembling a coordination solid one layer at a time [J]. J. Am. Chem. Soc,1994,116:8374-8375.
    [50]Cobo S., Molnar G., Real J. A., et al. Multilayer Sequential Assembly of Thin Films That Display Room-Temperature Spin Crossover with Hysteresis [J]. Angew. Chem. Int. Ed.,2006, 45:5786-5789.
    [51]Molnar G., Cobo S., Real J., et al. A Combined Top-Down/Bottom-Up Approach for the Nanoscale Patterning of Spin-Crossover Coordination Polymers [J]. Adv. Mater.,2007, 19:2163-2167.
    [52]Shekhah O., Wang H., Kowarik S., et al. Step-by-Step Route for the Synthesis of Metal-Organic Frameworks [J]. J. Am. Chem. Soc,2007,129:15118-15119.
    [53]Munuera C., Shekhah O., Wang H., et al. The controlled growth of oriented metal-organic frameworks on functionalized surfaces as followed by scanning force microscopy [J]. Phys. Chem. Chem. Phys.,2008,10:7257-7561.
    [54]Shekhah O., Wang H., Zacher D., et al. Growth mechanism of metal-organic frameworks: Fundamental insights into the nucleation by employing a step-by-step route [J]. Angew. Chem. Int. Ed.,2009,48:5038-5041.
    [55]Zacher D., Yusenko K., Betard A., et al. Multi-component liquid phase epitaxy of layer-based PCPs:Importance of deposition sequence [J]. Chem. Eur. J.,2011,17:1448-1455.
    [56]Makiura R., Motoyama S., Umemura Y., et al. Surface nano-architecture of a metal-organic framework [J]. Nat. Mater.,2010,9:565-571.
    [57]Kitaura R., Seki K., Akiyama G., et al. Porous Coordination-Polymer Crystals with Gated Channels Specific for Supercritical Gases [J]. Angew. Chem. Int. Ed.,2003,42:428-431.
    [58]Motoyama S., Makiura R., Sakata O., et al. Highly Crystalline Nanofilm by Layering of Porphyrin Metal-Organic Framework Sheets [J]. J. Am. Chem. Soc,2011,133:5640-5643.
    [59]Zacher D., Baunemann A., Hermes S., et al. Deposition of macrocrystalline [Cu3(btc)2] and [Zn2(bdc)2(dabco)] at alumina and silica surfaces modified with patterned self assembled organic monolayers:evidence of surface selective and oriented growth [J]. J. Mater. Chem.,2007, 17:2785-2792.
    [60]Betard A., Zacher D., Fischer, R. A. Dense and homogeneous coatings of CPO-27-M type metal-organic frameworks on alumina substrates [J]. CrystEngComm,2010,12:3768-3772.
    [61]Yoo Y., Jeong H. K. Heteroepitaxial Growth of Isoreticular Metal-Organic Frameworks and Their Hybrid Films [J]. Cryst. Growth Des.,2010,10:1283-1288.
    [62]Guo H., Zhu G., Hewitt I. J., et al. "Twin Copper Source" Growth of Metal-Organic Framework Membrane:Cu3(BTC)2 with High Permeability and Selectivity for Recycling H2 [J]. J. Am. Chem. Soc.,2009,131:1646-1647.
    [63]Liu J., Sun F., Zhang F., et al. In situ growth of continuous thin metal-organic framework film for capacitive humidity sensing [J]. J. Mater. Chem.,2011,21:3775-3778.
    [64]Zou X., Zhu G., Hewitt I. J., et al. Synthesis of a metal-organic framework film by direct conversion technique for VOCs sensing [J]. Dalton Trans.,2009,3009-3013.
    [65]Kusgens P., Siegle S., Kaskel S. Crystal Growth of the Metal-Organic Framework Cu3(BTC)2 on the Surface of Pulp Fibers [J]. Adv. Eng. Mater.,2009,11:93-95.
    [66]Centrone A., Yang Y., Speakman S., et al. Growth of Metal-Organic Frameworks on Polymer Surfaces [J]. J. Am. Chem. Soc,2010,132:15687-15691.
    [67]Aguado S., Canivet J., Farrusseng D. Facile shaping of an imidazolate-based MOF on ceramic beads for adsorption and catalytic applications [J]. Chem. Commun.,2010,46:7999-8001.
    [68]Aguado S., Nicolas C. H., Moizan-Basle V., et al. Facile synthesis of an ultramicroporous MOF tubular membrane with selectivity towards CO2 [J]. New J. Chem.,2011,35:41-44.
    [69]Arnold M., Kortunov P., Jones D. J., et al. Oriented Crystallisation on Supports and Anisotropic Mass Transport of the Metal-Organic Framework Manganese Formate [J]. Eur. J. Inorg. Chem., 2007,60-64.
    [70]McCarthy M. C., Varela-Guerrero V., Barnett G. V., et al. Synthesis of Zeolitic Imidazolate Framework Films and Membranes with Controlled Microstructures [J]. Langmuir,2010, 26:14636-14641.
    [71]Huang A., Bux H., Steinbach F., et al. Molecular-Sieve Membrane with Hydrogen Perm-selectivity:ZIF-22 in LTA Topology Prepared with 3-Aminopropyltriethoxysilane as Covalent Linker [J]. Angew. Chem. Int. Ed.,2010,49:4958-4961.
    [72]Huang A., Dou W., Caro J. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization [J]. J. Am. Chem. Soc,2010, 132:15562-15564.
    [73]Kayaert S., Bajpe S., Masschaele K., et al. Direct growth of Keggin polyoxometalates incorporated copper 1,3,5-benzenetricarboxylate metal organic framework films on a copper metal substrate [J]. Thin Solid Films,2011,519:5437-5440.
    [74]Klinowski J., Almeida F. A., Silva P., et al. Microwave-Assisted Synthesis of Metal-Organic Frameworks [J]. Dalton Trans.,2011,40:321-330.
    [75]Bux H., Liang F., Li Y., et al. Zeolitic Imidazolate Framework Membrane with Molecular Sieving Properties by Microwave-Assisted Solvothermal Synthesis [J]. J. Am. Chem. Soc,2009, 131:16000-16001.
    [76]Yoo Y., Jeong H. K. Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition [J]. Chem. Commun.,2008,21:2441-2443.
    [77]Biemmi E., Scherb C., Bein, T. Oriented Growth of the Metal Organic Framework Cu3(BTC)2(H2O)3·xH2O Tunable with Functionalized Self-Assembled Monolayers [J]. J. Am. Chem. Soc,2007,129:8054-8055.
    [78]Scherb C., Schodel A., Bein T. Directing the Structure of Metal-Organic Frameworks by Oriented Surface Growth on an Organic Monolayer [J]. Angew. Chem. Int. Ed.,2008,47:5777-5779.
    [79]Hinterholzinger F., Scherb C., Ahnfeldt T., et al. Oriented growth of the functionalized metal-organic framework CAU-1 on-OH-and-COOH-terminated self-assembled monolayers [J]. Phys. Chem. Chem. Phys.,2010,12:4515-4520.
    [80]Zhuang J. L., Ceglarek D., Pethura S., et al. Rapid Room-Temperature Synthesis of Metal-Organic Framework HKUST-1 Crystals in Bulk and as Oriented and Patterned Thin Films [J]. Adv. Funct. Mater.,2011,21:1442-1447.
    [81]Ameloot R., Gobechiya E., Uji-i H., et al. Direct patterning of oriented metal-organic framework crystals via control over crystallization kinetics in clear precursor solutions [J]. Adv. Mater., 2010,22:2685-2688.
    [82]Kubo M., Chaikittisilp W., Okubo T. Oriented Films of Porous Coordination Polymer Prepared by Repeated in Situ Crystallization [J]. Chem. Mater.,2008,20:2887-2889.
    [83]Schoedel A., Scherb C., Bein T. Oriented nanoscale films of metal-organic frameworks by room-temperature gel-layer synthesis [J]. Angew. Chem. Int. Ed.,2010,49:7225-7228.
    [84]Yaghi O. M., Li G., Li H. Crystal Growth of Extended Solids by Nonaqueous Gel Diffusion [J]. Chem. Mater.,1997,9:1074-1076.
    [85]Yao J., Dong D., Li D., et al. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate [J]. Chem. Commun.,2011,47:2559-2561.
    [86]Carbonell C., Imaz I., Maspoch D. Single-Crystal Metal-Organic Framework Arrays [J]. J. Am. Chem. Soc,2011,133:2144-2147.
    [87]Lew C. M., Cai R., Yan Y. Zeolite Thin Films:From Computer Chips to Space Stations [J]. Acc. Chem. Res.,2010,43:210-219.
    [88]Snyder M. A., Tsapatsis M. Hierarchical nanomanufacturing:from shaped zeolite nanoparticles to high-performance separation membranes [J]. Angew. Chem. Int. Ed.,2007,46:7560-7563.
    [89]Spokoyny A. M., Kim D., Sumrein A., et al. Infinite coordination polymer nano-and microparticle structures [J]. Chem. Soc. Rev.,2009,38:1218-1227.
    [90]Gascon J., Aguado S., Kapteijn F. Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on a-alumina [J]. Microporous Mesoporous Mater.,2008,113:132-138.
    [91]Zou X., Zhu G., Zhang F., et al. Facile fabrication of metal-organic framework films promoted by colloidal seeds on various substrates [J]. CrystEngComm,2010,12:352-354.
    [92]Yoo Y., Lai Z., Jeong H. K. Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth [J]. Microporous Mesoporous Mater.,2009, 123:100-106.
    [93]Ranjan R., Tsapatsis M. Microporous metal organic framework membrane on porous support using the seeded growth method [J]. Chem. Mater.,2009,21:4920-4924.
    [94]Li Y. S., Liang F. Y., Bux H., et al. Molecular Sieve Membrane:Supported Metal-Organic Framework with High Hydrogen Selectivity [J]. Angew. Chem. Int. Ed.,2010,49:548-551.
    [95]Li Y. S., Bux H., Feldhoff A., et al. Controllable Synthesis of Metal-Organic Frameworks:From MOF Nanorods to Oriented MOF Membranes [J]. Adv. Mater.,2010,22:3322-3326.
    [96]Varela-Guerrero V., Yoo Y., McCarthy M. C., et al. HKUST-1 membranes on porous supports using secondary growth [J]. J. Mater. Chem.,2010,20:3938-3943.
    [97]Hu Y., Dong X., Nan J., et al. Metal-organic framework membranes fabricated via reactive seeding [J]. Chem. Commun.,2011,47:737-739.
    [98]Falcaro P., Hill A. J., Nairn K. M., et al. A new method to position and functionalize metal-organic framework crystals [J]. Nat. Commun.,2011,2:1-8.
    [99]Nan J., Dong X., Wang W., et al. Step-by-Step Seeding Procedure for Preparing HKUST-1 Membrane on Porous a-Alumina Support [J]. Langmuir,2011,27:4309-4312.
    [100]Yusenko K., Meilikhov M., Zacher D., et al. Step-by-step growth of highly oriented and continuous seeding layers of [Cu2(ndc)2(dabco)] on bare oxide and nitride substrates [J]. CrystEngComm,2010,12:2086-2090.
    [101]Mueller U., Schubert M., Teich F., et al. Metal-organic frameworks:prospective industrial applications [J]. J. Mater. Chem.,2006,16:626-636.
    [102]Ameloot R., Stappers L., Fransaer J., et al. Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis [J]. Chem. Mater.2009,21:2580-2582.
    [103]Ameloot R., Pandey L., Van der Auweraer M., et al. Patterned film growth of metal-organic frameworks based on galvanic displacement [J]. Chem. Commun.,2010,45:3735-3737.
    [104]Demessence A., Boissiere C., Grosso D., et al. Adsorption properties in high optical quality nano ZIF-8 thin films with tunable thickness [J]. J. Mater. Chem.2010,20:7676-7681.
    [105]Horcajada P., Serre C., Grosso D., et al. Colloidal Route for Preparing Optical Thin Films of Nanoporous Metal-Organic Frameworks [J]. Adv. Mater.,2009,21:1931-1935.
    [106]Demessence A., Horcajada P., Serre C., et al. Elaboration and properties of hierarchically structured optical thin films of MIL-101(Cr) [J]. Chem. Commun.,2009,101:7149-7151.
    [107]Council N. R. Separation Technologies for the Industries of the Future [M]. National Academy Press:Washington, DC,1998.
    [108]Liu Y. Y., Ng Z. F., Khan E. A., et al. Synthesis of continuous MOF-5 membranes on porous alpha-alumina substrates [J]. Microporous Mesoporous Mater.,2009,118:296-301.
    [109]Yoo Y., Varela-Guerrero V., Jeong H. K. Isoreticular MetalOrganic Frameworks and Their Membranes with Enhanced Crack Resistance and Moisture Stability by Surfactant-Assisted Drying [J]. Langmuir,2011,27:2652-2657.
    [110]Venna S. R., Carreon M. A. Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO2/CH4 Separation [J]. J. Am. Chem. Soc.,2010,132:76-78.
    [111]Li Y. S., Liang F. Y., Bux H. G., et al. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation [J]. J. Membr. Sci.,2010,354:48-54.
    [112]Liu Y., Hu E., Khan E. A., et al. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture [J]. J. Membr. Sci.,2010,353:36-40.
    [113]Banerjee R., Phan A., Wang B., et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J]Science,2008,319:939-943.
    [114]Park K. S., Ni Z., Cote A. P., et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. Proc. Natl. Acad. Sci. U.S.A.,2006,103:10186-10191.
    [115]Pan Y., Lai Z. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions [J]. Chem. Commun.,2011, 47:10275-10277.
    [116]Caro J., Noack M. Chapter 1-Zeolite Membranes Status and Prospective [M]. Elsevier:New York,2010; Vol. 1,pp196.
    [117]Huang A., Caro J. Covalent Post-Functionalization of Zeolitic Imidazolate Framework ZIF-90 Membrane for Enhanced Hydrogen Selectivity [J]. Angew. Chem. Int. Ed.,2011,50:4979-4982.
    [118]Aguado S., Canivet J., Farrusseng D. Engineering structured MOF at nano and macroscales for catalysis and separation [J]. J. Mater. Chem.,2011,21:7582-7588.
    [119]Zhang J. P., Zhu A. X., Lin R. B., et al. Pore Surface Tailored SOD-Type Metal-Organic Zeolites [J]. Adv. Mater.,2011,23:1268-1271.
    [120]Sholl D. S., Haldoupis E., Nair S., Efficient Calculation of Diffusion Limitations in Metal Organic Framework Materials:A Tool for Identifying Materials for Kinetic Separations [J]. J. Am.Chem. Soc.,2010,132:7528-7539.
    [121]Yaghi O. M. Metal-organic Frameworks:A tale of two entanglements [J]. Nat. Mater.,2007, 6:92-93.
    [122]Fairen-Jimenez D., Moggach S. A., Wharmby M. T., et al. Opening the Gate:Framework Flexibility in ZIF-8 Explored by Experiments and Simulations [J]. J. Am. Chem. Soc.,2011, 133:8900-8902.
    [123]Moggach S. A., Bennett T. D., Cheetham A. K.. The Effect of Pressure on ZIF-8:Increasing Pore Size with Pressure and the Formation of a High-Pressure Phase at 1.47GPa [J]. Angew. Chem. Int. Ed.,2009,48:7087-7089.
    [124]Nijem N., Thissen P., Yao Y., et al. Understanding the Preferential Adsorption of CO2 over N2 in a Flexible MetalOrganic Framework [J]. J. Am. Chem. Soc,2011,133:12849-12851.
    [125]Tranchemontagne D. J., Hunt J. R., Yaghi O. M. Room temperature synthesis of metal-organic frameworks:MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0 [J]. Tetrahedron,2008, 64:8553-8557.
    [126]Pan Y., Liu Y., Zeng G., et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system [J]. Chem. Commun.,2011,47:2071-2073.
    [127]Chui S. S., Lo S. M., Charmant J. P., et al. chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J]. Science,1999,283:1148-1150.
    [128]Zhao Y., Padmanabhan M., Gong Q., et al. CO catalytic oxidation by a metal organic framework containing high density of reactive copper sites [J]. Chem. Commun.,2011,47:6377-6379.
    [129]Aguado S., Bergeret G., Titus M. P., et al. Guest-induced gate-opening of a zeolite imidazolate framework [J]. New J. Chem.,2011,35:546-550.
    [130]Gucuyener C., van den Bergh J., Gascon J., et al. Ethane/Ethene Separation Turned on Its Head: Selective Ethane Adsorption on the MetalOrganic Framework ZIF-7 through a Gate Opening Mechanism [J]. J. Am. Chem. Soc.,2010,132:17704-17706.
    [131]Hermes S., Zacher D., Baunemann A., et al. Selective growth and MOCVD loading of small single crystals of MOF-5 at alumina and silica surfaces modified with organic self-assembled monolayers [J]. Chem. Mater.,2007,19:2168-2173.
    [132]Fundamentals of Inorganic Membrane Science and Technology [M]. Elsevier:New York,1996, Vol.4.
    [133]Choi J., Jeong H., Snyder M., et al. Grain Boundary Defect Elimination in a Zeolite Membrane by Rapid Thermal Processing [J]. Science,2009,325:590-593.
    [134]Brinker C. J., Scherer G. W. Sol-gel science:the physics and chemistry of sol-gel processing [M]. Academci Press, Inc.:New York,1990.
    [135]Pan Y., Heryadi D., Zhou F., et al. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants [J]. CrystEngComm,2011, 13:6937-6940.
    [136]Pan Y., Li T., Lestari G., et al. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. [J]. J. Membrane Sci.,2012,390-391:93-98.
    [137]Wu H., Zhou W., Yildirim T. Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework-8 [J]. J. Am. Chem. Soc,2007,129:5314-5315.
    [138]Zhou W., Wu H., Hartman M. R., et al. Hydrogen and Methane Adsorption in Metal-Organic Frameworks:A High-Pressure Volumetric Study [J]. J. Phys. Chem. C.,2007,111:16131-16137.
    [139]Wu H., Zhou W., Yildirim T. Methane Sorption in Nanoporous Metal-Organic Frameworks and First-Order Phase Transition of Confined Methane [J]. J. Phys. Chem. C.,2009,113:3029-3035.
    [140]Cravillon J., Munzer S., Lohmeier S., et al. Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework [J]. Chem. Mater.,2009,21:1410-1412.
    [141]Tao K., Kong C., Chen L., et al. High performance ZIF-8 molecular sieve membrane on hollow ceramic fiber via crystallizing-rubbing seed deposition [J]. Chem. Eng. J.,2013,220:1-5.
    [142]Yang Z., Liu Y., Yu C., et al. Ball-milled NaA zeolite seeds with submicron size for growth of NaA zeolite membranes [J]. J. Membr. Sci.,2012,392-393:18-28.
    [143]Lemine O., Microstructural characterisation of α-Fe2O3 Nanoparticles using, XRD line profiles analysis, FE-SEM and FT-IR [J]. Superlattice Microst.,2009,45:576-582.
    [144]Yin X., Zhu G., Wang Z., et al. Zeolite P/NaX composite membrane for gas separation [J]. Microporous Mesoporous Mater.,2007,105:156-162.
    [145]Algieri C., Bernardo P., Golemme G., et al. Permeation properties of a thin silicalite-1 (MFI) membrane [J]. J. Membr. Sci.,2003,222:181-190.
    [146]Geus E.R., Exter M.J., Bekkum H.V., Synthesis and characterization of zeolite (MFI) membranes on porous ceramic supports [J]. J. Chem. Soc. Faraday Trans.,1992,88:3101-3109.
    [147]Guan G., Tanaka T., Kusakabe K., et al. Characterization of AlPO4-type molecular sieving membranes formed on a porous a-alumina tube [J]. J. Membr. Sci.,2003,214:191-198.
    [148]Poshusta J. C., Tuan V. A., Falconer J. L., et al. Synthesis and Permeation Properties of SAPO-34 Tubular Membranes [J]. Ind. Eng. Chem. Res.,1998,37:3924-3929.
    [149]Huang A., Liang F., Steinbach F., et al. Neutral and Cation-Free LTA-Type Aluminophosphate (AIPO4) Molecular Sieve Membrane with High Hydrogen Permselectivity [J]. J. Am. Chem. Soc., 2010,132:2140-2141.
    [150]Kalipcilar H., Bowen T. C., Noble R. D., et al. Synthesis and Separation Performance of SSZ-13 Zeolite Membranes on Tubular Supports [J]. Chem. Mater.,2002,14:3458-3464.
    [151]Kanezashi M., Yada K., Yoshioka T., et al. Design of Silica Networks for Development of Highly Permeable Hydrogen Separation Membranes with Hydrothermal Stability [J]. J. Am. Chem. Soc,2009,131:414-415.
    [152]deVos R. M., Verweij H. High-Selectivity, High-Flux Silica Membranes for Gas Separation [J]. Science,1998,279:1710-1711.
    [153]Tsuru T., Shintani H., Yoshioka T., et al. A bimodal catalytic membrane having a hydrogen-permselective silica layer on a bimodal catalytic support:Preparation and application to the steam reforming of methane [J]. Applied Catalysis A:General,2006,302:78-85.
    [154]Sea B. K., Watanabe M., Kusakabe K., et al. Formation of hydrogen permselective silica membrane for elevated temperature hydrogen recovery from a mixture containing steam [J]. Gas Sep. Purif.,1996,10:187-195.
    [155]Wang L. J., Franklin, Hong C. N. Carbon-based molecular sieve membranes for gas separation by inductively-coupled-plasma chemical vapor deposition [J]. Microporous Mesoporous Mater., 2005,77:167-174.
    [156]Zhang Z., Salem C., Magliozzo R.S. et al. Reversible electrochemistry and catalysis with Mycobacterium tuberculosis catalase-peroxidase in lipid films [J]. Chem. Commun.,2001, 177-178.
    [157]Nam S. E., Lee K.H. Hydrogen separation by Pd alloy composite membranes:introduction of diffusion barrier [J]. J. Membr. Sci.,2001,192:177-185.
    [158]Gascon J., Kapteijn F. Metal-Organic Framework Membranes-High Potential, Bright Future? [J]. Angew. Chem. Int. Ed.,2010,49:1530-1532.
    [159]Nan J. P., Dong X. L., Wang W. J., et al. Formation mechanism of metal-organic framework membranes derivedfrom reactive seeding approach [J]. Micropor. Mesopor. Mater.,2012, 155:90-98.
    [160]Remi J. C, Remy T., Hunskerken V. V., et al. Biobutanol Separation with the Metal-Organic Framework ZIF-8 [J]. ChemSusChem.,2011,4:1074-1077.
    [161]Liu X. L., Li Y. S., Zhu G. Q.,et al. An Organophilic Pervaporation Membrane Derived from Metal-Organic Framework Nanoparticles for Efficient Recovery of BioAlcohols [J]. Angew. Chem. Int. Ed.,2011,50:10636-10639.
    [162]Lu G., Hupp J. T. Metal-Organic Frameworks as Sensors:A ZIF-8 Based Fabry-Perot Device as a Selective Sensor for Chemical Vapors and Gases [J]. J. Am. Chem. Soc.,2010, 132:7832-7833.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700