用户名: 密码: 验证码:
氧化锌矿物在氨—铵盐—水体系中的浸出机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低品位氧化锌矿选矿富集困难,碱性脉石含量高,采用火法及酸性体系湿法工艺处理,能耗高、回收率低、废弃物多。氨—铵盐—水体系浸出,因其选择性强,氨与有价金属离子配合而促进浸出,是处理这类资源较为适宜的工艺。本文研究了氧化锌矿,特别是硅酸盐类矿物在NH3-(NH4)2SO4-H2O体系中的浸出机理,研究结果不仅在学术上弥补了这一领域基础研究的不足,也可为实际浸出工艺开发提供理论指导和基础数据。
     以天然异极矿和人工合成硅锌矿纯矿物为研究对象,综合运用XRD、FT-IR、XPS、SEM、EDS、TGA-DSC、ICP-AES等检测技术,研究了这些矿物在NH3-(NH4)2SO4-H2O体系中的溶解平衡、溶解速率和浸出机理,得到如下主要结论。
     (1)根据物质守恒、同时平衡及电中性原理,建立了Zn2SiO4-NH3-NH4+-H2O体系的热力学模型,通过对模型计算求解,绘制了体系中各组元浓度变化的热力学关系图。图示结果表明,[NH3]与[NH3]T摩尔比为0.5时,体系中[Zn]T最大,且随总氨浓度的增加而增大。总氨浓度为5mol/L,[NH3]与[NH3]T摩尔比为0.5时,无定形Si02在该体系中的溶解度为0.11g/L,其过饱和析出的pH值范围为7.16~12.68,受无定形Si02溶解度低的限制,在上述条件下体系中[Zn]T只能达到27.88g/L,远低于ZnO在该体系中的溶解度。
     (2)异极矿在NH3-(NH4)2SO4-H2O体系可以浸出。浸出时Zn-O-Zn键断裂后,Si-O双四面体从异极矿晶体架构中脱离形成无定形Si02。无定形二氧化硅单独形核,并未对异极矿表面形成包裹。
     (3)实验证实,当[NH3]与[NH3]T摩尔比为0.5时,锌浸出速率最高;在总氨浓度5mol/L,[NH3]与[NH3]T摩尔比0.5,固液比20g/L,温度35℃,搅拌速度350r/min,浸出150min时,锌的浸出率可达95%,而纯氨水和纯硫酸铵溶液中锌的浸出率只有2%;高固液比下,由于溶液中[Zn]T达到饱和,锌浸出率会大幅度下降。
     (4)在固液比20g/L、总氨浓度5mol/L、[NH3]与[NH3]T摩尔比0.5、搅拌速度350r/min的条件下,研究了-100-+160目的异极矿在NH3-(NH4)2SO4-H2O体系中浸出的动力学。结果表明,异极矿在NH3-(NH4)2SO4溶液中的浸出过程可用Elovich方程进行描述,浸出反应的表观活化能为55.42kJ/mol,属表面化学反应控制,这与浸出机理研究所得结论一致。
     (5)实验发现,异极矿和湿化学法合成的硅酸锌在不同温度下煅烧2h,均可获得结晶度不同的正交晶系的硅锌矿(β-Zn2SiO4)和三方晶系的菱面体晶硅锌矿(α-Zn2Si04)。硅锌矿的晶体结构及结晶度对其在NH3-(NH4)2SO4-H2O体系中的浸出效果有显著影响。在温度35℃、固液比20g/L、总氨浓度5mol/L、[NH3]与[NH3]T摩尔比0.5、搅拌速度350r/min的条件下浸出120min,β-Zn2SiO4的结晶度为29.88%和60.11%时锌的浸出率分别为86.66%、42.14%,α-Zn2SiO4结晶度为99%和100%时锌的浸出率分别为10.13%、6.4%,β-Zn2SiO4比α-Zn2SiO4容易浸出。
     (6)a-硅锌矿在浸出时,锌与硅同时溶解进入溶液,但Si02在体系中溶解度较小,过饱和后以无定形水合二氧化硅形态单独形核析出,由于其析出速度缓慢,抑制了锌的浸出。
     (7)在固液比5g/L、总氨浓度5mol/L、[NH3]与[NH3]T摩尔比0.5、搅拌速度350r/min的条件下,研究了-140~+160目的结晶完整的α-硅锌矿在NH3-(NH4)2SO4-H2O体系中浸出的动力学。其浸出过程特征符合多孔颗粒粒子模型,浸出过程的表观活化能为67.93kJ/mol,表明浸出过程受孔隙扩散控制,这与实验现象是一致的。
Low grade zinc oxide ores containing high content of alkaline gangues, which are difficult to concentrate by minerals dressing, are inadequate to be treated by pyro-or acidic hydro-metallurgical process due to its high energy consumption, low recovery and large waste disposal. The combination of ammonia and ammonium salt solutions is a powerful lixiviant to treat this kind of ores. As the high selectivity, as well as the coordination of ammonia with valuable metallic ions is helpful to encourage the leaching process. In this paper, leaching mechanisms in ammoniacal solutions of zinc silicate minerals, such as hemimorphite and willemite, were investigated in NH3-(NH4)2SO4-H2O system, and the results obtained could not only fill the research gaps, but also provide theoretical instructions and basic data for the development of practical leaching processes.
     Comprehensively using XRD, FT-IR, XPS, SEM, EDS, TGA-DSC and ICP-AES, dissolution equilibrium, leaching mechanism and rates of pure natural hemimorphite and synthetic willemite minerals in NH3-(NH4)2SO4-H2O solution were investigated. The main conclusions were as follows:
     (1) The thermodynamic model of Zn2SiO4-NH3-NH4+-H2O system was established based on the laws of mass conservation, charge balance and simultaneous equilibrium principle. Then the thermodynamic diagrams regarding concentrate variations of different species in the system were plotted. The results showed that the highest [Zn]T in the system was obtained under the condition of [NH3]/[NH3]t molar ratio equal to0.5, where the higher the [NH3]T, the higher the [Zn]T. Under the conditions of [NH3]T5mol/L,[NH3]/[NH3]T molar ratio0.5, the solubility of amorphous SiO2in the system was as low as0.11g/L, and with the dissolution of zinc silicate, amorphous SiO2would soon supersaturate and precipitate from the solutions in the pH range of7.16~12.68. Owing to the limitation of low solubility of amorphous SiO2,[Zn]T under the conditions mentioned above was merely27.88g/L, which was far bellow that of ZnO in the system.
     (2) Hemimorphite can leach in NH3-(NH4)2SO4-H2O system. During the leaching process, the Zn-O-Zn bond broke and the Si-O double tetrahedron would detach from the hemimorphite crystal structure to form amorphous SiO2-Amorphous SiO2forms nuclei independently and would not coat the surfaces of hemimorphite.
     (3) Experimental results showed that the highest leaching rate of hemimorphite was obtained at [NH3]/[NH3]T molar ratio equal to0.5. Under the conditions of [NH3]/[NH3]T molar ratio0.5,[NH3]T5mol/L, S/L ratio20g/L, temperature of35℃and stirring rate350r/min, the leaching efficiency of zinc could reach as high as95%, while that is only2%of leaching hemimorphite in pure ammonia or ammonium salt systems under the same conditions. Zinc leaching efficiency of hemimorphite decreased sharply at high S/L ratio, due to [Zn]T in the system reaching saturation.
     (4) The leaching kinetics of hemimorphite in NH3-(NH4)2SO4-H2O system was studied under the conditions of S/L20g/L,[NH3]/[NH3]T molar ration0.5,[NH3]T of mol/L and stirring rate350r/min. The results showed that the leaching kinetics can be described by Elovich equation and the activation energy of hemimorphite of-100~+160mesh is55.42kJ/mol, where the controlling step was surface reaction in accordance with the conclusion obtained in the leaching mechanism study.
     (5) Experimental results showed that both crystal structure and crystallinity have significant effects on the leaching of willemite in NH3-(NH4)2SO4-H2O system. Both hemimorphite and the chemically synthesized willemite can turn to β-Zn2SiO4and a-Zn2Si04with different crystallinity after calcinations for2h at different temperatures. The leaching efficiencies of zinc for β-Zn2Si04with the crystallinity of29.88%and60.11%were86.66%and42.11%, respectively, while the leaching efficiencies of zinc for a-Zn2Si04with the crystallinity of99%and100%were10.13%and6.4%, individually, under the conditions of temperature35℃, S/L ratio50g/L,[NH3]/[NH3]T molar ratio0.5,[NH3]T5mol/L, stirring rate350r/min and leaching time120min. The leaching of β-Zn2SiO4was easier than that of a-Zn2Si04regardless of crystallinity.
     (6) During the leaching process of a-Zn2SiO4, zinc and silica in willemite were found to be dissolved simultaneously into the solution, which was followed by the precipitation of amorphous silica. The solubility of silica in the NH3-(NH4)2SO4-H2O system was very low with a saturated concentration of0.3g/L. In addition, the precipitation rate of dissolved silica in the leaching solution was found to be significantly slow, which lead to the difficulty of willemite leaching in the NH3-(NH4)2SO4-H2O system, especially at a low liquid/solid ratio.
     (7) The leaching kinetics of a-Zn2Si04of-100+160mesh with complete crystallinity in NH3-(NH4)2SO4-H2O system was studied under the conditions of S/L ratio5g/L,[NH3]/[NH3]T0.5,[NH3]T5mol/L and stirring rate350r/min. The results showed that the leaching kinetics can be described by porous particle model and the activation energy is67.93kJ/mol, which shows the controlling step is pore diffusion, and this agreed with the experimental phenomenon.
引文
[1]扬大锦,朱华山,陈加希.湿法提锌工艺与技术[M].北京:冶金工业出版社,2007.
    [2]H·中村,赵敬武.竖罐蒸馏炼锌法的展望[J].有色冶炼,1981,(08):11-14.
    [3]高良宾.葫芦岛锌厂竖罐炼锌70年回望[J].中国有色冶金,2007,(01):1-4.
    [4]郭天立,高良宾.当代竖罐炼锌技术述评[J].中国有色冶金,2007,(01):5-6+36.
    [5]杨友平.中小型竖罐炼锌工艺评述[J].工程设计与研究,2001,(02):4-8.
    [6]杨友平.中小型竖罐炼锌系统的设计和运行[J].有色金属设计,2002,(02):30-35.
    [7]彭容秋.锌冶金[M].长沙:中南大学出版社,2005.
    [8]田恩成.竖罐炼锌还原剂煤的合理选择与使用[J].有色金属(冶炼部分),1978,(09):24-30.
    [9]石建平,杨友平.新型粘结剂在竖罐炼锌制团工艺中的研究与运用[J].有色金属设计,2003,(03):19-24.
    [10]杜德军.竖罐炼锌炉的改进[J].有色矿冶,2004,(01):43-46.
    [11]杨大锦,廖元双,徐亚飞,et al.锌冶金工艺概述[J].云南冶金,2002,(06):22-26.
    [12]梁可.锌冶金工艺概述[J].有色金属设计,2004,(04):13-17+29.
    [13]蒋继穆.我国锌冶炼现状[J].世界有色金属,2001,(10):8-11.
    [14]王斌,王晓红,解集义.炼锌电炉冷凝设备的改进[J].中国有色冶金,2005,(06):54-56.
    [15]王斌.防止炼锌电炉炉底积铁的生产实践[J].中国有色冶金,2007,(03):25-26+56.
    [16]李曰荣,印国敏,胡丕成.电炉炼锌技术的现状及展望[C].2002年全国铜冶炼生产技术及产品应用学术交流会,2002.
    [17]李龙生.电炉炼锌工艺及炉龄问题的探讨[J].有色金属(冶炼部分),2001,(01):14-15.
    [18]李炬.中国铅锌冶炼技术现状和发展方向[C].中国国际铅锌年会会议论文集,2004.
    [19]蒋继穆.我国铅锌冶炼现状与技术发展方向[C].创新发展谱新篇--第四届豫晋两省有色金属工业发展论坛论文集,2006.
    [20]陈俊.炼锌电炉设计探索及实践[J].冶金信息导刊,2003,(03):20-21.
    [21]陈德喜,段力强.我国电炉炼锌工艺的技术进步与发展[J].有色金属(冶炼部分),2003,(02):20-23.
    [22]王利飞,向麒名,普正忠.电炉炼锌处理高铁闪锌矿焙砂生产实践[C].全国“十二五”铅锌冶金技术发展论坛暨驰宏公司六十周年大庆学术交流会,2010.
    [23]周敬元.铅锌冶炼技术现状及发展动向[J].有色金属工业,2001,(05):42-45+47.
    [24]王华,田海军.密闭鼓风炉炼锌工艺实践[J].有色冶金设计与研究,2009,(05):24-26.
    [25]刘志宏.国内外锌冶炼技术的现状及发展动向[J].世界有色金属,2000,(01):23-26+37.
    [26]于海,王连勇,杜涛.密闭鼓风炉炼锌的余热余能利用[C].2010全国能源与热工学术年会,2010.
    [27]王华.关于降低鼓风炉渣含锌的方法措施分析[J].有色冶金设计与研究,2010,(02):8-10.
    [28]宋光辉.鼓风炉炼锌用热风炉的发展与改造[J].中国有色冶金,2004,(02):34-37+32.
    [29]刘富如.密闭鼓风炉炼锌铅过程中贵金属的回收问题[J].有色冶炼,1982,(02):5-8.
    [30]白桦,李阳.铅锌密闭鼓风炉的熔炼机理及改进[J].有色冶金节能,2008,(01):33-36+11.
    [31]朱吾意.高锌物料在铅鼓风炉中的应用与研究[J].湖南有色金属,2006,(05):36-37+45.
    [32]钟勇.韶关冶炼厂Ⅰ、Ⅱ系统铅锌密闭鼓风炉技术改造效果及对比[J].湖 南有色金属,2008,(06):27-30+66.
    [33]郑海霞.铜密闭鼓风炉处理高锌难熔物料的理论与实践[J].中国有色金属学报,1998,(S2):445-447.
    [34]巫辉明.ISP铅锌鼓风炉炉顶使用情况分析及改进[J].耐火材料,2002,(05):308-309.
    [35]王志刚.密闭鼓风炉炼铅锌技术改进及展望[J].湖南有色金属,2003,(06):19-22.
    [36]宋光辉.铅锌密闭鼓风炉风口喷吹技术应用探讨[J].中国有色冶金,2005,(03):15-18.
    [37]刘小波,张寿明.鼓风炉自动上料控制系统[J].云南冶金,2011,(02):88-92.
    [38]刘慎询.鼓风炉处理含锗氧化铅锌矿实践[J].有色金属,1964,(08):29-30.
    [39]梁杰,王华.低品位氧化铅锌矿的烟化法富集工艺[J].有色金属(冶炼部分),2005,(04):5-7.
    [40]李新民.延长铅锌密闭鼓风炉的大修周期[J].湖南有色金属,2006,(04):63-64.
    [41]李夏林.韶冶铅锌密闭鼓风炉熔炼砷的分布及行为[J].有色冶炼,1995,(01):27-28.
    [42]雷霆,周林,王振东,et al.烟化法处理鼓风炉铅炉渣挥发铟试验研究[C].中国首届熔池熔炼技术及装备专题研讨会,2007.
    [43]黄乙平.铅锌密闭鼓风炉系统设备内衬砌体的改造实践[J].中国有色冶金,2007,(02):41-43.
    [44]鼓风车间鼓风炉QC小组.减少鼓风炉清理炉结时间[J].云南冶金,2008,(S1):100-106.
    [45]陈悦忠.铅锌密闭鼓风炉加料装置的改造实践[J].中国有色冶金,2005,(06):51-53.
    [46]陈绍刚.烧结块质量波动对铅锌密闭鼓风炉生产的影响及对策[J].江西有色金属,2009,(02):26-28.
    [47]P.J.Gabb,苟继禅.氧化物料在炼锌鼓风炉的直接熔炼[J].有色冶炼,1991,(03):11-14.
    [48]Maria Boni, Paul Rudolf Schmidt, Jacobus Rudolph De Wet, et al. Mineralogical signature of nonsulfide zinc ores at Accha (Peru):A key for recovery [J]. International Journal Of Mineral Processing,2009,93(3-4): 267-277.
    [49]S. Moradi, A. J. Monhemius. Mixed sulphide-oxide lead and zinc ores: Problems and solutions [J]. Minerals Engineering,2011,24(10):1062-1076.
    [50]J. L. Yang, S. J. Ma, G. F. Wang, et al. The Preliminary Investigation of Low Grade Zinc Oxide Ore [J]. Advanced Manufacturing Systems, Pts 1-3,2011, 201-203:2789-2792.
    [51]蒋明华.兰坪低品位氧化铅锌矿矿冶新工艺研究[博士].昆明:昆明理工大学,2007.
    [52]李松平.氧化锌矿硫化加温浮选理论与应用研究[硕士].长沙:中南大学,2007.
    [53]李勇.低品位氧化铅锌矿硫化—浮选工艺及理论研究[博士].昆明:昆明理工大学,2009.
    [54]罗良烽.云南鲁甸超低品位的氧化锌矿浮选试验研究[硕士].昆明:昆明理工大学,2008.
    [55]周廷熙.兰坪氧化铅锌矿的处理工艺探讨[J].国外金属矿选矿,2004,(04):10-13+18.
    [56]吴文丽.氧化铅锌矿浮选药剂的研究现状[J].金属矿山,2010,(09):63-67+70.
    [57]李明晓,刘殿文,张文彬.氧化锌矿处理方法的研究现状[J].矿山机械,2010,(22):7-13.
    [58]李勇,王吉坤,魏昶,et al.低品位氧化锌矿硫化预处理—浮选新工艺研究[C].2008年全国冶金物理化学学术会议,2008.
    [59]蒲雪丽.云南某低品位氧化锌矿浮选试验研究[硕士].昆明:昆明理工大学,2008.
    [60]任占誉.低品位氧化铅锌矿硫化预处理—选矿试验研究[硕士].昆明:昆明理工大学,2008.
    [61]孙洪丽.思茅山河氧化锌矿选矿新技术研究[硕士].昆明:昆明理工大学,2007.
    [62]王洪岭.氧化锌浮选的新型捕收剂研究[硕士].长沙:中南大学,2010.
    [63]张万忠,陈利,王成琛.组合捕收剂对氧化锌矿浮选性能的影响[J].沈阳化工大学学报,2010,(02):135-138.
    [64]周清波.菱锌矿与方解石浮选分离的研究[硕士].长沙:中南大学,2010.
    [65]M. Irannajad, M. Ejtemaei, M. Gharabaghi. The effect of reagents on selective flotation of smithsonite-calcite-quartz [J]. Minerals Engineering,2009,22(9-10): 766-771.
    [66]M. H. Jiang, B. Yang, J. J. Wu, et al. Study on experiment and mechanism of thermal dissolved sulfuration of low grade lead-zinc oxide ore in lanpin [J]. Acta Metallurgica Sinica-English Letters,2009,22(4):291-296.
    [67]FA Keqing, Jan D.Miller,姜涛, et al. Sulphidization flotation for recovery of lead and zinc from oxide-sulfide ores [J]. Transactions Of Nonferrous Metals Society Of China,2005, (05):186-192.
    [68]Y. Li, W. Ji-Kun, W. Chang, et al. Sulfidation roasting of low grade lead-zinc oxide ore with elemental sulfur [J]. Minerals Engineering,2010,23(7):563-566.
    [69]Q. Liu, D. Wannas, Y. Peng. Exploiting the dual functions of polymer depressants in fine particle flotation [J]. International Journal Of Mineral Processing,2006,80(2-4):244-254.
    [70]#12
    [71]冯其明,张国范.氧化锌矿原浆浮选新技术[J].中国基础科学,2011,(01):25-27.
    [72]韩文静.絮凝浮选氧化铅锌矿的理论与实践[J].中国矿山工程,2011,(01):22-24.
    [73]李明晓,刘殿文,张文彬.矿泥对某氧化锌矿石浮选指标的影响[J].昆明理工大学学报(理工版),2010,(05):7-9.
    [74]毛素荣,杨晓军,何剑,et a1.氧化锌矿浮选现状及研究进展[J].国外金属 矿选矿,2007,(04):4-6.
    [75]王宏菊,刘全军,皇甫明柱,et al.越南某氧化锌矿浮选试验研究[J].矿冶,2010,(02):28-30.
    [76]熊文良.难选氧化锌矿的浮选与浸出试验与理论研究[硕士].昆明:昆明理工大学,2005.
    [77]杨少燕.菱锌矿浮选的理论与工艺研究[硕士].长沙:中南大学,2010.
    [78]赵晖.某高氧化率铅锌矿选矿试验研究[硕士].昆明:云南大学,2010.
    [79]徐红江,张廷安.低品位氧化锌矿冶金进展[J].有色矿冶,2009,(02):28-30.
    [80]王凤琴.国内外氧化锌矿的处理方法[J].有色矿冶,1994,10(1):31-35.
    [81]贺山明,王吉坤.氧化锌矿冶金处理的研究现状[J].矿冶,2010,(03):58-65.
    [82]孙月强.回转窑处理氧化锌矿研究[J].工程设计与研究,2000,(02):4-8+26.
    [83]陈世明,瞿开流.兰坪氧化锌矿石处理方法探讨[J].云南冶金,1998,(05):32-36.
    [84]伍贺东.鼓风炉炼铅炉渣烟化挥发锌的研究[硕士].昆明:昆明理工大学,2008.
    [85]梁杰.火法富集低品位氧化铅锌矿炉渣性质分析[J].贵州工学院学报,1993,(03):101-107.
    [86]梁杰,陈佳.火法富集低品位氧化铅锌矿炉渣组分选择[J].贵州工学院学报,1993,(04):49-55.
    [87]梁杰.火法富集氧化铅锌矿的热力学探讨[J].贵州工学院学报,1989,(01):84-90.
    [88]W. Rankin, S. Wright. The reduction of zinc from slags by an iron-carbon melt [J]. METALLURGICAL AND MATERIALS TRANSACTIONS B,1990,21(5): 885-897.
    [89]J. Donald, C. Pickles. A Kinetic study of the reaction of zinc oxide with iron powder [J]. METALLURGICAL AND MATERIALS TRANSACTIONS B, 1996,27(3):363-374.
    [90]郭兴忠,张丙怀,阳海彬,et al.熔融还原处理低品位氧化锌矿的研究[J].矿冶工程,2003,(01):57-60.
    [91]郭兴忠,张丙怀,阳海彬,et al.氧化锌矿的基本物性及高温氧化焙烧实验[J].重庆大学学报(自然科学版),2002,(04):137-140.
    [92]郭兴忠,张丙怀,阳海彬,et al.氧化锌矿火法处理新工艺——铁浴熔融还原法[J].有色冶炼,2002,(02):18-22+12-11.
    [93]IG Matthew, D Elsner. The hydrometallurgical treatment of zinc silicate ores [J]. Metallurgical and Materials Transactions B,1977,8(1):73-83.
    [94]B Terry, A J Monhemius. Acid Dissolution of Willemite (Zn,Mn)2SiO4) and Hemimorphite (Zn4Si2O7(OH)2 H2O) [J]. Metallurgical Transaction B,1983, 14(3):335-346.
    [95]M G Bodas. Hydrometallurgical treatment of zinc silicate ore from Thailand [J]. Hydrometallurgy,1996,40(1-2):37-49.
    [96]李国民.高硅氧化锌矿浸出脱硅工艺的研究[J].中国有色冶金,2005,(04):32-35.
    [97]徐斌,杨俊奎,钟宏,et al.高硅氧化锌矿浸出工艺的研究[J].昆明理工大学学报(理工版),2010,(05):10-14.
    [98]Shirin Espiari, Fereshteh Rashchi, S. K. Sadrnezhaad. Hydrometallurgical treatment of tailings with high zinc content [J]. Hydrometallurgy,2006,82(1-2): 54-62.
    [99]覃文庆,唐双华,厉超.高硅低品位氧化锌矿的酸浸动力学[J].矿冶工程,2008,28(1):62-66.
    [100]Vida Safari, Gilnaz Arzpeyma, Fereshteh Rashchi, et al. A shrinking particle--shrinking core model for leaching of a zinc ore containing silica [J]. International Journal Of Mineral Processing,2009,93(1):79-83.
    [101]A D Souza, P S Pina, E V O Lima, et al. Kinetics of sulphuric acid leaching of a zinc silicate calcine [J]. Hydrometallurgy,2007,89(3-4):337-345.
    [102]A. D. Souza, P. S. Pina, F. M. F. Santos, et al. Effect of iron in zinc silicate concentrate on leaching with sulphuric acid [J]. Hydrometallurgy,2009,95(3-4): 207-214.
    [103]Hongsheng Xu, Chang Wei, Cunxiong Li, et al. Sulfuric acid leaching of zinc silicate ore under pressure [J]. Hydrometallurgy,2010,105(1-2):186-190.
    [104]Cun-xiong Li, Hong-sheng Xu, Zhi-gan Deng, et al. Pressure leaching of zinc silicate ore in sulfuric acid medium [J]. Transactions Of Nonferrous Metals Society Of China,2010,20(5):918-923.
    [105]李存兄.高硅氧化锌矿加压酸浸处理[J].中国有色金属学报,2009,19(9):1678-1683.
    [106]Shanming He, Jikun Wang, Jiangfeng Yan. Pressure leaching of synthetic zinc silicate in sulfuric acid medium [J]. Hydrometallurgy,2011,108(3-4):171-176.
    [107]Shanming He, Jikun Wang, Jiangfeng Yan. Pressure leaching of high silica Pb-Zn oxide ore in sulfuric acid medium [J]. Hydrometallurgy,2010,104(2): 235-240.
    [108]JG Eacott, MC Robinson, E Busse, et al. Techno-economic feasibility of zinc and lead recovery from electric arc furnace baghouse dust [J]. Canadian Mining and Metallurgical Bulletin,1984,77(869):75-81.
    [109]J Frenay. Leaching of oxidized zinc ores in various media [J]. Hydrometallurgy, 1985,15(2):243-253.
    [110]J Frenay, S Ferlay, J Hissel. Zinc and lead recovery from EAF dusts by caustic soda process [J]. Electric Furnace Proc., Treatment Options for Carbon Steel Electric Arc Furnace Dust, Iron & Steel Society,1986,43(1):171-175.
    [111]Gokhan Orhan. Leaching and cementation of heavy metals from electric arc furnace dust in alkaline medium [J]. Hydrometallurgy,2005,78(3-4):236-245.
    [112]赵由才.一种用氧化锌矿生产高纯度金属锌的方法.中国专利:CN1450182A [P],2003-10-22.
    [113]刘清,招国栋,赵由才.碱浸电解法制备金属锌粉新技术的工业化应用[C].2010中国环境科学学会学术年会,2010.
    [114]A. J. B. Dutra, P. R. P. Paiva, L. M. Tavares. Alkaline leaching of zinc from electric arc furnace steel dust [J]. Minerals Engineering,2006,19(5):478-485.
    [115]Fabiano M. F. Santos, Pablo S. Pina, Rodrigo Porcaro, et al. The kinetics of zinc silicate leaching in sodium hydroxide [J]. Hydrometallurgy,2010,102(1-4): 43-49.
    [116]徐冬,赵中伟,陈爱良,et al.氧化锌的碱法浸出[J].北京科技大学学报,2011,(07):812-816.
    [117]赵中伟,贾希俊,陈爱良,et al.氧化锌矿的碱浸出[J].中南大学学报(自然科学版),2010,(01):39-43.
    [118]Zhongwei Zhao, Shuang Long, Ailiang Chen, et al. Mechanochemical leaching of refractory zinc silicate (hemimorphite) in alkaline solution [J]. Hydrometallurgy,2009,99(3-4):255-258.
    [119]Ailiang Chen, Zhongwei Zhao, Xijun Jia, et al. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore [J]. Hydrometallurgy,2009,97(3-4):228-232.
    [120]GEORGE WARING William, HULL WARING Guy. Process of refining zinciferous material. US Patent:US 1879834 [P],1932-09-27.
    [121]Mark A. Peters, Arvada Colo. Process for recovering zinc from steel-making flue dust. US Patent:US4071357 [P],1978-01-31.
    [122]SPINK DONALD Richard, STEIN JERRY Yehuda. Recovery of base metal values from base metal and iron-bearing sulfide materials. European Patent: EP0192459 [P],1986-08-27.
    [123]RL Nyirenda. Study of the reduction step of the caron zinc process [J]. Delft Progress Report,1988,13(1):49-59.
    [124]D. B. Dreisinger, E. Peters, G Morgan. The hydrometallurgical treatment of carbon steel electric arc furnace dusts by the UBC-Chaparral process [J]. Hydrometallurgy,1990,25(2):137-152.
    [125]Buckett Graham Alan, Fountain Christopher Rivers. Refining zinc sulphide ores. European Patent:WO9836102 [P],1998-08-20.
    [126]Francisco Jose Alguacil Priego, Nestor de De Goicoecheay Gandiaga. Process for obtaining a high purity zinc oxide by leaching Waelz oxide with ammonium carbonate solutions:ES2110355 [P],1998-02-01.
    [127]Javad Moghaddam, Rasoul Sarraf-Mamoory, Yadollah Yamini, et al. Determination of the Optimum Conditions for the Leaching of Nonsulfide Zinc Ores (High-SiO2) in Ammonium Carbonate Media [J]. Industrial & Engineering Chemistry Research,2005,44(24):8952-8958.
    [128]T P Campbell. The electrolysis of ammoniacal zinc carbonate solutions [J]. Transactions of the American Electrochemical Society,1924,46(1):9-21.
    [129]T. G. Harvey. The hydrometallurgical extraction of zinc by ammonium carbonate:A review of the Schnabel process [J]. Mineral Processing and Extractive Metallurgy Review,2006,27(4):231-279.
    [130]S. Amer, J. M. Figueiredo, A. Luis. The recovery of zinc from the leach liquors of the CENIM-LNETI process by solvent extraction with di(-2-ethylhexyl)phosphoric acid [J]. Hydrometallurgy,1995,37(3):323-337.
    [131]J.L. Limpo, A Luis, C Gomez. Reactions during the oxygen leaching of metallic sulphides in the CENIM-LNETI process [J]. Hydrometallurgy(Amsterdam),1992,28(2):163-178.
    [132]JL Limpo, S Amer, A Luis, et al. The CENIM-LNETI process:a new process for the hydrometallurgical treatment of complex sulphides in ammonium chloride solutions [J]. Hydrometallurgy(The Netherlands),1992,28(2):149-161.
    [133]W Burrows. Zinc oxide recovery process. US Patent:US3849121A [P], 1974-11-19.
    [134]M Olper. Zinc extraction from EAF dust with the Ezinex process [J]. Revue de Metallurgie, Cahiers d'Informations Techniques (France),1997,94(1):111-120.
    [135]M Olper. The EZINEX Process-a new and advanced way for electro winning from a chlorine solution [J]. International Symposium-world Zinc'93. The Australasian Institute of Mining and Metallurgy, Malbourne,1993:491-494.
    [136]杨声海.Zn (Ⅱ)-NH3-NH4C1-H2O体系制备高纯锌理论及应用[博士学位论文].长沙:中南大学,2003.
    [137]巨少华,唐谟堂,杨声海.用MATLAB编程求解Zn(Ⅱ)-NH4Cl-NH3-H2O体系热力学模型[J].中南大学学报(自然科学版),2005,36(5):821-827.
    [138]Rui-xiang Wang, Mo-tang Tang, Sheng-hai Yang, et al. Leaching kinetics of low grade zinc oxide ore in NH3-NH4Cl-H2O system [J]. Journal of Central South University of Technology,2008,15(5):679-683.
    [139]张玉梅,李洁,陈启元,et al.超声波辐射对低品位氧化锌矿氨浸行为的影响[J].中国有色金属学报,2009,19(005):960-966.
    [140]Zhoulan Yin, Zhiying Ding, Huiping Hu, et al. Dissolution of zinc silicate (hemimorphite) with ammonia-ammonium chloride solution [J]. Hydrometallurgy,2010,103(1-4):215-220.
    [141]Zhiying Ding, Zhoulan Yin, Huiping Hu, et al. Dissolution kinetics of zinc silicate (hemimorphite) in ammoniacal solution [J]. Hydrometallurgy,2010, 104(2):201-206.
    [142]Zhiying Ding, Zhoulan Yin, Huiping Hu, et al. Comparison of thermal property and dissolution behavior of synthetic compound and natural hemimorphite [J]. Thermochimica Acta,2010,511(1-2):168-173.
    [143]The Anaconda Company. Recovery of zinc. US Patent:IE37509 [P], 1973-04-09.
    [144]K Sarveswara Rao, H S Ray. A new look at characterisation and oxidative ammonia leaching behaviour of multimetal sulphides [J]. Minerals Engineering, 1998,11(11):1011-1024.
    [145]K Sarveswara Rao, H S Ray. Use of thermal analysis for study of characterisation of multimetal sulphides and their oxidation behaviour [J]. Mineral Processing and Extractive Metallurgy Review,1997,16(4):261-278.
    [146]K Sarveswara Rao, H S Ray. Effect of roasting and ammonia leaching on the mineralogy of multimetal sulphides [J]. Metals Materials and Processes,1997, 9(1):33-44.
    [147]K Sarveswara Rao, H S Ray. Selection of experimental conditions for leaching studies:A case study on oxidative ammonia leaching of multimetal sulphides [J]. Metallurgy and Material Science (India),1997,78(1):70-78.
    [148]K Sarveswara Rao, S Anand, R P Das. Kinetics of ammonia leaching of multimetal sulphides [J]. Mineral Processing and Extractive Metallurgy Review, 1992,10(1):11-27.
    [149]K Sarveswara Rao. Process development for extraction of zinc, copper and lead from complex sulphide ore/concentrates of Ambamata. Ⅰ:An overview of the process [J]. Transactions of the Indian Institute of Metals,1984,37(1):49-53.
    [150]Harbans L. Jindal, Kiyoshi Matsuda, Reita Tamamushi. Electrode reaction of zinc ions at a dropping mercury electrode in ammonium sulphate solutions [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1978, 90(2):197-201.
    [151]S. Guy, C. P. Broadbent, D. J. D. Jackson, et al. Solubility of lead and zinc compounds in ammoniacal ammonium sulphate solutions [J]. Hydrometallurgy, 1982,8(3):251-260.
    [152]唐谟堂,张鹏,何静,et al. Zn (Ⅱ)-(NH4)2SO4-H2O体系浸出锌烟尘[J].中南大学学报(自然科学版),2007,38(5):867-872.
    [153]唐谟堂,欧阳民.硫铵法制取等级氧化锌[J].中国有色金属学报,1998,(01):121-124.
    [154]FJ Alguacil, M Alonso. The effect of ammonium sulphate and ammonia on the liquid-liquid extraction of zinc using LIX 54 [J]. Hydrometallurgy,1999,53(2): 203-209.
    [155]K A El-Barawy, S Z EI-Tawil, M B Morsi, et al. Extraction of zinc metal and preparation of valuable zinc compounds from Egyptian zinc concentrate [J]. Proceedings of the Second International Conference on Processing Materials for Properties,2000:711-716.
    [156]HI Saleh, KM Hassan. Extraction of zinc from blast-furnace dust using ammonium sulfate [J]. Journal of Chemical Technology & Biotechnology,2004, 79(4):397-402.
    [157]Samia A Moustafa. Extraction of zinc from Egyptian zinc ore with (NH4)2SO4 [J]. World of Metallurgy-ERZMETALL,2005,58(1):21-26.
    [158]冯林永.块状低品位氧化锌矿浸出新技术研究[J].矿冶工程,2008,28(4):69-76.
    [159]L. Y. Feng, X. W. Yang, Q. F. Shen, et al. Pelletizing and alkaline leaching of powdery low grade zinc oxide ores [J]. Hydrometallurgy,2007,89(3-4): 305-310.
    [160]Yuan Tiechui, Cao Qinyuan, Li Jie. Effects of mechanical activation on physicochemical properties and alkaline leaching of hemimorphite [J]. Hydrometallurgy,2010,104(2):136-141.
    [161]曹琴园,李洁,陈启元.机械活化对异极矿碱法浸出及物理性能的影响[J].中国有色金属学报,2010,20(2):354-362.
    [162]P Delahay, M Pourbaix, P Van Rysselberghe. Potential-pH diagram of zinc and its applications to the study of zinc corrosion [J]. Journal of the Electrochemical Society,1951,98(3):101-105.
    [163]N De Zoubov, M Pourbaix. Zinc [M]. In:M. Pourbaix, editor. Atlas of electrochemical equilibria in aqueous solutions. New York:Pergamon Press, 1966:406-413.
    [164]徐采栋,林蓉,汪大成.锌冶金物理化学[M].上海:上海科学技术出版社,1979.
    [165]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用[M].长沙:中南工业大学出版社,1986.
    [166]H E Johnson, J Leja. On the potential/pH diagrams of the Cu-NH3-H2O and Zn-NH3-H2O systems [J]. Journal of the Electrochemical Society,1965,112(6): 638-641.
    [167]R J Crawford, D E Mainwaring, I H Harding. Adsorption and coprecipitation of heavy metals from ammoniacal solutions using hydrous metal oxides [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1997, 126(2-3):167-179.
    [168]V. I. Kravtsov, E. G. Tsventarnyi, O. Yu Kurtova, et al. Kinetics and mechanism of electroreduction of ammonia and hydroxyammonia complexes of zinc(II) on a dropping mercury electrode [J]. Russian Journal of Electrochemistry, 2001,37(6):559-568.
    [169]A.E. Martell, R. M. Smith. Critical Stability Constants. Vol.4:Inorganic Complexes [M]. New York:Plenum Press,1976.
    [170]A E Martell, R.M. Smith. Critical Stability Constants. Vol.5:First Supplement [M]. New York:Plenum Press,1982.
    [171]IUPAC Stability Constants Database. [J]. SC-Database, and Mini-SCDatabase. Academic Software:Sourby Old Farm, Timble, Otley, Yorks, LS212PW, UK., 2001.
    [172]唐谟堂,鲁君乐.Zn (II)-NH3-(NH4)2SO4-H2O系的氨络合平衡[J].中南矿冶学院学报,1994,25(6):701-705.
    [173]丁治英.氧化锌矿物在氨性溶液中的溶解行为研究[博士学位论文].长沙:中南大学,2011.
    [174]彭文世,刘高魁.矿物红外光谱图集[M].北京:科学出版社,1982.
    [175]R. L. Frost, J. M. Bouzaid, B. J. Reddy. Vibrational spectroscopy of the sorosilicate mineral hernimorphite Zn4(OH)2Si2O7 H2O [J]. Polyhedron,2007,26: 2405-2412.
    [176]P. Makreski, G Jovanovski, B. Kaitner, et al. Minerals from Macedonia ⅩⅧ. Vibrational spectra of some sorosilicates [J]. Vibrational Spectroscopy,2007, 44(1):162-170.
    [177]E. A. Gallegos, N. F. Cano, S. Watanabe, et al. Thermoluminescence, infrared reflectivity and electron paramagnetic resonance properties of hemimorphite [J]. Radiation Measurements,2009,44(1):11-17.
    [178]J A Gadsden. Infrared Spectea and Inorganic Compounds [M]. London: Butterworths,1979.
    [179]V.C.法默,应玉浦等译.矿物的红外光谱[M].北京:科学出版社,1982.
    [180]ILER Ralph K. The chemistry of silica:Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry [M]. New York:Wiley-Interscience, 1979.
    [181]J. D. Rimstidt, H. L. Barnes. The kinetics of silica-water reactions [J]. Geochimica Et Cosmochimica Acta,1980,44(11):1683-1699.
    [182]A.E. Martell, R.M. Smith. NIST Standard Reference Datebase 46 Version 8.0.NIST [J]. National Institute of Standards and Technology, Gaithersburg,2004: MD.
    [183]J. A. Dean. Lange's Handbook of Chemistry,15th ed [M]. London: McGraw-Hill, Inc,1999.
    [184]Werner Stumm, Heinz Huper, Robert L. Champlin. Formulation of polysilicates as determined by coagulation effects [J]. Environmental Science & Technology,1967,1(3):221-227.
    [185]申晓毅,翟玉春,孙杨.二氧化硅超微粉微波水热法制备及表征[J].人工晶体学报,2008,(04):973-976.
    [186]闻辂主编.矿物红外光谱学[M].重庆:重庆大学出版社,1989.
    [187]CC Lin, P Shen. Role of screw axes in dissolution of willemite [J]. Geochimica Et Cosmochimica Acta,1993,57:1649-1655.
    [188]HR Westrich, RT Cygan, WH Casey, et al. The dissolution kinetics of mixed-cation orthosilicate minerals [J]. American Journal Of Science,1993,293: 869-869.
    [189]C.D. Wagner, J.F. Moulder, L.E. Davis, et al. Handbook of X-ray photoelectron spectroscopy [M]. Perking-Elmer Corporation, Physical Electronics Division (end of book),1979.
    [190]William H. Casey, Michael F. Hochella Jr, Henry R. Westrich. The surface chemistry of manganiferous silicate minerals as inferred from experiments on tephroite (Mn2SiO4) [J]. Geochimica Et Cosmochimica Acta,1993,57(4): 785-793.
    [191]B. Terry. The acid decomposition of silicate minerals part I. Reactivities and modes of dissolution of silicates [J]. Hydrometallurgy,1983,10(2):135-150.
    [192]M. Mena, F. Olson. Leaching of chrysocolla with Ammonia-Ammonium carbonate solutions [J]. METALLURGICAL AND MATERIALS TRANSACTIONS B,1985,16(3):441-448.
    [193]D. Georgiou, V. G. Papangelakis. Sulphuric acid pressure leaching of a limonitic laterite:chemistry and kinetics [J]. Hydrometallurgy,1998,49(1-2): 23-46.
    [194]J Szekely, J W Evans, H Y Sohn. Gas-solid reactions [M]. New York: Academic Press,1976.
    [195]S. K. Bhatia, B. J. Vartak. Reaction of microporous solids:The discrete random pore model [J]. Carbon,1996,34(11):1383-1391.
    [196]KNona C. Liddell. Shrinking core models in hydrometallurgy:What students are not being told about the pseudo-steady approximation [J]. Hydrometallurgy, 2005,79(1-2):62-68.
    [197]Sebastian Teir, Hannu Revitzer, Sanni Eloneva, et al. Dissolution of natural serpentinite in mineral and organic acids [J]. International Journal Of Mineral Processing,2007,83(1-2):36-46.
    [198]A. Yartasi, M.莖 pur. Dissolution kinetics of copper(Ⅱ) oxide in ammonium chloride solutions [J]. Minerals Engineering,1996,9(6):693-698.
    [199]PD Oudenne, FA Olson. Leaching kinetics of malachite in ammonium carbonate solutions [J]. Metallurgical and Materials Transaction B,1983,14(1): 33-40.
    [200]Shaohua Ju, Motang Tang, Shenghai Yang, et al. Dissolution kinetics of smithsonite ore in ammonium chloride solution [J]. Hydrometallurgy,2005, 80(1-2):67-74.
    [201]C. F. Dickinson, G. R. Heal. Solid-liquid diffusion controlled rate equations [J]. Thermochimica Acta,1999,340-341:89-103.
    [202]D. Bingol, M. Canbazoglu, S. Aydogan. Dissolution kinetics of malachite in ammonia/ammonium carbonate leaching [J]. Hydrometallurgy,2005,76(1-2): 55-62.
    [203]P T Landsberg. On the logarithmic rate law in chemisorption and oxidation [J]. The Journal of Chemical Physics,1955,23:1079.
    [204]F. W. Y. Momade, Zs G. Momade. A study of the kinetics of reductive leaching of manganese oxide ore in aqueous methanol-sulphuric acid medium [J]. Hydrometallurgy,1999,54(1):25-39.
    [205]F J Hingston, M Raupach. The reaction between monosilicic acid and aluminum hydroxide-Ⅰ. Kinetics of adsorption of silicic acid by aluminum hydroxide [J]. Aust. J. Soil Res,1967,5(2):295-309.
    [206]M. Mena, F. Olson. Leaching of chrysocolla with Ammoma-Ammonium carbonate solutions [J]. Metallurgical and Materials Transactions B,1985,16(3): 441-448.
    [207]IG Matthew, D Elsner. The processing of zinc silicate ores-A review [J]. METALLURGICAL AND MATERIALS TRANSACTIONS B,1977,8(1): 85-91.
    [208]Rakeshi Kumar, A. K. Biswas. Zinc recovery from zawar ancient siliceous slag [J]. Hydrometallurgy,1986,15(3):267-280.
    [209]Y Hua, Z Lin, Z Yan. Application of microwave irradiation to quick leach of zinc silicate ore [J]. Minerals Engineering,2002,15(6):451-456.
    [210]X Meng, K N Han. The principles and applications of ammonia leaching of metals-A review [J]. Mineral Processing and Extractive Metallurgy Review, 1996,16(1):23-61.
    [211]D Filippou. Innovative hydrometallurgical processes for the primary processing of zinc [J]. Mineral Processing and Extractive Metallurgy Review, 2004,25(3):205-252.
    [212]黄典豪.云南乐红铅锌矿床氧化带中异极矿的矿物学特征及其意义[J].岩石矿物学杂志,2000,19(004):349-354.
    [213]刘琰,邓军,杨立强,et al.异极矿加热过程的研究[J].岩石学报,2005,21(003):993-998.
    [214]Hal F. W. Taylor. The dehydration of hemimorphite [J]. The American Mineralogist,1962,47:932-944.
    [215]W. W. McDonald, D. J. W. Cruickshank. Refinement of the structure of hemimorphite [J]. Zeitschrift Fur Kristallographie,1967,124:180-191.
    [216]E. Libowitzky, K. Kohler, T. Armbruster, et al. Proton disorder in dehydrated hemimorphite-IR spectroscopy and X-ray structure refinement at low and ambient temperatures [J]. European Journal Of Mineralogy,1997,9(4):803-810.
    [217]K.-H. Klaska, J. C. Eck, D. Pohl. New investigation of willemite [J]. Acta Crystallographica Section B,1978,34(11):3324-3325.
    [218]M. A. Simonov, P. A. Sandomirskii, Yu. K. Tgorov-Tismenko, et al. The crystal structure of willemite Zn2SiO4 [J]. Soviet Physics Doklady,1977,22: 622.
    [219]H. Poulet, J.P. Mathieu. Vibration spectra and structure of hemimorphite [J]. Bulletin de la Society Francaise de Mineralogie et Cristallographie,1975,98(1): 3-5.
    [220]AN Lazarev. Vibration Spectra of the Silicates. I. Infrared Spectra of Silicates with Anions of the Type (Si2O7)6-[J]. Optics and Spectroscopy,1960,9:103.
    [221]Go B. Alexander, W. M. Heston, R. K. Iler. The Solubility of Amorphous Silica in Water [J]. The Journal of Physical Chemistry,1954,58(6):453-455.
    [222]Ljerka Brecevic, Arne Erik Nielsen. Solubility of amorphous calcium carbonate [J]. Journal Of Crystal Growth,1989,98(3):504-510.
    [223]Lin Chuncheng, Shen Pouyan. Role of screw axes in dissolution of willemite [J]. Geochimica Et Cosmochimica Acta,1993,57(8):1649-1655.
    [224]H Y Sohn, M E Wadsworth. Rate processes of extractive metallurgy [M]. New York and London:Plenum Press,1979.
    [225]莫鼎成.冶金动力学[M].长沙:中南工业大学出版社,1987.
    [226]Edward Olanipekun. A kinetic study of the leaching of a Nigerian ilmenite ore by hydrochloric acid [J]. Hydrometallurgy,1999,53(1):1-10.
    [227]Hong-ming Zhou, Shi-li Zheng, Yi Zhang, et al. A kinetic study of the leaching of a low-grade niobium-tantalum ore by concentrated KOH solution [J]. Hydrometallurgy,2005,80(3):170-178.
    [228]Zhiying Ding, Zhoulan Yin, Xifei Wu, et al. Leaching Kinetics of Willemite in Ammonia-Ammonium Chloride Solution [J]. METALLURGICAL AND MATERIALS TRANSACTIONS B,2011,42(4):633-641.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700