用户名: 密码: 验证码:
嗜热金属硫叶菌浸出碳质镍钼矿的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于含有多种金属、多种矿物成分的胶态碳质镍钼矿,通常用高温焙烧的方法冶炼。而氧化焙烧不仅高耗能,且污染严重,还造成资源的巨大浪费。采用化学浸出法浸出镍钼矿也有不少尝试,但效果很有限,且成本很高。近十年来,微生物冶金技术开始应用于硫化矿的浸出,在硫化铜矿等多种矿物取得了成功,有的还进行了规模化生产。对于钼矿的生物浸出,也有许多探索性研究,但都局限于氧化亚铁硫杆菌等常温菌的常规浸出研究。
     以往研究发现,钼对常温细菌产生很强的毒性,导致浸出效果很差。为了解决浸出过程中的钼中毒问题,本研究采用对钼具有一定耐受性的古生嗜热菌---金属硫叶菌作为浸矿菌种,对镍钼矿进行了多种情形下的摇瓶浸出,然后结合膜技术和离子交换技术将矿在MBR系统中进行浸出研究。研究结果表明:
     1、金属硫叶菌在一定程度的驯化后,该菌对钼的耐受能力可以达到接近400mg/L,对镍的耐受浓度可以达到950mg/L左右。有较强的氧化亚铁的能力,也有能将元素硫氧化成硫酸的能力。是一种比较理想的浸出碳质复杂镍钼矿的嗜热古生菌种。
     2、镍钼矿的无菌浸出和有菌浸出有明显差别,后者的镍和钼的浸出率比前者高许多,分别达到91.78%和65.98%(而无菌浸出时镍和钼的浸出率分别为77.64%和50.19%)。对浸出过程中有菌和无菌浸样的矿物进行表面电镜观察,发现无菌浸出的矿物表面很光滑,而细菌浸出的矿粒表面存在大量的细菌活动的“腐蚀坑”,说明细菌对矿物的浸出是表面腐蚀作用。此外,嗜热金属硫叶菌和中温氧化亚铁硫杆菌对镍钼矿的浸出对比实验结果表明,前者镍和钼的浸出率分别达到93.17%和73.52%,高于后者的67.34%和38.36%。
     3.在用透析袋将细菌与矿物隔离的浸出实验中发现,镍和钼的浸出率分别为75.86%和54.69%,而同等条件下非透析处理的镍、钼浸出率则达到95.30%和63.46%。可见金属硫叶菌对镍钼矿的浸出过程中,细菌与矿物的接触是必要的。通过细菌与矿物的接触,细菌将矿物周围的SO氧化成SO42-而将硫膜不断清除,从而消除了Fe3+、Fe2+进出矿物表面的障碍。在浸出过程中,细菌的另一个重要作用是将浸出液中的Fe2+不断地氧化成Fe3+,而Fe3+是镍钼矿的重要浸出剂。
     4、实验表明,Fe3+是镍钼矿的重要氧化剂,但并非Fe3+浓度越高,镍钼矿的镍和钼浸出率越高。当浸出液中的Fe3+浓度超过4.0g/L之后,浸出率不再升高。这表明,在一定Fe3+浓度范围内,矿物镍和钼的浸出率除受到浸出液Fe3+浓度的影响外,还受到电位以及矿物的原电池效应的影响。由于浸出液的电位不高(500mv左右),加上矿物中钼与矿物中铜等金属离子形成原电池,因此,钼的浸出率较低,浸出速度也相对较慢。
     5、矿浆浓度、pH、矿物粒径、细菌接种量等因素对镍钼矿中镍和钼的浸出率影响较大。矿浆浓度与浸出率呈负相关;浸出需在酸性条件下进行,初始pH=2时,浸出效果最好;矿物粒径越小,镍和钼的浸出率越高;细菌接种量有一个最佳点,以10%(v/v)接种量的浸矿效果最好。较好的细菌浸矿条件为:温度65℃,接种量为10%,初始pH=2,矿物粒径0.048mm,矿浆浓度5g·L-。镍和钼的浸出率分别为99.97%和85.29%。
     6、进行了金属硫叶菌对低品位辉钼矿的浸出。在相同的浸出条件,辉钼矿比镍钼矿的浸出效果差得多。这可能是由于镍钼矿含有更多的硫、铁及碳等有利于细菌浸出的元素以及镍钼矿的特殊结构有关。说明金属硫叶菌更适合镍钼矿的浸出。
     7、通过MBR对镍钼矿的浸出发现,以超滤系统膜的截留作用使钼离开浸出液而细菌留下,可以控制浸出液的钼浓度和保持细菌浓度。当温度65℃,pH=2,矿浆浓度达到10%时,浸出时间20d,浸出过程中用MBR将浸出液的钼控制在接近395mg/L,此条件下镍和钼浸出率分别达到了79.57%和56.23%,比同等条件下的柱浸效果好。说明在较高钼浓度下采用MBR浸出是有利的。但钼浓度分别控制在≤160mg/L、≤250mg/L、≤300mg/L、≤350mg/L)的较低水平时,镍和钼的浸出率均不理想,因为低水平钼的控制,超滤走的浸出液量较大,导致其中Fe3+的损失而影响了镍和钼的浸出率。当浸出液钼浓度被控制在较低水平时,采用MBR是不合适的。
     8、为了达到既能控制浸出液中钼浓度又能保留其中的Fe3+,进行了MBR与离子交换结合的细菌浸出实验,将超滤后的浸出液经离子交换吸附钼后再返回浸出体系。但实验发现,树脂吸附钼也能部分吸附Fe3+,因此,在超滤-离子交换处理浸出液时,浸出液的处理量较大时,同样出现浸出液中的Fe3+损失问题,即造成Fe3+被吸附而离开浸出体系,从而影响浸出率。实验发现,将35%、18%和10%的浸出液经超滤-离子交换处理时,10%的处理量产生了较好的浸出效果。
     对镍钼矿的细菌浸出进行了动力学分析和热力学分析。探明了细菌浸出过程中镍和钼浓度随时间变化而变化的关系曲线以及Fe3+/Fe2+变化情况。并利用该矿物相关热力学关系式绘制了Ni,Mo-S-H2O pH-电位图。
     上述研究工作,对低品位矿物资源的可持续利用具有重要意义。
The traditional metallurgical methods for nickel-molybdenum sulfide ore (jordisite) with several metal and various mineral components including carbon was roasting at high temperature. However, roasting not only is energy intensive,, but also brings serious pollution. Futhermore, traditional roasting results in huge waste of natural resource. Great effort has been made in the application chemical method, but with limited achievement-It is also found to be a high-cost approach. In past decade, application of bio-metallurgical technology in the extraction of sulphide ore raises much attention. It has been successfully employed in the metallurgy of many metallic sulphide (e.g. copper sulfide) and mass production has been actualized in some fields. Regarding bioleahcing of molybdenum mineral, a lot of exploratory researches have been conducted. Nevertheless,most of them focused on ordinary bacterias such as Thiobacillus ferrooxidans.Investigation demonstrated that the toxic inhibition of Molybdenum toward ordinary bacterias result in very low bioleaching efficiency. In view of this situation, sulfolobus metallicus, a type of acidophilic thermophile microorganins that can tolerate the toxicity of molybdenum to some degree. Bioleaching in shaking flasks and in membrane reactor combined with ion-exchange was studied. The following results were obtained
     The experimental results showed that sulfolobus metallicus, as the leaching bacteria, has strong ability to oxidize the ferrous component as well as convert S0into sulphuric acid (H2SO4). After cultivation, this type of microorganism could endure up to400mg/L of molybdenum and950mg/L of nickel. Therefore, sulfolobus metallicus was a good candidate for leaching nickel-molybdenum ore known as Mo-S-C composite.
     There was marked difference in the leaching rate of Ni and Mo between the leaching with and without sulfolobus metallicus;the latter was91.78%and65.98%respectively,while the former was just77.64%and50.19%. The microorganism existing on the partical surface played an important role in the bioleaching process, which was proved by other experiments including the scanning electron microscope (SEM)analysis of the surface of particles subjected to the leaching process. For the leaching with sulfolobus metallics, a lot of corroded holes were observed on the surface of the mineral particles; while especially smooth surface was observed with the particles in the leaching as control.Furthermore, there were a lot of microorganisms absorbed on the surface of the mineral particle in the former group. The bioleaching rate of Ni and Mo was distinctly improved after the strain was acclimated and induced.In addition, the leaching comparision showed that the leaching rate of Ni and Mo with sulfolobus metallicus was higher than the Thiobacillus ferrooxidans.
     when dialysis bag was put between the mineral and microorganism, the leaching rate of Ni and Mo was75.86%and54.69%,which were low than that of the control group without dialysis bag(95.30%and63.46%in this group). The possible reason is that S0on the surface of the mineral particle was continuously oxidized into H2SO4by sulfolobus metallicus and the S0membrane as the barrier between the mineral particle and leaching liquid was removed. Another important role of sulfolobus metallicus was to oxidize Fe2+into Fe3+that act as lixiviant for the solubilization of nickel andmolybdenum from sulfide ore.
     Inspite of its critical role, higher Fe3+concentration does not necessarily lead to more efficient leaching of Ni and Mo. The leaching rate did not increase when Fe3+concentration reached4.0g/L. It is concluded that the leahcing rate of Ni and Mo is influenced not only by the concentration of Fe3+but also by other factors including electric potential and primary battery effect of the metal ion in nickel-molybdenum sulfide ore. Due to its low electric potential and battery effect compared with the other metal ions such as copper in nickel-molybdenum sulfide ore molybdenum at negative pole is protected and its leaching rate was low.
     The impact of mineral density, pH, mineral particle and inoculation on the bioleaching rate of Ni and Mo were obviously. Mineral density was inverse relation to the leaching rate, and there was the best leaching rate of Ni and Mo,which reached99.97%and85.29%respectively under the condition of5g·L-1mineral density and initial pH=2. In addition, the less mineral particle,the more the leaching rate of Ni and Mo at the same mineral density. The experiment also revealed that the10%inoculation was the best favorable bioleaching among several group of the different inoculation.
     The bad result of the bioleaching on MoS2with sulfolobus metallicus reflected that there was different structure and component between nickel-molybdenum sulfide ore and MoS2so that the Mo was leached out in different leaching rate,in which the special structure of ore of C-Ni-Mo-S was further revealed.
     The bioleaching of nickel-molybdenum sulfide ore in MBR showed that ultra-filter could put the concentration of Mo under control by filter at regular intervals. When the concentration of Mo in MBR with sulfolobus metallicus was controlled near and under395mg/L,the leaching rate of Ni and Mo was79.57%and56.23%respectively,which reached the best among all group and exceeded the group of column leaching. The leaching rate of Ni and Mo in others group including the group of Mo<160mg/L,<250mg/L,<300mg/L,<350mg/L were all less than the group of Mo<395mg/L since a lot of Fe3+was carried away when the leaching liquid was filtered out.Therefore, Both the concentration of Mo and loss of Fe3+in the leaching liquid should be considered in MBR with sulfolobus metallicus.While the membrane was necessary in order to reach such a tuation.Otherwise,the concentration of Mo in leaching liquid will be rise till restrain the growth of micorganism.
     This paper used MBR conbined ion-exchange in order both to control Mo and to avoid the loss of Fe3+and retrieve the leaching liquid being exchanged.But Fe3+in leaching liquid was still partly absorbed and exchanged by resin so that the leaching rate of Ni and Mo was decreased by the loss of Fe3+when the excessive leaching liquid was filtered and exchanged. The leaching rate of Ni and Mo in the group which10%of the leaching liquid was filtered and exchanged was79.53%and56.52%which was the climax among all group including 35%and18%of leaching liquid being filtered and exchanged.lt will be favorable to MBR conbined ion-exchanged for the bioleachng of nickel-molybdenum sulfide ore especially with ordinary microorganism if a resin could be made for exclussive Mo absorption.
     At last, dynamics was studied according to the change of Fe3+/Fe2+and the concentration change of Ni and Mo in process of bioleaching.At the same time, themodynamics analyse was made through the drawing of Ni,Mo-S-H2O pH-E.
     The study mentioned above will play an important role in sustainable development of metallurgical industry at low degree mineral resource.
引文
[1]黄其兴等主编.镍冶金学[M].中国科学出版社,1990:1-11,15,23,354-357
    [2]皮关华,徐徽,陈白珍等.从难选镍钼矿中回收铝的研究[J],湖南有色金属,2007,23(1):9-11.
    [3]李有禹,湘西北地区镍钼多金属矿产成矿物质来源的新论证[J],湖南地质,1992:15-19.
    [4]陈礼运,高品位原生铝矿的综合利用[J].中国钼业,2003,(,3):120-125.
    [5]何旭初,一种选冶结合的镍钼矿镍钼分离方法[P],中国专利:CN1134856A,1995.05.03.
    [6]伍宏培.镍铝矿的浓酸熟化浸出解聚溶剂萃取[P].中国专利:CN1033784A,1988.04.19.
    [7]秦纯.用碳酸钠转化处理黑色页岩分离钼的工艺[P].中国专利:CN1177012A,1997.06.23.
    [8]邹贵田.用稀酸从镍钼共生矿提取钼和镍盐的方法[P].中国专利:CN99114737.5,2000.09.27
    [9]邹贵田.用弱碱从镍钼共生矿提取钼和镍盐的方法[P].中国专利:CN99114736.7,1999.03.23.
    [10]吴海国.含碳镍钼矿提取镍钼冶炼新工艺试验研究[J].湖南有色金属,2008,24(2):16-18.
    [11]钟宏,N235从含Mo Mn酸浸液中萃取回收Mo[J].过程工程学报,2006,6(1):28-31.
    [12]林娟.钻溶液除铁的工艺改进[J].山西冶金,2004,4:58-59.
    [13]陈家镛.湿法冶金手册[M].冶金工业出版社,2005,276-278.
    [14]Needham J.,Gwei-Djen S.,Science and civilization in China,Chemistry and Chemical Technology:Part Ⅱ,Spagyrical Discov-ery and Invention:Magisteries of Gold and Immortailiy, vol.5:25-250, Univ.press, Cambridge.
    [15]Rossi G.Biohydrometallurgy,McGraw-Hill,Hamburg,Germany,1990,p.1-7.
    [16]Sand W, Gehrke T, Jozsa P. G., et al. (Bio)chemistry of bacterial leaching-directVS. indirect bioleaehing. Hydro-metallurgy,2001,59:159-174.
    [17]Rojas-Chapana J. A., Trihutsch H. Biochemistry of sulfur extraction in bio-corrosion of pyrite by thiohacillus ferrooxidans. Hydrometallurgy, 2001,59:291-300.
    [18]ZhangGang-ji, FangZhao—heng. Behavior ofFeand Sin bioleaching ofpentlandite, Trans. NonferrousMet. Soc. China.2002(12):160-163
    [19]Tributsch H. Direct versus indirect bioleaching. Hydmmetallurgy, 2001,59:177-185.
    [20]Sand W, Gehrke T, Jozsa P.G, et al. (Bio)chemistry of bacterial leaching-direct VS. indirectbioleaehing. Hydro-metallurgy,2001,59:159-174.
    [21]邱冠周,柳建设,王淀佐等.氧化亚铁硫杆菌生长过程铁的行为[J],中南工业大学学报.1998(3):226-228.
    [22]柳建设,邱冠周,王淀佐等,氧化亚铁硫杆菌在氧化过程中的铁行为[J].湿法冶金,1997,(3):1-3.
    [23]M.T.马迪根,J.M.马丁克,J.帕克著,杨文博等译,微生物生物学,科学出版社,2001,604-612.
    [24]李宏煦硫化矿细菌浸出过程的电化学机理及工艺研究[学位论文].长沙:中南大学,2001.
    [25]李宏煦,王淀佐,胡岳华等.Fe2+在T.f菌修饰粉末微电极表面氧化的电化学.中国有色金属学报,2002,12(6):1263-1267.
    [26]李宏煦,王淀佐.硫化矿细菌浸出过程的电化学(Ⅱ).矿冶,2003,12(2):45-48.
    [27]李宏煦,王淀佐.硫化矿细菌浸出过程的电化学(Ⅰ).矿冶,2003,12(1):49-51.
    [28]Pesic B,Oilver D J.An electrochemical method of measuring the oxidation rate of ferrous to ferric iron with oxygen in the presence of Thiobacillus ferrooxidans. Biotechonlogy and Bioengineering.1989,33:428-439.
    [29]Ahoned L,Tuovinen O. Microbial oxidation of ferrous iron at low temperature. Appl. Environ Microbiol,1989,55:312-316.
    [30]QIU Guan-zhou(邱冠周), LIU Jian-she(柳建设), HU Yue-hua(胡岳华).Electrochemical behavior of chalcopyrite in presence of Thiobacillus ferrooxidans. Trans. Nonferrous.Metal. Soc. China. International workshop on electrochemistry of foltation of fulfide mineral.Honoring professor WANG Dian-zuo(王淀佐)for his 50 years working at mineral processing.2000, 10(Special Issue):23-25.
    [31]Hansford G. S., and Vagas T. Chemical and electrochemical basis of biohaehing processes. Hydremetallurgy,2001,59:135-143.
    [32]Gomez E, Ballester A,Gonzalez F,et al.Leaching capacity of a new extremely thermophilic microorganism,Sulfolobus rivotincti. Hydrometallurgy,1999, 52:349.
    [33]Boon M, Heijnen J J. The rise of off-gas analyses and stoichiometry in the bio—oxidation kinetics of sulphide minerals. Hydro, metallurgy,1998,48:1-26.
    [34]Bawlings D. E..Restriction enzyme analysis of 16S rRNA genes for rapid identification of Thiobacillus ferreoxidans. Thiohaeillus thiooxidans and Leptospirillum ferraoxidans strains in leaching environments. In:Vargas T, Jerez C. A。et al, eds. Biohydrometal. lurgieal Processing. Vol II. Sandiago: University of Chile,1995:9-17.
    [35]Norris P. R., Clark D. A. et al. Characteristics of S. acidophilus sp. nOV. and other moderately thermophilic mineral sulfide Oxidizing bacteria. Micmbiology,1996,142:775-783.
    [36]Goebei B. M., Stackebrandt E. Cultural and phylogenetical analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl. Envimn Micmbiol,1994,60:1614-1621.
    [37]Golovacheva R. S., Golyshina O. V. et al. A new iron-oxidizing bacteria, Leptospirillum thermoferrooxidans sp. nov.. Mikmbi. ologiya, 1992,61:744-750.
    [38]Huber G., SpinnlerC., Gambacorta A,et al. Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal mobilizing, thermoacidophihc archaebaeteria. System Appl. Micmbi01.1989,12:38-47.
    [39]Norris P. R. Thermophiles and bioleaching. In Biomining, Theory, Microbes and Industrial Process. Eds. Rawlings D. E. Spring. er-Verlag and Landes Bioseienee,1997:247-258.
    [40]池振明.现代微生物生态学[M]北京:科学出版社.2005:84-88.
    [41]Zillig W,Yeats S,Holz I, et al.Desulfurolobus ambivalens,gen.nov.,sp.nov.,an autotrophic archaebacterium facultatively oxidizing or reducing sulfur [J]. Syst. Appl. Microbiol.1986,8:197-203.
    [42]Rossi G. The design of bioreaetors. Hydrometallurgy,59(2001),217-231
    [43]M.T.马迪根,J.M.马丁克,J.帕克著,杨文博等译,微生物生物学,科学出版社,2001:604-612.
    [44]和致中,彭谦,陈俊英.高温菌生物学[C].北京:科学出版社,2001:78-82.
    [45]Plumb J J,Gibbs B,Stott MB, et al.Enrichment and characterization of thermophilic acidophiles for the bioleaching of mineral sulfides[J]. Miner Eng, 2002,15:787-797.
    [46]Huber G,Spinnler C,Gambacorta A,et al. Metallosphaera sedula gen. And sp.nov.represents new genu of aerobic,metal-mobilizing,thermoacidophilic archaebacteria[J].Systematic and Applied Microbiology,1989,12:38-47.
    [47]Fuchs T. H,Burggraf S and Stetter K.16srDNA-bassed phylogeny of the archeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivlens comb.nov.[J].Syst. Appl. Microbiol.,1996,19:56-60.
    [48]Brierley CL and Brierley JA.A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring[J].Can J Microbiol, 1973,19:183-188.
    [49]Zillig W,Stetter K O,Wunderl S,et al.The Sulfolobus-"Caldariella" group: taxonomy on the basis of the structure of DNA-dependent RNA polymerases[J ].Arch Microbiol,1980,125:259-269.
    [50]Segerer A,Neuner A,Kristjansson JK,et al.Acidianus infernus gen.nov.,sp.nov., and Acidianus brierleyi comb. Nov.facultatively aerobic,extremely acidophilic thermoohicic sulfur-metabolizing archaebacteria [J].Int J Syst Bacteriol,1986,36:559-564.
    [51]Segerer A,Neuner A,Kristjansson JK, et al.Acidianus infernus gen.nov.,sp.nov., and Acidianus brierleyi comb. Nov.:facultatively aerobic, extremely acidophilic thermoohicic sulfur-metabolizing archaebacteria[J].Int J Syst Bacteriol,1986,36:569-573.
    [52]Naoki Yoshida,Masanori Nakasato,Naoya Ohmura, et al.Acidianus manzaensis sp.nov., a Novel Thermoacidophilic Archaeon Growing Autotrophically by the Oxidation of H2 with the Reduction of Fe3+[J]Current Microbiology,2006,53:406-411.
    [53]Plumb JJ,Haddad CM,Gibson JAE.,et al. Acidianus sulfidivorans sp.nov,, an extremely acidophilic,thermophilic archoeon isolated from a solfatara on Lihir Island,Papua New Guinea,and emendation of the genus description[J].Int.J.syst. Evol.Microbiol.,2007,57:1418-1423.
    [54]He ZG,Zhong H,Li Y. Acidianus tengchongensis sp.nov.,a new species of acidothermophilic archaeon isolated from an acidothermal apring [J].Curr Microbiol,2004,48(2):159-163.
    [55]Brock TD,Brock KM,Belly RT, et al. Sulfolobus:a new genus of sulfur-oxidizing bacteria living at low pH and high temperature [J]. ArchMikrobiol,1972,84:54-68.
    [56]Peeples TL,Kelly RM.Bioenergetics of the metal/sulfur-oxidizing extreme themoacidophile,Metallosphaera sedula[J].Fuel,1993,72(12):1619-1624.
    [57]Han CJ,Kelly RM.Biooxidation capacity of the extremely thermoacidophilic archaeon Metallosphaera sedula under bioenergetic challenge[J]. Biotechnology and bioengineering,1998,58(6):617-623.
    [58]Han CJ,Park SH,Kelly RM. Acquired Thermotolerance and Stressed-Phase Growth of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula in Continuous Culture[J].Applied and Environmental Microbiology, 1997,63(6):2391.
    [59]Jordan MA,Barr DW and Phillip CV. Iron and sulphur speciation and cell surface hydrophobictyt during bacterial oxidation of a complex copper concentrate[J]. Minerals Engineering,1993,6(8):1001-1011.
    [60]Strain selection for high temperature oxidation of meneral sulfides in reactors.In: Ladisch MR,Boss A(eds).Harnessing biotechnology for the 21st Century. Washington, DC:American Chemical Society,1992:445-448.
    [61]雷云,杨显万.生物湿法冶金与西部矿产资源开发[J],2000,52(4):100-103.
    [62]李宏煦,王淀佐.生物冶金中的微生物及其作用.有色金属,2003,55(2):60.
    [63]Gomez E, Ballester A,Gonzalez F,et al.Leaching capacity of a new extremely thermophilic microorganism,Sulfolobus rivotincti. Hydrometallurgy,1999, 52:345-349.
    [64]Mignone C F,Donati E R.ATP requirements for growth and maintenance of iron-oxidizing bacteria,Biochem Eng J,2004(18):204-211.
    [65]Rubio A,Frutos F J GBioleaching capacity of and extremely thermophilic culture for chalcopyritic materials.Miner Eng.2002,15:684-689.
    [66]Romano P,Blguacil F J.Comparative study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria.FEMS Microbiol Lett,2001,71:188-196.
    [67]邓敬石.高温嗜热菌浸出硫化矿的研究现状与进展[J].云金,2005,34(1):21-24.
    [68]Clark DA,Norris PR. Acidimicrobium ferrooxidans gen.nov.,sp.Nov., mixed-culture ferrous iron oxidation with Sulfobacillus species[J]. Microbiology,1996,142:785-790.
    [69]Dew DW,VanBuuren C,McEwan K, et al.Bioleaching of base metal sulfide concentrates:a comparison of mesophile and thermophile bacterial cultures.In: Amils,R., Ballester,A.(Eds),Biohydrometallurgy and the environment toward the Mining of the 21st century part A. New York:Wiley 1999:229-238.
    [70]Dew DW,van Buuren C, McEwan K, et al.Bioleaching of base metal7sulphide concentrates:a comparison of high and low temperature bioleaching [J]. Journal of the South African Institute of Mining and Metallurgy,2000,100:409-413.
    [71]Y.科西尼.嗜热嗜酸A.B酸杆菌浸出硫化锌精矿[J].国外金属矿选矿,2000.9:31-35.
    [72]赵月峰,方兆珩.极度嗜热菌Acidianus brierleyi浸出镍铜硫化矿精矿[J]过程工程学报,2003,3(2):161-164.
    [73]邹平,杨家明,周兴龙等.嗜热嗜酸菌生物浸出低品位原生硫化铜矿[J].有色金属,2003,55(2):21-24.
    [74]Rawlings DE. Microbially assisted dissolution of minerals and its use in the mining industry[J].Pure and Applied Chemistry,2004,76:847-859.
    [75]Hugues P,Foucher S,Galle'-Cavalloni P, et al. Continuous bioleaching of chalcopyrite using a novel extremely therophilic mixed culture[J].Int J Miner process,2002,66:107-109.
    [76]Acar S,Brierly J A and Wan RY. Conditions for bioleaching a covellite-bearing oore[J].Hydromet,2005,77(3-4):239-246.
    [77]Budden J R and Bunyard M.In:Biomine 94,chapter 4,Australian Mineral Foundation,1994:345-356.
    [78]Gericke M and Pinches A Bioleaching copper sulfide concentrate using extreme thermophilic bacteria[J.]Minerals Engineering,1999,12(8):893-904.
    [79]Gericke M.,Pinches A.,Van Rooyen J.V..Bioleaching of chalcopyrite concentrate using extreme themophilic bacteria[J]Int.J.Mnier. Process,1988,(62):243-255.
    [80]Mez E.G..,Ballester A.,Gonzatez F., et al.Leaching capacity of a new extremely thermophilic micoorganism,Sulfolobus ribotinci[J]. Hydrometallurgy, 1999,(52):349-366.
    [81]Clark D.A. and Norris P.R.Oxidation of mineral sulphides by themophilic microorganisms [J].Min Eng,1996,9(11);1119-1125.
    [82]Nemati M.,Lowenadler J.,Harrison S.T.L.Particle size effects in bioleaching of pyrite by acidophile sulfolobus metallicus(BC)[J]. Appl MicrobiolBoitechnol. 2000, (53):173-179.
    [83]Konishi Y.,Asai S.,Tokushige M., et al.Kinetics of the Bioleaching of Chalcopyrite Concentrate by Acidophilic Thermophile Acidianus brierleyi[J].Biotechnology Progress,1999,15(3):681-688.
    [84]Lindstrom E.B.,Wold S.,Kettanch-Wold,N., et al.Optimization of pyrite biol eaching using sulfolobus acidocaldarius[J].Appl.Microbio. Biotech.,1993,(3 8):702-707.
    [85]Konishi Y.,Yoshida S.,Asai S.Effect of Yeast Eeast Supple-mentation in Leach Solution on Bioleaching Rate of pyrite by Acidophilic sphaleri thermophileAcidianusbrierleyi[J].Biotechnology&Bioengineering,1998,58(6):6 63-667.
    [86]Konishi Y.,Nishimura H.,Asai S.Bioleaching of sphalerite by the acidophilic thermophile Acidianus brieleyi[J].Hydrometallurgy,1998,(47):339-352.
    [87]Konishi Y. and Asai S.Bioleaching of sulfide minerals by acidophilic thermophile Acidianus brierleyi[J]. Proceedings of the XXIMPC-Aachen, 1997:485-502.
    [88]Escobar B.,HuenupiE.,Godoy 1. et al.Arsenic precipitation in the bioleaching of enargite by sulfolobus BC at 70℃[J].Biotechnology Letters,2000, (22):205-209.
    [89]Brierley JA,Brierley CL. Present and future commercial applications of biohydrometallurgy[J]Hydrometallurgy,2001,59:233-239.
    [90]Sampson Mi,Van der Merwe JW,Harvey TJ, et al.Testing the ablily of a low grade sphalerite concentrate to achieve autothermality during biooxidation heap leaching [J].Miner Eng,2005,18:427-437.
    [91]Peterson J,Dixon D G. Thermophilic heap leaching of a chalcopyrite concentrate [J].2002,15:777-785.
    [92]Johnson D B.Importance of microbial ecology in the development of new mineral technologies[J].Hydrometallurgy,2001,59:147-157.
    [93]Franzmann P D,Haddad CM,Hawkes RB, et al. Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Baceria and Archaea: application of the Ratkowsky equation[j]. Min Eng,2005,18:1304-1314.
    [94]Brierley C L. Bacterial Succession in bioheap leaching[J]. Hydrometall, 2001,59:249-255.
    [95]Brierley J A,Hill D.Biooxidation process for recovery of gold from heaps of low-grade sulfidic and carbonaceous sulfidic ore materials US Patentl 993,5:246-486.
    [96]Tempel K. Commercial biooxidation challenges at Newmont's Nevada operations. In:SME annual meeting,preprint 03-067,Littleton:Society of Mining,Metallurgy and Exploration,2003.
    [97]Shutey-Mc-Cann M L,Sawyer FP,Logan T, et al.In:Global Exploitation of Heap Leachable Gold Deposits edited by Hausen DM.The Minerals,Metals and Materials Society,1997:65-75.
    [98]Readett D,Sylwestrzak L,Franzmann PD, et al.The life cycle of a chalcocite heap bioleach system.In:Young CA,Alfantazi AM,Anderson CG,Dreisinger DBjHarris BJames A(Eds) Hydrometallurgy 2003-5th international conference in honour of Professor Ian Ritchie,vol 1. Leaching and solution purification. Warrendale:The Minerals,Metals and Materials Society,2003:365-374.
    [99]Keeling SE,Palmer ML,Caracatsanis FC, et al. Leaching of chalcopyrite and sphalerite using baceria enriched from a spent chalcocite heap[J].Miner Eng,2005,18:1289-1296.
    [100]Hawkes RB,Franzmann, P.D.,0 'hara G,et al.Ferroplasma cupricumulans sp.nov., a novel moderately thermophilic,acidophilic archaeon isolated from an indsutrial-scale chalcocite bioleach heap[J]. Extremophiles,2006,10(6): 525-530
    [101]Norris PR,Burton NP,Foulis NAM.Acidophiles in bioreactor mineral processing[J].Extremophiles,2000,4:71-76.
    [102]Norris PR and Owen JP. Mineral sulfide oxidation by enrichment cultures of novel thermoacidophilic bacteria[J].FEMS Microbiol Rev,1993,11:51-56.
    [103]Stott MB,Sutton DC,Watling HR, et al. Comparitive leaching of chalcopyrite by selected acidiphilic bacteria and archaea[J].Geomicrobiol J,2003,20:215-230.
    [104]Casiot C,Morin QJuillot F, et al.Bacterial immobilezation and oxidation of arsenic in acid mine drainage (Carnoules creek,France)[J].Water Res,2003,37:2929-2936.
    [105]Battya JD and Rorke GV.In:Proceedings of the 16th international Biohydrometallurgy symposium edited by HarrisonSTL,Rawlings DE and Peterson J.2005:149-153.
    [106]Du Plessis CA,Batty JD and Dew D.In:Biomining edited by Rawlings DE and ohnson DB./Springer,2007:53-57.
    [107]Readett D,Sylwestrzak L,Franzmann PD, et al.The life cycle of a chalcocite heap bioleach system.In:Young CA,Alfantazi AM,Anderson CG,Dreisinger DB,Harris B,James A(Eds) Hydrometallurgy 2003-5th international conference in honour of Professor Ian Ritchie,vol 1. Leaching and solution purification. Warrendale:The Minerals,Metals and Materials Society,2003:365-374.
    [108]Keeling SE,Pahner M-L,Caracatsanis FC, et al. Leaching of chalcopyrite and sphalerite using baceria enriched from a spent chalcocite heap[J].Miner Eng,2005,18:1289-1296.
    [109]邓敬石.高温嗜热菌浸出硫化矿的研究现状与展望[J]云南冶金,2005,34(1):21-24.
    [110]魏宗武,陈建华,艾光华等.生物浸出------萃取法分离彩钼铅矿的研究.有色矿冶2007(1):22-24.
    [111]吉兆宁,余斌,刘坚等.金堆城低品位钼矿石可浸性研究[J].有色金属,2002(5):15-19.
    [112]Mishra D,Kim D.J,Ralph D.E. Bioleaching of vanadium rich spent refinery catalysts using sulfur oxidizing lithotrophs. Hydrometallurgy 2007 (88): 202-209.
    [113]Nasernejad B, Kaghazchi T.Bioleaching of molybdenum from, low-grade copper ore Process [J]. Biochemistry 1999 (35):437-440.
    [114]Askare Zamani M.A,Hrroyoshi N, Tsunekawa M.Bioleaching of Sarcheshmeh molybdenite concentrate for extraction of rhenium [J].Hydrometallurgy 2005 (80):23-31.
    [115]杨显万,沈庆峰,郭玉霞.微生物湿法冶金[M].北京:冶金工业出版社,2003:240-241.
    [116]童雄.微生物浸矿的理论与实践[M].北京:冶金工业出版社,1997,144-145.
    [117]Donati E,Kurutchet G,Porro S,et al. Bioleaching of metallic sulfides with T.ferrooxidans in the absence of of iron(Ⅱ)[J].World J.Microbiol Biotechnol.,1992,98:305-308.
    [118]Hammaini A, Ballester A,Gonzalez F, et al.Activated slukge as diosorbent of heavy metals.In:R. A.Ballester eds. Biohydrometallurgy and the Environment Toward the Mining of the 21st Century,Part B. Amsterdam. Lausanne.New york. Oxford. Shannon.Singapore. Tokyo: Elsevier,1999:185-192.
    [119]Brierley C.L.J of Less Common Met,,1974:36:273.
    [120]李浩然,冯雅丽.微生物冶金新进展[J].冶金信息,1999,导刊(3):29-33.
    [121]李学亚,叶茜.微生物冶金技术及其运用[J].矿业工程,2006,4(2):49-51.
    [122]方兆珩.生物氧化浸矿反应器的研究进展[J]黄金科学技术,2002(6):1-7.
    [123]郭春雷,彭谦.高温菌研究进展[J].生物学杂志,2003,20(4):1-3.
    [124]高从增.膜技术手册[M].化学工业出版社,2001:405-445.
    [125]张启修,张传福.液体膜分离技术在冶金工业中的应用,全国首届膜分离技术在冶金中应用研讨会论文集[M].1999:5-22.
    [126]寥梦霞.低品位难处理原生金矿的生物预氧化-无氰法提金绿色工艺研究成都理工大学硕士学位论文,1999.
    [127]Zamani M A A, Hrroyoshi N, Tsunekawa M. Bioleaching of sarcheshmeh molybdenite concentrate for extraction of rhenium. Hydrometallurgy,2005 (80):23-26.
    [128]柳建设,邱冠周,王淀佐.硫化矿细菌浸出机理探讨.湿法冶金,1997,16(3):1-3.
    [129]李宏煦,王淀佐,陈景河.细菌浸矿的间接作用分析[J]有色金属,2003,55(4):98-100.
    [130]Tributsh H,Bennett J C. Semiconductor-electrochemical aspect of bacterial leaching II Survey of rate-controlling sulfides properties.J.Chem. Tech.Biotechnol,1981,31:627-635.
    [131]Huang J.H,Kargl.-Simard C,Oliazadehl M, et al. pH-controlled precipitation of cobalt and molybdenum from industrial waste Effluents of a obolt lectrodeposition process [J].Hydrometallurgy,2004(75):77-90.
    [132]Fowler T A, Holmes P R, Crundwell F K.On the kinetics and mechanism of the dissolution of pyrite in the presence of Thiobacillus ferrooxidans[J]. Hydrometallurgy,2001(59):257-259.
    [133]Silverman M.P,Lundgren D.G. Studies on the chemoautotrophic iron bacterium T.ferrooxidans I. An improved medium and harvesting procedure for securing high cell yield.[J]. Bacterial,1959(77):642-647,
    [134]周吉奎.氧化亚铁硫杆菌的选育及其与矿物作用研究.[D].长沙:中南大学,2004.
    [135]Hansford G S,Vargas T.Chemical and electrochemical basis of bioleaching processes.Hydrometallurgy,2001,59:135-145.
    [136]李宏煦.硫化铜矿的生物冶金[M].北京:冶金工业出版社.2007:124-125.
    [137]Hansford G S,Vargas T.Chemical and electrochemical basis of bioleaching processes.Hydrometallurgy,2001,59:135-145.
    [138]Ojumu TV,Petersen J.A review of rate equations proposed for microbial ferrous-iron oxidation with a view to application to heap bioleaching.Hydrometallurgy,2006,83(1):21-28.
    [139]Meruane G,Salhe C,Wietz,et al.Novel electrochemical enzymatic model which guantifies the effect of the solution Eh on the kinetics of ferrous iron oxidation with Acidithiobacillus ferrooxidans. Biotechnol Bioeng.2002,80:282-288.
    [140]Adibah Y D,Barrie J.Bioleaching of pyrite at low pH and low redox potentials by novel mesophilic Gram-possitive bacteria.Hydrometallurgy,2002,63:181-188.
    [141]陈家镛主编.湿法冶金手册[M].北京:冶金工业出版社,2008:275-288.
    [142]李宏煦.硫化铜矿的生物冶金[M].北京:冶金工业出版社,2007:28-29.
    [143]Lexian Xia, Xinxing Liu,Jia Zeng, et al..Mechanism of enhanced bioleaching efficiency of Acidithiobacillus ferrooxidans after adaptation with chalcopyrite. Hydmmetallugy,2008(92):95-101.
    [144]Schaeffer W.I.,Holbert,P.E.and Umbreit W.W.Attachment of Thiobacillus ferrooxidans to sulfur crystals. Journal Bacteriology.1963,85:137-140.
    [145]Poliani C.,Curutchet G,Donati E.A need for contact with particle surface in the bacterial oxidation of covellite in the absence of a chemical lixiviant.Biotechnology Letters.1990,12:515-518.
    [146]Murthy K.S.N, NatarajanK.A. The role of surface attachment of Thiobacillus ferrooxidans on the biooxidation of pyrite.1992(2):20-24.
    [147]Ohuura,N., Tsugita,K.et al. Sulfur-binding protein of flagella of Thiobacillus ferrooxidans. Joural of bacteiology.19961,78(19):776-800.
    [148]Askare Zamani M.A.,Hrroyoshi N,Tsunekawa M. Bioleaching of Sarcheshmeh molybdenite concentrate for extraction of rhenium Hydrometallurgy,2005(80):23-31.
    [149]Nasernejad B,Kaghazchi T.Bioleaching of molybdenum from low-grade copper ore Process Biochemistry 1999,35:437-440.
    [150]Park H, Reddy B.R, Mohapatra D,et al. Hydrometallurgical processing and recovery of molybdenum troxide from spent catalyst,Int. J.Miner.Proc.2006 (80):261-265.
    [151]陈佳荣.水化学[M]北京:中国农业出版社.1996:51-55.
    [152]李宏煦.硫化铜矿的生物冶金[M].北京:冶金工业出版社,2007:28-29.
    [153]李青刚.从镍钼矿中制取铝酸铵的研究.中南大学博士论文,2010.
    [154]朱元保,沈子琛,张传福等.电化学数据手册[M].北京:中国教育出版社, 1984:123-128.
    [155]Herbert E.Handbook of thermochmical data for compounds and aqueous species,Wiley,1978.
    [156]Warner T.E.,Rice N.M. and Taylor N.Thermodynamic stability of pentlandite and violarite and new EH-pH diagrams for the iron-nickel sulphur aqueous system.Hydrometallurgy,1996,41:107-118.
    [157]杨显万.高温水溶液热力学数据计算手册[M].冶金工业出版社,1983.
    [158]Hansford GS.,Vargas T.Chemical and electrochemical basis of bioleaching process.In:R.Amils,A.Ballester eds.Biohydrometallurgy and the Environment Toward the Mining of the 21st Century,Part A.Amsterdam.Lausanne New York.Oxford,Shannon.Singapore.Tokyo:Elsevi-er,1999:13-25.
    [159]Boon M,Heijnen J.J..Chemical oxidation kentics of pyrite in bioleaching process.Hydrometallurgy,1988,48:27-41.
    [160]马荣骏.湿法冶金原理[M].北京:冶金工业出版社,2007:796-797.
    [161]蒋汉赢.湿法冶金过程物理学[M].冶金工业出版社,1982.
    [162]闵小波.含砷难处理金矿细菌浸出基础理论及工艺研究.中南大学博士学位论文,2000.
    [163]浸矿技术编委会.浸矿技术[M].原子能出版社,1994.
    [164]李希明,柯家骏.硫化钼矿浸取过程热力学分析[J].化工冶金,1982(4):89-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700