用户名: 密码: 验证码:
活性炭吸附催化氧化法处理低浓度H_2S研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对炼油厂停工检修阶段恶臭污染现状,利用活性炭吸附催化氧化技术对实验室模拟含H_2S恶臭气体的治理进行了初步研究。
     通过实验考察了活性炭纤维和不同来源活性炭的穿透行为,利用KOH、NaOH、Na_2CO_3等碱性物质和FeCl_3、CuCl_2、Cu(NO_3)_2等过渡金属化合物对活性炭进行浸渍改性并对比了改性效果,通过Cu(NO_3)_2和HNO_3联合改性制备了优良的脱硫剂,考察了活化温度、床层高度、预浸湿、反应温度、空速、O_2、H_2S浓度等因素对脱除H_2S的影响,通过Boehm滴定、表面pH测定、XRD、XPS、元素分析等手段对活性炭进行了表征,对生成产物和反应机理进行了探讨。
     试验结果表明:不同形式和来源的活性炭脱H_2S效果不同,颗粒尺寸越小吸附H_2S性能越好,木质和果壳活性炭脱H_2S性能高于煤质活性炭;7%Na_2CO_3浸渍可显著提高粘胶基活性炭纤维穿透性能,900℃热处理后活性炭纤维穿透时间增长至220min以上;经2%KI浸渍改性后,SDA-1的穿透时间从近300min增加到1040min;浸渍负载Cu改性SDA-5效果明显,10%Cu(NO_3)_2改性SDA-5的穿透时间是未改性的8倍;H_2S平均入口浓度为2277 mg/m~3时8%Cu(NO_3)_2和HNO_3联合改性SDA-5的穿透性能是未加Cu(NO_3)_2改性活性炭的13.5倍。浸渍CuCl_2活性炭吸附H_2S后有单质硫生成,可能是铜催化活化氧使H_2S被氧化,当生成的硫阻塞了微孔后反应停止。Cu(NO_3)_2对于不同活性炭的改性效果是相同的,与活性炭的来源没有关系。浸渍后铜主要以CuO的形式固定在活性炭上,H_2S与CuO反应生成CuS使催化剂失活。经600℃活化的负载Cu(NO_3)_2活性炭穿透性能较差,原因是改性后的活性炭热稳定性差。Cu(NO_3)_2和HNO_3联合改性改变了活性炭的孔径分布和表面化学环境,H_2S全部生成了单质S和硫的氧化物。随着活性炭床层高度增加,空速减小,H_2S入口浓度降低,穿透时间增大,硫容量提高;SDA-5加水量为1.0mL水/g时穿透时间最长;改性后活性炭无O_2时的穿透时间约为有O_2时的1/10。
In order to alleviate the odour pollution of oil refining plants at downtime, the study of removal of lab simulated H_2S containing malodor gas by adsorption/ catalytic oxidation by activated carbon were progressed.
     The breakthrough behaviors of ACF and other activated carbons of different origins were investigated in the laboratory experiment. The carbons modified with alkali like KOH, NaOH, Na_2CO_3 and transitional metal compounds like FeCl_3, CuCl_2, Cu(NO_3)_2 were used to adsorb H_2S. It was found that carbon samples impregnated by Cu(NO_3)_2 and HNO_3 had very excellent capacity. Influence of activation temperature, bed height, prehumidification, reaction temperature, vacancy velocity, O_2, concentration of inlet H_2S on removal of H_2S was studied. The surface properties were evaluated by means of Boehm titration, surface pH measuration, XRD( X-ray diffraction), XPS( X-ray photoelectron spectroscopy) and element analysis. The reaction product and mechanism was also discussed.
     The results of lab experiments showed that the capacity of carbons of different forms and origins differ from each other, the smaller the particle size, the better the performance. The wooden-based and fruit-shell activated carbons performed better than the coal-based carbon. The breakthrough capacity of viscose-based activated carbon fiber was notable enlarged by modified with 7%Na_2CO_3. The breakthrough time of ACF rose to 220 min after heat treatment under 900℃. It was demonstrated that SDA-1 samples had a breakthrough time of 1040 min after impregnated with 2%KI when 300 min before modified. SDA-5 loaded with Cu had such a good performance that the breakthrough time of carbon impregnated with 10%Cu(NO_3)_2 was 8 times that unmodified. It was found that the breakthrough capacity of SDA-5 modified with 8%Cu(NO_3)_2 and HNO_3 was 13.5 times that hadn’t been impregnated in Cu(NO_3)_2 when the average inlet concentration of H_2S was 2277 mg/m~3 . It was found that O_2 was activated by copper and H_2S was oxidized to sulfur, but the reaction stopped when micropores were blocked by sulfur. The effect of Cu(NO_3)_2 modification was the same with activated carbons of different origins. Copper was fixed in the form of CuO on the activated carbon, and the catalyst deactivated after reacting with H_2S and CuS was created. The breakthrough performance of activated carbon impregnated by Cu(NO_3)_2 decreased after activation at 600℃because the thermal stability reduced after impregnation. The distribution of pore dimension and surface chemistry had changed after modified with Cu(NO_3)_2 and HNO_3, and sulfur and oxides of sulfur formatted. It was showed that the breakthrough time augmented as the bed height rose, but reduced when vacancy velocity and inlet H_2S concentration increased. SDA-5 sample had a longest breakthrough time as the volume of water added to carbon was 1.0mL/g. The breakthrough time of modified carbons in inlet gas of H_2S + N_2 was about 1/10 that inlet gas containing O_2.
引文
[1]刘忠生,方向晨,戴文军.炼油厂恶臭污染及其控制技术[J].当代化工,2005,34(4): 217-220
    [2]程俊梅.洛阳分公司恶臭污染调查及防治[J].石油化工环境保护,2005,28(1):31-33
    [3]陶大钧,朱本兴,袭娴英.含硫恶臭物质的鉴别和净化技术[J].江苏环境科技,1994,7(4):18-22
    [4]李占华.炼化污水处理场恶臭防治分析[J].河北化工,2006,29(3):61-62
    [5]孟伟.石化企业恶臭污染影响评估与标准研究[D]:东营:中国石油大学,2007
    [6]周则飞.恶臭污染成因及防治对策初探[J].石油化工环境保护,1996,19(2):34-38
    [7] Lambert S.D., Beaman A.L., Winter P..Olfactometric Characterisation of Sludge Odours[J].Water Science & Technology, 2000, 41(6): 49-56
    [8]纪树满.恶臭污染的防治[J].重庆环境科学,1999,21(2):27-28
    [9]王幽雁,田长安,Adam Plant.污水处理厂恶臭处理技术[J].中外能源,2006,11(2):77-81
    [10]朱红.炼油厂恶臭污染物的防治[J].石油化工环境保护,2004,27(1):33-35
    [11]王令,丁忠浩.恶臭污染分析及防治技术[J].工业安全与环保,2005,31(3):28-30
    [12]李立清,杨健康,陈昭宜.恶臭污染及其治理技术(续)[J].化工环保,1995,15(4):219-223
    [13]金至清.恶臭的分析方法及治理技术[J].上海环境科学,1997,16(5):40-43
    [14]叶军苗.含硫污水罐恶臭污染治理[J].能源环境保护,2006,20(3):41-42
    [15]郭兵兵,卢琴芳,何凤友.治理炼油污水处理场恶臭污染的试验[J].化工进展,2006,25(3):301-304
    [16]李立清,杨健康,陈昭宜.恶臭污染及其治理技术[J].化工环保,1995,15(3):141-144
    [17]乔树峰,胡园桃,刘长青.炼焦生产过程恶臭污染与治理措施[J].能源环境保护,2005,19(6):44-46
    [18]田森林,宁平.有机废气治理技术及其新进展[J].环境科学动态,2000,(1):23-28
    [19]王东海,李慧.对恶臭控制技术的探讨[J].黑龙江环境通报,2006,30(2):85-86
    [20] Steijins M., Berks F., Verloop A., et al.The Mechanism of the Catalytic Oxidation of Hydrogen Sulfide[J].J Catal., 1976, 42(1): 87-95
    [21] Andrey Bagreev, Sai Katikaneni, Sanjay Parab.Desulfurization of Digester Gas: Prediction of Activated Carbon Bed Performance at Low Concentrations of Hydrogen Sulfide[J].Catalysis Today, 2005, 99(3-4): 329-337
    [22]李朝华.炼油恶臭废气的吸附催化氧化脱臭工艺研究[J].炼油设计,2002,32(4):52-55
    [23] Dmitrii V. Brazhnyk, Yuri P. Zaitsev, Irina V. Bacherikova, et al.Oxidation of H2S on Activated Carbon KAU and Influence of the Surface State[J].Applied Catalysis B: Environmental, 2007, 70(1-4): 557-566
    [24] Teresa J. Bandosz.Effect of Pore Structure and Surface Chemistry of Virgin Activated Carbons on Removal of Hydrogen Sulfide[J].Carbon, 1999, 37(3): 483-491
    [25] Andrey Bagreev, Teresa J. Bandosz.H2S Adsorption/Oxidation on Unmodified Activated Carbons: Importance of Prehumidification[J].Carbon, 2001, 39(15): 2303-2311
    [26] Jia Guo, Ye Luo, Aik Chong Lua, et al.Adsorption of Hydrogen Sulphide (H2S) by Activated Carbons Derived from Oil-palm Shell[J].Carbon, 2007, 45(2): 330-336
    [27] Teresa J. Bandosz.On the Adsorption/Oxidation of Hydrogen Sulfide on Activated Carbons at Ambient Temperatures[J].Journal of Colloid and Interface Science.2002, 246(1): 1-20
    [28] Yan R., Chin T., Ng Y.L..Influence of Surface Properties on the Mechanism of H2S Removal by Alkaline Activated Carbons[J].Environ. Sci. Technol., 2004, 38 (1): 316-323
    [29] Svetlana Bashkova, Frederick S. Baker, Wu Xianxian, et al.Activated Carbon Catalyst for Selective Oxidation of Hydrogen Sulphide: On the Influence of Pore Structure, Surface Characteristics, and Catalytically-active Nitrogen[J].Carbon, 2007, 45(6): 1354-1363
    [30] Huang Chen-Chia, Chen Chien-Hung, Chu Shu-Min.Effect of Moisture on H2S Adsorption by Copper Impregnated Activated Carbon[J].Journal of Hazardous Materials, 2006, 136(3): 866-873
    [31] Foad Adib, Andrey Bagreev, Teresa J. Bandosz. Effect of Surface Characteristics of Wood-Based Activated Carbons on Adsorption of Hydrogen Sulfide[J].J. Coll. & Inter. Sci., 1999, 214(2): 407-415
    [32] E. Raymundo-Pi?ero, D. Cazorla-Amorós, A. Linares-Solano.The Role of Different Nitrogen Functional Groups on the Removal of SO2 from Flue Gases by N-doped Activated Carbon Powders and Fibres[J].Carbon, 2003, 41(10): 1925-1932
    [33] Foad Adib, Andrey Bagreev, Teresa J. Bandosz.Effect of pH and Surface Chemistry on the Mechanism of H2S Removal by Activated Carbons[J]. J. Coll. & Inter. Sci., 1999, 216(2): 360-369
    [34] Andrey Bagreev, Foad Adib, Teresa J. Bandosz.PH of Activated Carbon Surface as an Indication of Its Suitability for H2S Removal from Moist Air Streams[J].Carbon, 2001, 39(12): 1897-1905
    [35] Foad Adib, Andrey Bagreev, Teresa J. Bandosz.Analysis of the Relationship between H2S Removal Capacity and Surface Properties of Unimpregnated Activated Carbons[J].Environ. Sci. Technol., 2000, 34 (4): 686-692
    [36] Danh Nguyen-Thanh, Teresa J. Bandosz.Activated Carbons with Metal Containing Bentonite Binders as Adsorbents of Hydrogen Sulfide[J].Carbon, 2005, 43(2): 359-367
    [37] Sakanishi Kinya, Wu Zhiheng, Matsumura Akimitsu.Simultaneous Removal of H2S and COS Using Activated Carbons and Their Supported Catalysts[J].Catalysis Today, 2005, 104(1): 94-100
    [38] Nakamura T., Tanada S., Kawasaki N., et al.Hydrogen Sulfide Removal by Iron Containing Activated Carbon[J].Toxicol. Environ. Chem., 1996, 55: 279-283
    [39] Mikhalovsky S.V., Zaitsev Yu.P..Catalytic Properties of Activated Carbons I. Gas-phase Oxidation of Hydrogen Sulphide[J].Carbon, 1997, 35(9): 1367-1374
    [40] Miguel A.H., Natusch D.F.S., Tanner R.L..Adsorption and Catalytic Conversion of Thiol Vapors by Activated Carbon and Manganese Dioxide[J].Atmospheric Environment, 1976, 10(2): 145-150
    [41] Andrey Bagreev, Teresa J. Bandosz.A Role of Sodium Hydroxide in the Process of Hydrogen Sulfide Adsorption/Oxidation on Caustic-Impregnated Activated Carbons[J].Ind. Eng. Chem. Res., 2002, 41(4): 672-679
    [42]谭小耀,李秀贞.改性活性炭低温催化氧化脱除H2S的研究[J].石油化工,1995,24(10):716-721
    [43] Boudou J.P..Surface Chemistry of a Viscose-based Activated Carbon Cloth Modified by Treatment with Ammonia and Steam[J].Carbon, 2003, 41(10): 1955-1963
    [44] Foad Adib, Andrei Bagreev, Teresa J. Bandosz.On the Possibility of Water Regeneration of Unimpregnated Activated Carbons Used as Hydrogen Sulfide Adsorbents[J].Ind. Eng. Chem. Res., 2000, 39(7): 2439-2446
    [45] Andrey Bagreev, Foad Adib, Teresa J. Bandosz.Initial Heats of H2S Adsorption on Activated Carbons: Effect of Surface Features[J].Journal of Colloid and Interface Science, 1999, 219(2): 327-332
    [46] Andrey Bagreev, J. Angel Menendez, Irina Dukhno.Bituminous Coal-based Activated Carbons Modified with Nitrogen as Adsorbents of Hydrogen Sulfide[J].Carbon, 2004, 42(3): 469-476
    [47] Cal M.P., Strickler B.W., Lizzio A.A..High Temperature Hydrogen Sulfide Adsorption on Activated Carbon I. Effects of Gas Composition and Metal Addition[J].Carbon, 2000, 38(13): 1757-1765
    [48] Laure Meljac, Laurent Perier-Camby, Gérard Thomas.Creation of Active Sites by Impregnation of Carbon Fibers: Application to the Fixation of Hydrogen Sulfide[J].Journal of Colloid and Interface Science, 2004, 274(1): 133-141
    [49]谭小耀,吴迪镛.浸渍活性炭脱除低浓度H2S的研究[J].化学工程,1996,24(6):21-25,46
    [50] Boudou J.P., Chehimi M., Broniek E..Adsorption of H2S or SO2 on an Activated Carbon Cloth Modified by Ammonia Treatment[J].Carbon, 2003, 41(10): 1999-2007
    [51] Eugène Papirer, Joseph Dentzer, Sheng Li, et al.Surface Groups on Nitric Acid Oxidized Carbon Black Samples Determined by Chemical and Thermodesorption Analyses[J].Carbon, 1991, 29(1): 69-72
    [52] Bouzaza A, Laplanche A.Adsorption-oxidation of Hydrogen Sulfide on Activated Carbon Fibers: Effect of the Composition and the Relative Humidity of the Gas Phase[J].Chemosphere, 2004, 54(4): 481-488
    [53] H. Fortier, C. Zelenietz, T. R. Dahn.SO2 Adsorption Capacity of K2CO3-impregnated Activated Carbon as a Function of K2CO3 Content Loaded by Soaking and Incipient Wetness[J].Applied Surface Science, 2007, 253(6): 3201-3207
    [54] Cal M.P., Strickler B.W., Lizzio A.A., et al.High Temperature Hydrogen Sulfide Adsorption on Activated Carbon II. Effects of Gas Temperature, Gas Pressure and Sorbent Regeneration[J].Carbon, 2000, 38(13): 1767-1774
    [55] Tseng Hui-Hsin, Wey Ming-Yen.Study of SO2 Adsorption and Thermal Regeneration over Activated Carbon-supported Copper Oxide Catalysts[J] . Carbon, 2004, 42(11): 2269-2278
    [56] Meeyoo V., Trimme D.L..Adsorption-reaction Process for the Removal of Hydrogen Sulfide from Gas Stream[J].Journal of Chemical Technology and Biotechnology, 1997, 68: 411-416
    [57] Victor R. Deitz.The Rates of Adsorption and Desorption of Water Vapor from Air Flows through Activated Carbons[J].Carbon, 1991, 29(4-5): 569-573
    [58] Dubinin M.M..Water Vapor Adsorption and the Microporous Structures of Carbonaceous Adsorbents[J].Carbon, 1980, 18(5): 355-364
    [59] Jürgen Klein, Klaus-Dirk Henning.Catalytic Oxidation of Hydrogen Sulphide on Activated Carbons[J].Fuel, 1984, 63(8): 1064-1067
    [60] Svetlana Bashkova, Andrey Bagreev, Teresa J. Bandosz.Catalytic Properties of Activated Carbon Surface in the Process of Adsorption/Oxidation of Methyl Mercaptan[J].Catalysis Today, 2005, 99(3-4): 323-328
    [61] Hiroshi Katoh, Isao Kuniyoshi, Mitsuyo Hirai, et al.Studies of the Oxidation Mechanism of Sulphur-containing Gases on Wet Activated Carbon Fibre[J].Applied catalysis B: Environmental, 1995, 6(3): 255-262
    [62] Nicolas Keller, Cuong Pham-Huu, Claude Crouzet, et al.Direct Oxidation of H2S into S.New Catalysts and Processes Based on SiC Support[J].Catalysis Today, 1999, 53 (4): 535-542
    [63]王学谦,宁平.活性炭吸附硫化氢及微波辐照解吸研究.环境污染与防治,2001,23(6):274-275
    [64] Andrey Bagreev, Habibur Rahman, Teresa J. Bandosz.Thermal Regeneration of a Spent Activated Carbon Previously Used as Hydrogen Sulfide Adsorbent[J].Carbon, 2001, 39(9): 1319-1326
    [65] Przepiórski J., Yoshida S., Oya A..Structure of K2CO3-loaded Activated Carbon Fiber and Its Deodorization Ability against H2S Gas[J].Carbon, 1999, 37(12): 1881-1890
    [66]杨全红,郑经堂,李英等.聚丙烯腈活性炭纤维对硫化氢的常温吸附[J].离子交换与吸附,2000,16(2):120-127
    [67]金璇,马鲁铭,王红武.表面化学改性活性炭对有机物吸附的研究进展[J].江苏环境科技,2006,19(S2):43-45
    [68]乔志军,王虹.微孔活性炭纤维的制备及性能研究[J].天津工业大学学报,2006,25(2):9-11
    [69]金涧,岳雪梅.聚丙烯腈活性碳纤维选择性吸附机理研究初报[J].中国烟草学报,2003,9(4):47-50
    [70] Macías-Pérez M.C., Bueno-López A., Lillo-Ródenas M. A., et al.SO2 Retention on CaO/ Activated Carbon Sorbents.Part I: Importance of Calcium Loading and Dispersion[J].Fuel, 2007, 86(5): 677-683
    [71] Alessandra Primavera, Alessandro Trovarelli, Paolo Andreussi, et al.The Effect of Water in the Low-temperature Catalytic Oxidation of Hydrogen Sulfide to Sulfur over Activated Carbon[J].Applied catalysis A: General.1998, 173(2): 185-192
    [72]谭小耀,吴迪镛,袁权.浸渍活性炭脱硫过程中孔结构及气体湿度的影响.新型炭纤维/泡沫炭预制体的制备及致密化研究[J].化工学报,1997,48(2):237-240
    [73]肖永厚,王树东,袁权.浸渍活性炭脱除硫化氢研究进展[J].化工进展,2006,25(9):1025-1030

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700