用户名: 密码: 验证码:
锌渣氧粉铟浸出的新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了铟、锌渣氧粉以及机械活化、加压氧化工艺在湿法冶金浸出应用上的情况,研究采用机械活化(边活化边反应)和加压氧化两种方法强化锌渣氧粉浸铟的工艺,得出不同工艺条件下锌渣氧粉在工业硫酸体系中浸铟的规律,以及浸铟的较优工艺条件。实验结论如下:
     (1)锌渣氧粉通过机械活化或者加压氧化工艺浸铟时,都可缩短浸出时间,强化浸出过程,为贫铟物料的铟浸出开辟了两条新的工艺路线。在搅拌磨活化正交试验中,各因素对铟浸出率的影响程度为:硫酸初始浓度>搅拌转速>反应时间>液固比。
     (2)综合各方面因素,用搅拌磨活化装置浸铟时,在实验范围内最佳工艺条件为:活化反应时间为150 min、液固比为8、酸初始浓度为5 mol/L、搅拌速度为575 r/min。此时,铟浸出率可由常规自热浸出时的68.1%提高到91.2%。
     (3)在双氧水加压氧化浸铟时,实验范围内最佳工艺条件为:液固比为8、反应时间为150 min、搅拌速度为575 r/min、反应温度为90℃、釜内压力为0.5 MPa(空气加压)、硫酸初始浓度为5 mol/L、双氧水(H_2O_2含量为30%)用量为0.5 mL/g矿。此时,铟浸出率可由常规恒温90℃(无氧化剂)浸出时的77.6%提高到90.2%。
     在高锰酸钾加压氧化浸铟时,实验范围内最佳工艺条件为:液固比为8,反应时间为150 min,搅拌速度为575 r/min,反应温度为90℃,釜内压力为0.5 MPa(空气加压),硫酸初始浓度为3 mol/L,高锰酸钾用量为25 g/kg矿。此时,铟浸出率可由常规恒温90℃(无氧化剂,硫酸初始浓度为5 mol/L)浸出时的77.6%提高到89.5%。
     (4)在酸初始浓度较低时,氧化剂的加入使氧化浸出效果优于机械活化的效果。高锰酸钾加压氧化浸出能在较低硫酸初始浓度下达到较高的铟浸出率,且在硫酸初始浓度较高时,高锰酸钾加压氧化浸出仍然具有较大的优势。
Based on the summary of the investigations on the leaching process of indium,zinc oxidation slag dust as well as the application of mechanical activation and pressure oxidation in non-ferrous metallurgy,the effects of different technologcial conditions and leaching process on leaching efficiency of indium in the reaction of zinc oxidation slag dust with sulfuric acid by mechanical activation or pressure oxidation was studied,we can get the optimum conditions of leaching indium.From the experiments,conclusions can be drawn as follow:
     (1)The technology of leaching indium in the reaction of zinc oxidation slag dust with sulfuric acid by mechanical activation or pressure oxidation with oxidant can improve the leaching efficiency of indium and decrease the leaching time.So two new path for enhancing leaching indium from zinc oxidation slag dust can be provided.
     In the orthorhombic experiment of mechanical activation in a stirring mill,the effect of each factor on leaching efficiency of indium is:the initial concentration of acid>stirring speed>reaction time>ratio of liquid-solid.
     (2)Associating with the equipment and the cost of energy,the optimum conditions of leaching indium by the mechanical activation in a stirring mill are:the reaction time is 150 min,the ratio of liquid-solid is 8,the initial concentration of sulfuric acid is 5 mol/L,the stirring speed is 575 r/min.In the optimum conditions the leaching efficiency of indium which was 68.0%in conventional leaching process was improved to 91.2%.
     (3)Associating with the equipment and the cost of energy,the optimum conditions of leaching indium by pressure oxidation with hydrogen peroxide in a high pressure reaction kettle are:the reaction time is 150 min,the ratio of liquid-solid is 8,the initial concentration of sulfuric acid is 5 mol/L,the stirring speed is 575 r/min,reacting temperature is 90℃,air pressure is 0.5 MPa,the dosage of 30%hydrogen peroxide is 0.5 mL/g.In the optimum conditions the leaching efficiency of indium which was 77.6%in conventional leaching process(90℃)without oxidant was improved to 90.2%.
     The optimum conditions of leaching indium by pressure oxidation with potassium permanganate in a high pressure reaction kettle are:the reaction time is 150 min,the ratio of liquid-solid is 8,the initial concentration of sulfuric acid is 3 mol/L,the stirring speed is 575 r/min,reacting temperature is 90℃,air pressure is 0.5 MPa,the dosage of potassium permanganate is 25 g/kg.In the conditions the leaching efficiency of indium which was 77.6%in conventional leaching process(90℃,the initial concentration of sulfuric acid is 5 mol/L)without oxidant was improved to 89.5%.
     (4)In the condition of dilute initial concentration of acid,the leaching efficiency of indium is better in pressure oxidation process than mechanical activation process because of the application of hydrogen peroxide in the leaching process.In the condition of dilute initial concentration of acid,we can get the best leaching efficiency of indium by pressure oxidation with potassium permanganate.And when the initial concentration of acid is dense,the leaching efficiency of indium by pressure oxidation with potassium permanganate is the best in all of the processes.
引文
[1]王殿华.贵过黄金的铟[J].百科知识,2007,(19):20-21
    [2]罗跃中,李忠英.铟废渣中铟的回收[J].广州化工,2007,35(3):47-49
    [3]李晓峰,Watanabe Y.毛景文.铟矿床研究现状及其展望[J].矿床地质,2007,26(4):475-480
    [4]Alfantazi A M,Moskalyk R R.Processing of indium:a review[J].Minerals Engineering,2003,16(8):687-694
    [5]赵武壮.我国铟产业的发展值得关注[J].世界有色金属,2007,(7):6-7
    [6]何焕全,黄小珂,伍祥武.铟产业发展及对策[J].中国有色金属,2007,(10):44-45
    [7]冯同春,杨斌,刘大春,等.铟的生产技术进展及产业现状[J].冶金丛刊,2007,(2):42-46
    [8]李建敏,刘晓红,王贺云,等.铟的市场.应用及其提取技术[J].江西冶金,2006,26(1):41-43
    [9]杨林.2006年金属铟价格将创新高[J].中国金属通报,2006,(11):11
    [10]冯君从.铟价有理由涨的更高[J].中国金属通报,2006,(4):18
    [11]杨德利.原子吸收光谱法测定矿渣.烟灰中的微量铟[J].湖南有色金属,2005,21(2):44-46
    [12]王艳红.锌精矿中铟的极谱测定探讨[J].有色矿冶,2006,22(2):57-58
    [13]袁玉霞.单扫示波极谱法直接测定CNI合金中的铟[J].有色金属,2003,55(3):140-142
    [14]林文军,刘全军.含铟锌渣浸出和萃取铟的研究[J].昆明理工大学学报(理工版),2006,31(2):23-25
    [15]黄柱成,蔡江松,杨永斌,等.浸锌渣中有价元素的综合利用[J].矿产综合利用,2002,(3):46-49
    [16]姜涛,张亚平,黄柱成,等.从浸锌渣中综合回收有价元素的研究及实践[J].矿产综合利用,2002,(6):32-36
    [17]黄柱成,杨永斌,蔡江松,等.浸锌渣综合利用新工艺及镓的富集行为[J].中南工业大学学报,2002,33(2):133-136
    [18]俞小花,谢刚.有色冶金过程中铟的回收[J].有色金属(冶炼部分),2006,(1):37-39
    [19]陶政修,唐耀文.湿法炼锌渣中回收锌铟的研究[J].湖南有色金属,2006,22(3):23-24,53
    [20]车拥霞,李建成.从低品位含铟物料中富集铟[J].有色金属(冶炼部分),2006,(6):40-41
    [21]王洪江,沈立俊,李波,等.锌渣烟化炉连续吹炼的试验研究[J].中国有色冶金,2005,(6):37-39
    [22]姚根寿.浅谈烟灰综合利用中铟的回收[J].有色冶炼,1994,(4):52-56
    [23]张诠,梁柳姬,麦从心.高锌烟灰中提取锌及富集铟工艺研究[J].广东化工,2004,(4):30-31
    [24]刘维平,邱定蕃,卢惠民.湿法冶金新技术进展[J].矿冶工程,2003,23(5):39-42
    [25]黎铉海,王淀佐,邱冠周,等.用机械活化方法强化难处理金矿浸金过程的研究[J].矿产综合利用,2001,(1):12-15
    [26]黄祖强,黎铉海,童张法.机械活化及其在湿法炼锌中的应用[J].广西大学学报(自然科学版),2002,27(4):288-292
    [27]黄祖强,黎铉海,潘柳萍.机械活化对锌焙砂浸出的影响[J].矿产综合利用,2002,(3):25-28
    [28]Behmanesh N,Manesh S H,Ataiea A.Role of mechanical activation of precursors in solid state processing of nano-structured mullite phase[J].Journal of Alloys and Compounds,2008,450(1-2):421-425
    [29]Sasikumar C,Rao D S,Srikanth S,et al.Effect of mechanical activation on the kinetics of sulfuric acid leaching of beach sand ilmenite from Orissa,India[J].Hydrometallurgy,2004,75(1-4):189-204
    [30]Li C,Liang B,Guo L H,et al.Effect of mechanical activation on the dissolution of Panzhihua ilmenite[J].Minerals Engineering,2006,19(14):1430-1438
    [31]Achimovicova M,Balaz P.Influence of mechanical activation on selectivity of acid leaching of arsenopyrite[J].Hydrometallurgy,2005,77(1-2):3-7
    [32]温金保,陆雷.机械力化学作用活化钢渣的研究[J].硅酸盐通报,2006,25(4):89-92,136
    [33]陈世琯.机械活化及其在浸出过程中的应用[J].上海有色金属,1998,19(2):91-96
    [34]胡慧萍,陈启元,尹周澜.机械活化黄铁矿的热分解动力学[J].中国有色金属学报,2002,12(3):611-614
    [35]Balaz P,Achimovicova M.Mechano-chemical leaching in hydrometallurgy of complex sulphides[J].Hydrometallurgy,2006,84(1-2):60-68
    [36]Balaz P,Achimovicova M.Selective leaching of antimony and arsenic from mechanically activated tetrahedrite,jamesonite and enargite[J].International Journal of Mineral Processing,2006,81(1):44-50
    [37]刘今,巩前明,吴若琼,等.低品位铝土矿预脱硅工艺及动力学研究[J].中南工业大学学报,1998,29(2):145-148
    [38]Ficeriova J,Balaz P,Boldizarova E,et al.Thiosulfate leaching of gold from a mechanically activated CuPbZn concentrate[J].Hydrometallurgy,2002,67(1-3):37-43
    [39]黎铉海,黄祖强,刘雄民,等.机械活化作用下载金矿物的形貌特征[J].金属矿山,2001,(295):31-33
    [40]张凡,马启坤,刘韬.中浸渣的机械活化浸出工艺研究[J].云南冶金,2002,31(4):33-37
    [41]赵秦生.机械活化在俄罗斯钨精矿分解中的应用[J].稀有金属与硬质合金,2005,33(2):31-34
    [42]黎铉海,李秀敏,潘柳萍.机械活化强化ITO废料中铟浸出的动力学研究[J].金属矿山,2006,(3):46-48
    [43]李春,陈胜平,吴子兵,等.机械活化方式对攀枝花钛铁矿浸出强化作用[J].化工学报,2006,57(4):832-837
    [44]姚金环.不同活化强度下硬锌渣在盐酸体系中浸铟的动力学研究[D].南宁:广西大学硕士论文,2006
    [45]王令明.来冶铟系统技改设计思路浅述[J].湖南有色金属,2002,18(2):17-19
    [46]肖华利.铟浸出工艺探讨[J].稀有金属与硬质合金,2003,31(4):4-6
    [47]刘朗明.从铅浮渣反射炉烟尘中提取铟的新工艺研究[J].稀有金属,2003,27(1):112-115
    [48]宋复伦,宁模功.加压湿法冶金的过去.现在和未来[J].湿法冶金,2001,20(3):165-166
    [49]柯家俊.湿法冶金中加压浸出过程的进展[J].湿法冶金,1996,(2):1-6
    [50]孙天友,王吉坤,杨大锦.硫化锌精矿加压氧化酸浸动力学研究[J].有色金属(冶炼部分),2006,(2):21-23
    [51]汪胜东,蒋训雄,蒋开喜,等.富钴结壳湿法冶金工艺中硫化渣的加压浸出[J].有色金属(冶炼部分),2006,(1):17-19
    [52]邓彤.镍钴的加压氧化浸出[J].湿法冶金,1994,(6):16-22
    [53]邱定番.加压湿法冶金过程化学与工业实践[J].矿冶,1994,3(4):55-67
    [54]Murdoch M,Michael V,Angus F.The recovery of nickel from high-pressure acid leach solutions using mixed hydroxide product-LIX(R)84-INS technology[J].Minerals Engineering,2006,19(12):1220-1233
    [55]James A B,Vladimiros G P.Interfacial studies of liquid sulphur during aqueous pressure oxidation of nickel sulphide[J].Minerals Engineering,2005,18(15):1378-1385
    [56]Rubisov D H,Krowinkel J M,Papangelakis V G.Sulphuric acid pressure leaching of laterites-universal kinetics of nickel dissolution for limonites and limonitic/saprolitic blends[J].Hydrometallurgy,2000,58(1):1-11
    [57]Johnson J A,Cashmore B C,Hockridge R J.Optimisation of nickel extraction from laterite ores by high pressure acid leaching with addition of sodium sulphate[J].Minerals Engineering,2005,18(13-14):1297-1303
    [58]谢克强,杨显万,舒毓璋,等.多金属硫化矿浮选精矿加压酸浸研究[J].有色金属(冶炼部分),2006,(4):6-9
    [59]薛光,于永江,李志勤.加压氧化-氰化浸出工艺从酸浸渣中提金试验研究[J].黄金,2004,25(5):29-30
    [60]王吉坤,彭建蓉,杨大锦,等.高铟高铁闪锌矿加压酸浸工艺研究[J].有色金属(冶炼部分),2006,(2):30-32
    [61]李小康,许秀莲.低品位铜锌混合矿加压浸出研究[J].南方冶金学院学报,2004,25(4):5-8
    [62]Padilla R,Vega D,Ruiz M C.Pressure leaching of sulfidized chalcopyrite in sulfuric acid-oxygen media[J].Hydrometallurgy,2007,86(1-2):80-88
    [63]Rabah M A.Combined hydro-pyrometallurgical method for the recovery of high lead/tin/bronze alloy from industrial scrap[J].Hydrometallurgy,1998,47(2-3):281-295
    [64]Banza A N,Gock E,Kongolo K.Base metals recovery from copper smelter slag by oxidising leaching and solvent extraction[J].Hydrometallurgy 2002,67(1-3):63-69
    [65]李卫昌.钼精矿焙烧烟尘中铼浸出提取研究[J].中国钼业,2007,31(1):23-26
    [66]廖亚龙,刘中华.辉锑矿氯化浸出制取焦锑酸钠的工艺研究[J].有色金属,2007,59(2):46-49
    [67]刘华英.含锗渣浸出锗的研究[J].有色金属(冶炼部分),2006,(6):27-28
    [68]Sylvie C B,Berny F R,David G D.Leaching kinetics and stoichiometry of pyrite oxidation from a pyrite-marcasite concentrate in acid ferric sulfate media[J].Hydrometallurgy,2006,84(3-4):225-238
    [69]刘迎九,周泉,谢水波.某铀矿床碱法地浸溶浸液配方探讨[J].株洲工学院学报,2006,20(6):39-40
    [70]刘建华,李啊林,张新宪.从某含碲废渣中氧化浸出碲的试验研究[J].湿法冶金,2007,26(3):163-165
    [71]范斌.高锰酸钾对金氰化浸出率的影响[J].铀矿冶,2000,19(2):135-137
    [72]张斌,陈启元,姜涛.锰银矿同步浸出锰.银新工艺试验研究[J].黄金,2001,22(7):26-29
    [73]张燕娟.含铟低度氧化锌氧粉回收铟的工艺研究[D].南宁:广西大学学士论文,2006
    [74]莫鼎成.冶金动力学[M].长沙:中南大学出版社,1987.283-311
    [75]李洪桂等.湿法冶金学[M].长沙:中南大学出版社,2002.15-70
    [76]谭凯旋,王清良,伍衡山,等.溶浸采矿热力学和动力学[M].长沙:中南大学出版社,2003.13-74
    [77]李洪桂.冶金原理[M].北京:科学出版社,2005.125,291-311
    [78]陈新民,陈启元.冶金热力学导论[M].北京:冶金工业出版社,1986.60-63
    [79]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.16-486
    [80]姚允斌,解涛,高英敏.物理化学手册[M].上海:上海科学技术出版社,1985.838-912
    [81]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2006.213
    [82]许志忠,李晓春.过氧化氢分解影响因素分析[J].染整技术,2006,28(1):33-38
    [83]许朝震.双氧水[J].江西化工,1997,(4):37
    [84]陈敏恒,丛德滋,方图南,等.化工原理(下册)[M].北京:化学工业出版社,2000. 70-72
    [85]张秀芳,安庆大,薛文平,等.高锰酸钾法去除染料的影响因素及其工艺条件[J].大连轻工业学院学报,2004,23(1):8-10
    [86]丁建刚,黄桂荣,王伟.中性高锰酸钾溶液稳定性研究[J].中国环境监测,2006,22(1):49-50
    [87]于忠贵,刘连香.浅析高锰酸钾的氧化性[J].天津化工,1997,(3):47
    [88]武旭芳,赵慧.高锰酸钾的种种应用[J].内蒙古石油化工,2000,26(3):108-109

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700