用户名: 密码: 验证码:
含镉堆肥施用对红壤微生物量、酶活性及微生物多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
堆肥是我国农业生产的重要肥源,施用堆肥对于提供作物养分,维持土壤肥力发挥了重要作用。长期以来堆肥一直被认为是一种安全肥料,在无公害食品、绿色食品、有机食品等安全农产品生产中,均强调堆肥的施用。然而,堆肥的重要作用是以其本身无污染为前提。近年来,随着社会经济的发展和环境压力的日益增加,城市生活垃圾、畜禽粪便等堆肥原料的重金属污染问题已经非常普遍,堆肥重金属污染问题日益突出。而重金属镉在土壤中又具有较强的生物活性,容易被植物根系吸收而进入人类食物链,危害人体健康。迄今,关于含重金属的堆肥对土壤环境的污染研究较少。因此,研究重金属污染堆肥施用后对土壤微生物量、酶活性及微生物多样性的影响具有重要的意义。
     本文选取了我国南方广泛分布的旱地红壤为供试材料,通过室内培养实验,采用连续提取法、PCR-DGGE技术等,探讨含Cd堆肥施用后,对红壤中微生物量(C、P)、酶活性(脲酶、过氧化氢酶、脱氢酶和酸性磷酸酶活性)、微生物多样性的影响,以及Cd在红壤中的赋存形态(可交换态、碳酸盐结合态、有机结合态、Fe-Mn氧化态、残渣态)的迁移转化及生物有效性。在理论上,进一步完善并丰富堆肥中重金属的基础研究;在实践上,为生产中堆肥的合理安全使用提供科学参考。
     使用化学分析方法分析施用含Cd堆肥(浓度分别为7.8 mg/kg、8.8 mg/kg、12.8 mg/kg、17.8 mg/kg、27.8 mg/kg、67.8 mg/kg、107.8 mg/kg)对红壤微生物量、及酶活性的影响。研究结果表明:施用含Cd堆肥使红壤微生物量C、微生物量P、以及脱氢酶、过氧化氢酶、酸性磷酸酶的活性随着培养时间的延长而不断降低。相同培养时间,与对照相比,含Cd堆肥对微生物生物量P、酸性磷酸酶活性有抑制作用。然而,Cd浓度小于27.8 mg/kg堆肥,对微生物生物量C有激活作用,其激活率为0.26~98.46%;Cd浓度小于12.8 mg/kg堆肥,对过氧化氢酶活性有激活作用,其激活率为0.17~4.49%;含Cd浓度为8.8 mg/kg堆肥使红壤脱氢酶活性增加1.6~16.1%;脲酶活性在Cd浓度小于17.8 mg/kg堆肥时,其活性随着Cd浓度的增加而增加;然而,第20天时,Cd浓度大于27.8 mg/kg的堆肥对脲酶活性有抑制作用,其抑制率为0.81~2.65%。
     应用连续提取法和PCR-DGGE技术,探讨了含Cd堆肥(浓度分别为7.8mg/kg、12.8 mg/kg、107.8 mg/kg)施用后,Cd在红壤中各赋存形态的迁移转化以及对微生物多样性的影响。研究发现:相同培养时间内,12.8 mg/kg Cd和107.8mg/kg Cd堆肥处理中可交换态Cd、碳酸盐结合态Cd、铁锰氧化态Cd含量均大于对照处理,其含量分别增加0.88~10.12 mg/kg、0.19~2.58 mg/kg、0.47~1.9 mg/kg;而有机结合态Cd随着堆肥中Cd浓度的增加而逐渐减少,其降低了0.05~0.34mg/kg;残渣态Cd变化不明显。DGGE指纹图谱表明:含Cd堆肥对红壤微生物有一定程度的影响。相同培养时间时,含Cd堆肥对微生物多样性影响小。随着培养时间的延长,微生物多样性发生变化,培养前14天,DGGE指纹图谱中的条带如e、g、l、n亮度增强,且在培养第7天,出现新增条带(h、r、A、B、C、D);培养28天后,A、B、C等条带逐渐消失,说明含Cd堆肥对微生物种群有毒害作用。各泳道条带进行相似性(Cs)分析发现,培养前期不同处理中微生物DNA基因相似性逐渐增加,最大值为94%;而培养后期不同处理之间红壤微生物DNA基因型相似性不断减低,减低到76.4%.Shannon指数和Cd赋存各形态之间的相关系数表明,对照处理对微生物多样性的影响不明显;12.8 mg/kg Cd堆肥处理中,碳酸盐结合态Cd对微生物有激活作用;107.8 mg/kg Cd堆肥处理中,可交换态、碳酸盐结合态对微生物有抑制作用。
     综上所述,含Cd堆肥对微生物生物量P、酸性磷酸酶活性有抑制作用;小于27.8 mg/kg Cd堆肥对微生物生物量C有激活作用;小于12.8 mg/kg Cd堆肥对过氧化氢酶活性有激活作用;8.8 mg/kg Cd堆肥对脱氢酶活性有激活作用;脲酶活性在Cd浓度小于17.8 mg/kg堆肥时,其活性随着Cd浓度的增加而增加。Cd在红壤中各赋存形态发生了迁移转化,DGGE指纹图谱说明碳酸盐结合态Cd对微生物有激活作用在12.8 mg/kg Cd堆肥处理中;可交换态Cd、碳酸盐结合态Cd在107.8mg/kg Cd堆肥处理中对微生物有抑制作用。
Cadmium is a kind of dispensable chemical element for plant growth. It has a strong toxicity to livings. So people pay more attention to environment pollution caused by cadmium. Compost is an important fertilizer in agricultural production. The use of compost plays an important role in the aspects of offering plant nutrients and keeping soil fertilizer efficiency. Compost is regarded as a very safe fertilizer for a long time in the production of safe agricultural products as no environmental pollution food, green food and organic food. However, no pollution of compost itself is the premise of the great effect of compost. With the development of social economy and the increasing of environment pressure in recent years, the pollution of compost itself is becoming outstanding. The appearance of environmental pollution caused by unsuitable use of compost is frequent. However, because cadmium has a strong bioavailability in the soil, it is easy for plant to absorb by roots and then get into human food chain which is bad for human beings healthy. Up to now, there was few studies about heavy mental contaminated compost on red soil environmental pollution. Therefore, researches on heavy mental contaminated compost influencing on red soil properties and microbial community diversity had significant importance.
     In this paper, dryland red soil which was wide distributed in South China was selected in this study. Chemical analysis, sequential extraction method and PCR-DGGE were used with indoor culture condition. The effects of Cd-contaminated compost on red soil microbial biomass C、P, urease, catalase, dehydrogenase and acid phosphatase activity and the transformation of different fractions of Cd, microbial community diversity were studied in red soil. The research could provide futher information on effects of heavy metals contaminated compost on soil, and could provide a scientific reference for the production of reasonable safety compost.
     Chemical analysis methods was used to assess changes of microbial biomass and enzyme activities between compost and cadmium-polluted compost (8.8 mg/kg、12.8 mg/kg、17.8mg/kg、27.8 mg/kg、67.8 mg/kg、107.8 mg/kg Cd) applied to red soil. Results showed that soil microbial biomass C and P, activities of catalase, dehydrogenase and acid phosphatase decreased in all treatments during the incubation time. Compared with all treatments at the same time, Cd-polluted compost had an inhibitory effect on microbial biomass P and acid phosphatase activity than control. Microbial biomass C was activated by 0.26~98.46% in<27.8 mg/kg Cd treatment than that of control. Catalase activity was stimulated by 0.17~4.49% in treatments with< 12.8 mg/kg Cd. When treated with 8.8 mg/kg Cd, dehydrogenase activity increased by 1.6~16.1% than that of control. Urease activity increased by 0.56~65.90% with an increase of Cd in compost with<17.8 mg/kg Cd, but in treatments with> 27.8 mg/kg Cd, the urease activity was inhibited by 0.81~2.65% at the 20th day.
     Sequential extraction procedure and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis were used to study dynamic speciation of cadmium and changes in microbial community diversity, respectively, in red soil stressed by different concentration of cadmium-polluted compost (7.8 mg/kg、12.8 mg/kg、107.8 mg/kgCd). The resulted showed that exchangeable, carbonate, and Fe-Mn oxides fractions of Cd were higher in 12.8 mg/kg Cd and 107.8 mg/kg Cd treated (polluted) compost treatments than that in the controls. The percentage of exchangeable fraction, carbonate fraction, Fe-Mn oxides fraction were higher in Cd-contaminated compost treatments than that in the controls, they were18.49%~56.95%、18.02%~35.35%、15.04%~25.07%,respectively. The organic fraction of Cd decreased with increased Cd in compost applied to red soil. Residual formation did not change obviously in any treatment. DGGE profiles indicated that bacteria communities were affected by Cd-polluted compost to some extent. New bands (h, r, A, B, C, and D) emerged at early incubation stage, and some bands (A, B, and C) disappeared at late incubation stage. Similarity coefficient (Cs) of DGGE profiles showed that genetic similarity increased before 14 days (highest of 93.8%), and decreased after 28 days (lowest of 74.6%). High Shannon's diversity index (H) revealed activation effect of Cd to bacteria communities, which mainly attributed to the increase of carbonate fraction in 12.8 mg/kg treatment. Low H implied an inhibition of bacteria communities in 107.8 mg/kg Cd compost, which possibly due to the increase of exchangeable and carbonate fractions.
     In summary, soil microbial biomass C、P, urease, catalase, dehydrogenase, acid phosphtatase activity had a certain change with the incubation time after application of high Cd concentration compost to red soil. Lower than 27.8 mg/kg Cd-contaminated compost have an activation impacts on soil microbial biomass C, urease, catalase, and dehydrogenase activity. Genetic similarity increased in the early incubation stage, and decreased in the late incubation period. Bacteria communities were activated by carbonate fraction in 12.8 mg/kg Cd compost, and inhibited by exchangeable and carbonate fractions in 107.8 mg/kg Cd-contaminated compost.
引文
[l]李国学.有机固体废弃物堆肥与利用研究进展.土壤与植物营养研究新动态(第三卷).北京:中国农业出版社,1995,319-343
    [2]吴龙华.有机物料对Cu污染土壤的修复:水溶性有机物及EDTA对红壤中Cu释放的影响.土壤,2000,32(2):62-66.
    [3]金冬霞.规模化畜禽养殖场污染防治综合对策.环境保护,2002(12):17-19
    [4]张夫道.正确认识现代农业中的有机肥料问题.农资科技,2003(5):8-10
    [5]姚丽贤,周修冲.有机肥对环境的影响及预防研究.中国生态农业学报,2005,13(2):113-115
    [6]Bolan N S, Adriano D C, et al. Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. Journal of Environmental Quality,2003,32 (1):120-128
    [7]华路,白铃玉.有机肥-镉-锌交互作用对土壤镉锌形态和小麦生长的影响.中国环境科学,2002,22(4):346~350
    [8]Almas A R, Singh B R, Plant untake of cadmium-109 and zinc-65 at different temperature and organic matter levels. Journal of Environmental Quality.2001, 30 (3):869-877
    [9]刘敏超,李花粉,温小乐.畜禽废弃物的污染治理.畜牧与兽医,2002,34(9):16-17
    [10]华路,陈世宝,白玲玉,等.有机肥对锅锌污染土壤的改良效应.农业环境保护,1998,17(2):55-59,62
    [11]曹志洪.施肥与土壤健康质量.土壤,2003,35(6):450-455
    [12]郭春良.农业发展与环境保护.厦门科技,1997(1):31-32
    [13]樊奕,沈阿林.有机肥资源利用对环境的影响及对策.河南农业科学,2005,(6):54-59
    [14]孙波.基于空间变异分析的土壤重金属复合污染研究.农业环境科学学报,2003,22(2):248-251
    [15]王凯荣.我国农业重金属污染现状及其治理利用对策.农业环境保护,1997,16(6):174-178
    [16]周根娣,汪雅谷,卢善玲.上海市农畜产品有害物质残留调查.上海农学报,1994,10
    [17]刘更另.中国有机肥料.北京:中国农业出版社,1991
    [18]邵孝侯,邢光熹,侯文华.连续提取法区分土壤重金属元素形态的研究与应 用.土壤学进展,1994,22(3):40-46
    [19]夏家淇.土壤环境质量标准详解.北京:中国环境科学出版社,1996
    [20]李波,林玉锁,张孝飞,等.沪宁高速公路两侧土壤和小麦重金属污染状况.农村生态环境,2005,21(3):50-53
    [21]Garcia-Gil J C, Plaza C, Soler-Rovira P, et al. Long-term effect of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biology and Biochemistry,2000,32:1907-1913
    [22]Mcgrath S P, Chaudhri A M, Giller K. Long-term effects of metals in sewage on soils, microorganisms and plants. Journal of Industrial Microbiology,1995,14: 94-101
    [23]Kandeler E, Lugtenegger G. Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soil,1997,23:299-306
    [24]Broockes P C, McGrath S P. Effects of metal toxicity on the size of the soil microbial biomass. Journal of Soil Science,1984,35:341-346
    [25]曾锋,康跃惠,傅家漠,盛国英,杨惠芳,张展霞.邻苯二甲酸二(2-乙基己基)酯酶促降解性的研究.环境科学学报.2001,21(1):13-17
    [26]Yeates G W. Impact of pasture contamination by copper, chromium, arsenic timber on soil biological activity. Biol. Feril. Soil,1994,18:200-208
    [27]Pant H K, Warman P R. Enzymatic hydrolysis of soil organic phosphorus by immobilized phosphatases. Biol. Fert. Soils,2000,30:306-311
    [28]Maliszewska-Kordybach B, Smreczak B. Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environ. Int.,2003,28:9-728
    [29]Artursson V, Finlay R D, Jansson J K. Interactions between arbuseular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology,2006,8 (1):1-10
    [30]Kirk J L, Beaudette L A, et al. Methods of studying soil microbial diversity. Journal of Microbiological Methods,2004,58:169-188
    [31]Baath E. Effects of heavy metal in soil on microbial processes and populations (a review). Water, Air, Soil Pollute.1989,47:335-379
    [32]Perez-de-Mora A, Burgos P, Madejon E, Cabrera F, Jaeckel P. Schloter M. Microbial community structure and function in a soil contaminated by heavy metals:effects of plant growth and different amendments. Soil Biol. Biochem. 2006,38:327-341
    [33]Dar G H. Effects of cadmium and sewage-sludge on soil microbial biomass and enzyme activities. Bioresour. Tech.,1996,56:141-145
    [34]Schuller E. Enzyme activities and microbial biomass in old landfill soils with long term metal pollution. Verhandlungen Gesellschaft fur Okologie,1989,18: 339-348
    [35]Kanderler E, Luftenegger G, Schwarz S. Soil microbial processes and Testacea (Protozoa) as indicators of heavy metal pollution. Zeitshrift fur Pflanzenermahrun and Bodenkunde.1992,155:319-322
    [36]Liao M, Chen C L, Huang C Y. Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area. Chinese Journal of Environmental Sciences,2005,17 (5):832-837
    [37]Patra D D, Subrahmanyam K, Singh D V. Effect of Pb, Cd and Hg on N-mineralization and microbial biomass in soil. Proc. Bio. Sci.,1991,57: 159-163
    [38]龙健,黄昌勇,滕应,等.矿区废弃地土壤微生物及其生化活性.生态学报,2003,23(3):496-503
    [39]万忠梅,吴景贵.土壤酶活性影响因子研究进展.西北农林科技大学学报:自然科学版,2005,33(6):87-92
    [40]胡学玉,孙宏发,陈德林.大冶矿区土壤重金属积累对土壤酶活性的影响.生态环境,2007,16(5):1421-1423
    [41]Todorov T S, Dimkov R, Koteva Z H, et al. Effect of lead contamination on the biological properties of alluvial meadow soil. Pochovaznanie, Agrokhimiya, 1987,22 (5):33-40
    [42]杨春璐,孙铁珩,和文祥.、豆磺隆复合污染对土壤脲酶活性及动力学特征的影响.生态学杂志,2008,27(5):740-744
    [43]Kumar V, Singe M. Inhibition of soil urease activity and nitrification with some metallic cations. Australian Journal of Soil Research,1986,24 (4):527-532
    [44]Lebaedeval L A, Levedeva S N, Edemskaya N L. The effect of heavy metals and lime on urease activity podzalic soil. Moscow University Soil Science Bulletin, 1995,50 (2):68-71
    [45]石汝杰,陆引罡,丁美丽.植物根际土壤中铅形态与土壤酶活性的关系.山地农业生物学报,2005,24(3):225-229
    [46]杨红飞,严密,王友保,等.安徽主要水稻土中重金属形态分布与土壤酶活性研究.土壤,2007,39(5):753-759
    [47]于寿娜,廖敏,黄昌勇.镉、复合污染对土的影响.应用生态学报,2008,19(8):1841-1847
    [48]沈国清,陆贻通,洪静波.重金属和多环芳烃复合污染对土壤酶活性的影响及定量表征.应用与环境生物学报,2005,11(4):479-482
    [49]Barbara M K. Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environment International, 2003,28:719-728
    [50]Knight B. Biomass carbon measurements and substrates utilization patterns of microbial population from soil amended with cadmium, copper or zinc. Applied and Environmental Biology,1997,63:39-43
    [51]Kell L J, Tate R L. Effect of heavy metal contamination and remediation on soil microbial communities. Journal of Environmental Quality,1998,27 (3):609-617
    [52]Moffett B F, Nicholson F A, Uwakwe N C, et al. Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiology Ecology,2003, 43:13-19
    [53]Roane T M, Pepper I L. Microbial responses to enviromentally toxic. Microbial Ecol.,1999,38 (4):358-364
    [54]Suhadolic M, Schroll R. Effects of modified Pb, Zn, and Cd availability on the microbial communities and on the degradation of isoproturonin a heavy metal contaminated soil. Soil Biology and Biochemistry,2004,36:1943-1954
    [55]滕应,龙健.矿区侵蚀土壤的微生物活性及群落多样性研究.水土保持学报,2003,17(1):23-26
    [56]Eric S, Paula L. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiology Ecology,1997,23:249-261
    [57]杨元根.重金属铜的土壤微生物毒性研究.土壤通报,2002,33(2):55-60
    [58]Muller A K, Westergaard K, Christensen S, et al. The effect of long-term mercury pollution on the soil microbial community, FEMS Microbiology Ecology,2001, 36:11-19
    [59]滕应,龙健.重金属污染土壤的微生物生态效应及修复研究进展.土壤与环境,2002,11(1):85-89
    [60]席劲瑛,胡洪营,钱易.Biolog方法在环境微生物群落研究中的应用.微生物学报,2003,43(1):138-141
    [61]Jack K, Jan D V E. Application of polymerase chainreation denaturing gradient gel electrophoresis for comparision of direct and indirect extraction methods of soil DNA used for microbial community fingerprinting. Biol Fertil Soils,2000, 31:372-378
    [62]Mullis K B, Fallona F A. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Methods in Enzymol,1987,155:335-350
    [63]Pervaiza A A B, Sally A M, Team E, et al. Precise detection and tracing of Trichoderma hamatum 382 in compost-amended potting mixes by using molecular markers. Applied Environmental Microbiology,1999,65 (12): 5421-5426
    [64]Liu A, Hamel C, Hamilton R I, Ma B L, Smith D L. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza,2000,9,33:1-336
    [65]Sonia M T, John L, Daniel A H, et al. Effects of mulching and fertilization on soil nutrients microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16SrRNA genes. Applied Soil Ecology,2002,21:31-48
    [66]Orita M, Iwahana H, Kanazawa, et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci,1989,86 (4):2766-2770
    [67]Peters S, Koschinsky S, Schwieger F, et al. Succession of microbial communities during hot composting as detected by PCR-single strand conformation polymorphism-based genetic profiles of small-subunit rRNA genes. Applied Environmental Microbiology,2000,66:930-936
    [68]Amann R I, Krumholz L, Stahld A. Fluorescent oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol,1990,172:762-770
    [69]Crocetti G R, Hugenholtz P, Bond P L, et al. Identification of polyphosphate accumulating organisms and design of 16SrRNA directed probes for their detection and quantification. Applied and Environmental Microbiology,2000,3: 1175-1182
    [70]Muyzer G, Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16Sr RNA. Applied and Environmental Microbiology,1993,59:695-700
    [71]Ferris M J, Muyaer G, Ward D M. Denaturing gradient gel electrophoresis profiles of 16Sr RNA-defined population inhabiting a hot spring microbial mat community. Applied and Environmental Microbiology,1996,62:340-346
    [72]Duineveld B M, Rosado A, Elsas J D, et al. Analysis of the dynamics of bacterial communities in the rhizophere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utlization patterns. Applied and Environmental Microbiology,1998,64:4950-4957
    [73]Smit E, Leeflang P, Gommans S, et al. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Applied and Environmental Microbiology, 2001,67:2284-2291
    [74]Santegoeds C M, Nold S, Ward D M. Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacteria from a hot spring cyanobacterial mat. Applied and Environmental Microbiology, 1996,62:3922-3928
    [75]Feske A, Sigalevich P, Cohen Y, et al. Molecula ridentification of bacteria from A coculture by denaturing gradient gel electrophoresis of 16Sr DNA fragments as A tool for isolation in pure cultures. Applied and Environmental Microbiology, 1996,62:4210-4215
    [76]Kozdroj J, Elsas J D. Application of polymerase chain recreation-denaturing gradient gel electrophoresis for comparison of direct and indirect extraction methods of soil DNA used form microbial community fingerprinting. Biology and Fertility of Soils,2000,31:372-378
    [77]Gelsomino A, Keijzer-Wolters A C, Elasas J D, et al. Assessment of bacterial community structure in soil by polymerase chain recreation and denaturing gradient gel electrophoresis. Journal of Microbiological Methods,1999,38:1-15
    [78]Wawer C, Jetten M S, Muyzer G. Genetic diversity and expression of the [NiFe] Hydrogenase large-submit gene of Dessulfovibrio sp. in environmentals samples. Applied and Environmental Microbiology,997,63:4360-4369
    [79]Vallaeys T, Topp E, Muyzer G, et al. Evaluation of denaturing gradient gel Electrophoresis in the detection of 16Sr DNA sequence Variation in rhizobia and methanotrophs. FEMS Microbiological Ecology,1997,24:279-285
    [80]Bhattacharyya P, Chakrabarti K, Chakraborty A, et al. Municipal waste compost as an alternative to cattle manure for supplying potassium to lowland rice. Chemosphere,2007,66:1789-1793
    [81]黄鸿翔,李书田,李向林.我国有机肥的现状与发展前景分析.土壤肥料,2006(1):3-8
    [82]刘荣乐,李书田,王秀斌.我国商品有机肥料和有机废弃物中重金属的含量状况与分析.农业环境科学学报,2005,24(2):392-397
    [83]Liu Y S, Ma L L, Li Y Q, et al. Evolution of heavy metal.speciation during the aerobic composting process of sewage sludge. Chemosphere,2007,67: 1025-1032
    [84]Greger M, Malm T, Kautsky L. Heavy metal transfer from composted macroalgae to crops. European Journal of Agronomy,2007,26 (3):257-265
    [85]Kidd P S, Dominguez-Rodriguez M J, Diez J, et al. Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Chemosphere,2007,66:1458-1467
    [86]Fayiga A O, Ma L Q, Zhou Q. Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil. Environmental Pollution, 2007,147 (3):737-742
    [87]Gichner T, Patkova Z, Szakova J. Toxicity and DNA damage in tobacco and potato plants growing on soil polluted with heavy metals. Ecotoxicology and Environmental Safety,2006,65:420-426
    [88]马悦欣,Holmstm C, Webb J, Kjelleberg S.变性梯度凝胶电泳(DGGE)在微生物生态学中的应用.生态学报,2003,23(8):1561-1569
    [89]Kautz T, Wirth S, Ellmer F. Microbial activity in a sandy arable soil is governed by the fertilization regime. European Journal of Soil Biology,2004,40,87-94
    [90]Chen G Q, Chen Y, Zeng G M, Shen G L. Copper transfer from compost to red soil in simulated rainfall condition.2nd International Conference on Bioinformatics and Biomedical Engineering. Shanghai:iCBBE,2008:4222-4224
    [91]Khan S, Cao Q, Hesham A E L, Xia Y, He J Z. Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. Journal of Environmental Sciences,2007,19:834-840
    [92]Tejada M, Gonzalez J L, Garcia-martinez A M, Parrado J. Application of a green manure and green manure composted with beet vinasse on soil restoration: Effects on soil properties. Bioresource Technology,2008,99:4949-4957
    [93]Creccio C, Curci M, Pizzigallo M, Ricciuti P, Ruggiero P. Effects of municipal solid waste compost amendments on soil enzyme activities and bacterial genetic diversity. Soil Biology and Biochemistry,2004,36,1595-1605
    [94]闫秋良,刘福柱.通过营养调控缓解畜禽生产对环境的污染.家畜生态,2002,23(3):68~70
    [95]Li J, Zhao B Q Li X Y, Jiang R B, Sohwat B. Effects of long-term combined application of organic and mineral fertilizers on microbial biomass, soil enzyme activities and soil fertility. Agricultural Sciences in China,2008,7 (3):336-343
    [96]Yang ZX, Liu S Q, Zheng D W, Feng S D. Effects of cadmium, zinc and lead on soil enzyme activities. Journal of Environmental Sciences,2006,18 (6): 1135-1141
    [97]鲁如坤.土壤农业化学分析方法.北京:中国农工业科学出版社,2000
    [98]Vance D, Brokkes P C, Jenkinsond S. An extraction method for measuring microbial biomass. Soil Biology and Biochemistry,1987,19:703-707
    [99]Hedley M J, Stewart J W B. Method to measure microbial biomass phosphorus in soils. Soil Biology Biochemistry,1982,14:377-385
    [100]关松荫,等.土壤酶及其研究法.北京:农业出版社,1986
    [101]汪吉东,张永春,俞美香,沈明星,许仙菊.不同有机无机肥配合施用对土壤活性有机质含量及PH值的影响.江苏农业学报,2007,23:573-578
    [102]任天志,Grego S.持续农业中的土壤生物指标研究.中国农业科学,2000,33(1):68-75
    [103]王晶,解宏图,朱平,李晓云.土壤活性有机质(碳)的内涵和现代分析方法概生态学杂志,2003,22(6):109-112
    [104]Zeng L S, Liao M, Chen C L, HUANG C Y. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system. Ecotoxicology and Environmental Safety,2007,67:67-74
    [105]Vig K, Megharaj M, Sethunathan N, Naidu R. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil:a review. Advances in Environmental Research,2003,8:121-135
    [106]Fliebbach A, Martens R. Soil microbial biomass and activity in soil treated with heavy metal contaminated sewage sludge. Soil Biol.,1994,26:1201-1205
    [107]许炼烽.镉对砖红壤微生物的影响.农业环境保护,1993,12(4):145-149
    [108]McGrath S P. Effects of heavy metals form sewage sludge on soil microbes in agricultural ecosystems. S. M. Ross. Toxic Metals in Soil-Plant Systems, John Wiley Chichester,1994,242-274
    [109]吴金水,肖和艾,陈桂秋等.旱地土壤微生物磷测定方法研究.土壤学报,2003,40(1):77-78
    [110]陈国潮,何振立,黄昌勇.菜茶果园红壤微生物量磷与土壤磷以及磷植物有效性之间的关系研究.土壤学报,2001,38(1):76-80
    [111]Gyaneshwar P, Naresh K G, Parekh L J, et al. Role of soil microoganisms in improving P nutrition of plants. Plant Soil,2002,245:83-93
    [112]徐阳春,沈其荣,冉炜,长期免耕与施用有机肥对土壤微生物生物量碳、氮、 磷的影响.土壤学报,2002,39(1):89-95
    [113]赵小蓉,林启美.小麦根系与非根系际解磷细胞的分布.华北农学报,2001,16(1),111-115
    [114]周礼恺.土壤酶学.北京:科学出版社,1987
    [115]Kizilkaya R, Askin T, Bayrakli B, Saglam M. Microbiological characteristics of soils contaminated with heavy metals. European Journal of Soil Biology,2004, 40:95-102
    [116]Karaca A, Naseby D C, Lynch J M. Effect of cadmium contamination with sewage sludge and phosphate fertilizer amendments on soil enzyme activities, microbial structure and available cadmium. Biology and Fertility of Soils,2002, 35:428-434
    [117]戴伟,白红英.土壤过氧化氢酶活度及其动力学特征与土壤性质的关系.北京林业大学学报,1995,17(1),37-41
    [118]Belyaeva O N, Haynes R J, Birukoval O A. Barely yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper. Biology Fertilizer Soils,2005,41 (2):85-94
    [119]Gil-sotres F, Trasar-cepeda C, Leiros M C, Seoane S. Different approaches to evaluate soil quality using biochemical properties. Soil Biology and Biochemistry,2005,37:877-887
    [120]Moreno J L, Garcla C, Hernandez T. Toxic effect of cadmium and nickel on soil enzymes and the influence of adding sewage sludge. European Journal Soil Science,2003,54 (2):377-386
    [121]Dussault M, Becaert V, Francois M, Sauve S, Deschenes L. Effect of copper on soil functional stability measured by relative soil stability index (RSSI) based on two enzyme activities. Chemosphere,2008,72:755-762
    [122]徐冬梅,刘广深,许中坚,等.模拟酸雨对土壤酸性磷酸酶活性的影响及机理.中国环境科学,2003,23(2):176-179
    [123]Perez D V, Alcantra S, Ribeiro C C, Pereira R E, Fontes, G C, Wasserman M A, Venezuela T C, Meneguelli N A, Parradas C A A. Composted municipal waste effects on chemical properties of Brazilian soil. Bioresource Technology.2007, 98:525-533
    [124]Sandaa R A, Torsvik V, Enger O. Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biology and Biochemistry. 2001,33:287-297
    [125]Jordao C P, Nascentes C C, Cecon P R, Fontes R L, Pereira J L. Heavy metals availability in soil amended with composted urban solid wastes. Environment Monitoring and Assessment.2006,112:309-326
    [126]Kabala C, Singh B R. Fractionation and mobility of copper, lead and zinc in soil profiles in the vicinity of a copper smelter. Journal of Environment Quality.2001, 30:485-492
    [127]Guiqiu Chen, Yun Chen, Guangming Zeng et al. Copper transfer from compost to red soil in simulated rainfall condition. The 2nd International Conference on Bioinformatics and Biomedical Engineering Shanghai:iCBBE 2008,4222-4224
    [128]陈桂秋,陈云,曾光明,沈国励,王亮,张文娟.含铜堆肥施用后对红壤及地下水的污染机理研究.湖南大学学报(自然科学版),2009,36(8):69-75
    [129]Cornu S, Clozel B. Extractions sequentielles et speciation des elements traces metalliques dans les sols natures analyse critique. Etude et Gestion des Sols., 2000,7(3):179-189
    [130]Turpeinen R, Kairesalo T, Haggblom M-M. Microbial community structure and activity in arsenic-, chromium-and copper-contaminated soils. FEMS Microbiology Ecology,2004,47:39-50
    [131]Hu Q, Qi H Y, Zeng J H, Zhang H X. Bacterial diversity in soils around a lead and zinc mine. Journal of Environment Science,2007,19:74-79
    [132]Liao M, Xie X M. Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area [J]. Ecotoxicology and Environmental Safety,2007,66:217-223
    [133]Malik S, Beer M, Megharaj M, Naidu R. The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environment International,2008,34:265-276
    [134]Li X, Coles B J, Ramsey M H, Thornton I. Sequential extraction of soils for multielement analysis by ICP-AES [J]. Chemical Geology,1995,124:109-123
    [135]杨朝晖,肖勇,曾光明,等.用于分子生态学研究的堆肥DNA提取方法.环境科学,2006,27(8):1613-1618
    [136]Yang Z H, Xiao Y, Zeng G M, et al. Comparison of methods for total community DNA extraction and purification from compost. Applied Microbiology and Biotechnology,2007,74 (4):918-925
    [137]Madrid F, Lopez R, Cabrera F. Metal accumulation in soil after application of municipal solid waste compost under intensive farming conditions. Agriculture, Ecosystems and Environment,2007,199:249-256
    [138]Udom B E, Mbagwu J S C, Adesodun J K, Agbim N N. Distributions of zinc, copper, cadmium and lead in tropical ultisol after long-term disposal of sewage sludge [J]. Environment International,2004,30:467-470
    [139]Petruzzelli G, Ottaviani L, Veschetti E. Characterization of heavy metal mobile species in sewage sludge for agricultural utilization. Agrochimica,1994,38: 277-284
    [140]Konstantinov S R, Zhu W Y, Williams B A, Tamminga S, et al. Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiology Ecology,2003,43 (2):225-235
    [141]Renella G, Mench M, Gelsomino A, Landi L, Nannipieri P. Functional activity and microbial community structure in soils amended with bimetallic sludges. Soil Biology and Biochemistry,2005,37:1498-1506
    [142]Akmal M, Wang H Z, Wu J J, et al. Changes in enzymes activity, substrate utilization pattern and diversity of soil microbial communities under cadmium pollution. Journal of Environment Science,2005,17:802-807
    [143]Fritze H, Perkiomaki J, Saarela U, Katainen R, Tikka P, Yrjala K, Karp M, Haimi J, Romantschuk M. Effect of Cd containing wood ash on the microflora of coniferous forest humus. FEMS Microbiology Ecology,2000,32:43-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700