用户名: 密码: 验证码:
球形氢氧化镍高温性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镍氢(MH/Ni)具有高比容量、循环性能好、安全性高等特点,在未来的几十年中将成为电动汽车(EV)以及混合动力汽车(HEV)用动力电池的最佳选择之一。由于电池在工作过程中的温度会不可避免的升高,而MH/Ni电池在高温下的性能会由于正极材料氢氧化镍的充电效率的降低而下降,因此提高氢氧化镍的高温性能成为了一个亟待解决的问题。
    本论文根据溶液中异相成核优先于体系中的均相成核的热力学理论,采用分层沉积和共沉积的方法,在氢氧化镍的表面制备了Yb(OH)_3、Ca_3(PO_4)_2、CaF_2与Co(OH)_2的复合包覆层,提高了氢氧化镍材料的高温性能。
    本论文分别选择磷酸钙和氟化钙研究了钙盐对氢氧化镍正极高温性能的影响。包覆钙盐后,再在外层包覆2%的氢氧化亚钴提高包覆钙盐后正极材料的导电性。电化学性能的测试表明,包覆磷酸钙后的氢氧化镍的高温性能好于包覆氟化钙后的氢氧化镍。磷酸钙的包覆量为摩尔比2%的球形氢氧化镍在高温(60℃)下的性能最好,1C充放电的容量可以达到199mAh/g,高温容量保持率可以达到常温下的81%。
    本论文分别采用分层包覆和共沉淀包覆Yb(OH)_3和Co(OH)_2的工艺,研究了元素Yb对氢氧化镍高温性能的影响。通过电化学性能的测试,包覆了复合包覆层的球形氢氧化镍在高温(60℃)下1C充放电的容量保持率均高于90%。采用分层包覆工艺时Yb的最佳包覆量为2%,在60℃下1C充放电的容量可以达到210mAh/g。采用共沉淀包覆工艺时镱的最佳包覆量为0.75%,该样品在常温和高温下的比容量均高于未包覆的球形氢氧化镍,在60℃下1C充放电的容量可以达到231mAh/g。
    通过循环伏安测试表明,利用表面包覆的方法可以增大正极材料氢氧化镍在高温下的氧化电位、析氧电位和两者之间的电位差,从而提高了材料在高温下的电化学性能。
Nickel-metal hydride (Ni-MH) batteries will be one of the best choices tobe used as the power sources for electric vehicle (EV) and hybrid electricvehicle (HEV) in the near tens of years, because they have the characteristicsas high reversible storage capacity, excellent long-term cycle life and goodsafety performance. However, in working process, the temperature incrementof the Ni-MH batteries can not be avoided, and the performance of the Ni-MHbatteries will drop rapidly when working at high temperature because of thecharging efficiency descent of the nickel hydroxide which is the cathodematerials in the Ni-MH battery. So, to improve the high-temperatureperformance of the nickel hydroxide became an urgent problem need to solve.
    Thermodynamic theory shows that the heterogeneous nucleation takespriority to homogeneous nucleation. Based on this theory, the film, which iscomposed of ytterbium hydroxide insoluble calcium salt (phosphate calciumand fluoride calcium) and cobalt hydroxide, was coated on the sphericalnickel hydroxide by layered-precipitation and co-precipitation process. Andthe electrochemical analyses showed that the surface coating could improvethe high temperature performance of the nickel hydroxide.After comparing the results between the phosphate calcium-coated nickelhydroxide and fluoride calcium-coated nickel hydroxide which containedsame amount of the calcium and cobalt (2%) by layered-precipitation, theconclusion was made that the former one has better high temperatureperformance than the latter one. And the optimal coating amounts of the twocalcium salts are the same as 2% (atom ratio to nickel). The samples coatedwith this amount showed the best high temperature performance at 60℃. Thedischarge capacity of the calcium phosphate-coated samples reached to199mAh/g and the capacity conservation rate reached to 81%, which is muchhigher than that of the uncoated sample (121mAh/g, 49%).
    At the same time, different amounts of ytterbium hydroxide and same
    amount of cobalt hydroxide (2%) were both coated on the surface of the nickelhydroxide by two processes, the layered-precipitation process andco-precipitation process. The results showed that co-precipitation process wasmore effective than the layered-precipitation process, meanwhile both surfacemodification process could maintain the nickel hydroxide's capacityreservation rate to be higher than 90% at high temperature. The optimalYb-coating amount for layered-precipitation process was 2%, the dischargecapacity of the nickel hydroxide which was modified by this process couldreach to 210mAh/g at 60℃. And the optimal Yb-coating amount forco-precipitation was 0.75%;the discharge capacity of the sample which wasmodified by this process could reach 231mAh/g at 60℃.The cyclic voltammetry test showed, at room temperature and hightemperature, the oxidation potential, the oxygen evolution potential and thedifference between these two potentials of the nickel hydroxide increasedafter surface coating. It will increase the charging efficiency of the nickelhydroxide and improve the electrochemical performance at high temperature.
引文
[1] S.Yoda, K. Ishihara. Global prospect in the 21st century: a battery-based society. J. Power Source, 1997, 68:3~7
    [2] Christian Fellner, John Newman. High-power batteries for use in hybrid Vehicles. Journal of Power Sources. 2000,85:229~236
    [3] Dr. Martin Winter, Dr. Ralph J. What are batteries, fuel cells, and supercapacitors. Chem. Rev., 2004, 104: 4245~4269
    [4] Paul Gifford, John Adams, Dennis Corrigan, et al. Development of advanced nickel/metal hydride batteries for electric and hybrid vehicles. Journal of Power Sources, 1999,80:157~163
    [5] 马丽萍,夏保佳. 混和电动车用动力 MH-Ni 电池的研究现状与发展.电源技术,2003,27:245~249
    [6] 詹锋,蒋利军.电动汽车用动力型 MH-Ni 电池开发动向.电源技术,1999,21:35~39
    [7] 谭玲生,汪继强. MH-Ni 电池的发展现状与展望.电源技术,1997,21(1):31~34
    [8] 孙杨,田彦文.正极材料 Ni(OH)2 制备工艺的发展动态.电源技术,1997,21(4):178~182
    [9] 周勤俭,袁庆问. 正极材料α-Ni(OH)2 的研究进展.电池,2003,33:93~95
    [10] A. Sugimoto, S. Ishida, K. Hanawa. Preparation and Characterization of Ni/Al-Layered Double Hydroxide. Journal of the Electrochemical Society. 1999, 146:1251~1255
    [11] P. Elumalai, H.N. Vasan, N. Munichandraiah. Electrochemical studies of cobalt hydroxide – an additive for nickel electrodes. Journal of Power Sources. 1999, 93: 201~208
    [12] K. Takanashi, M. Yoshida, T. Sakamoto, et.. Elemental distribution analysis of positive electrode materal for a nickel metal hydride battery. Applied Surface Sience, 2003, 204: 609~613
    [13] V. Pralong, A. Delahaye-Vidal, Y. Chabre, et.. The outcome of cobalt in the nickel-cobalt oxyhydroxide electrodes of Alkaline batteries. Journal of Solid State Chemistry, 2001, 162:270~281
    [14] 魏莹,夏熙.纳米级电机材料制备及其电化学性质研究(Ⅵ)-纳米级β-Ni(OH)2正极材料的研究.电源技术,1998,22:139~141
    [15] 成宏伟,姜长印,何向明等. 纳米氢氧化镍的制备及其电化学性能研究. 电源技术,2004,28:285~287
    [16] 袁安保,张鉴清,曹楚南.镍电极研究进展.电源技术,2001,25(1):53~58
    [17] 陈猛,丛文博.添加剂对镍电极充电性能的影响.应用科技,2001,28(2):29~30
    [18] M. Oshitani, M. Watada, K. Shadai, et al. Effect of lanthanide oxide additives on the high-temperature charge acceptance characteristics of pasted nickel electrodes. Journal of the Electrochemical Society, 2001, 148: A67~A73
    [19] M. E. Unates and M. E. Folquer. Nickel Hydroxide Electrode. In: D. A. Corrigan and A. H. Zimmerman, eds., The Electrochemical Society Proceedings Series. PV:134
    [20] M. Oshitani, M. Watada, T. Tanaka, and T. Iida. Hydrogen and Metal Hydride Batteries. In: D. A. Corrigan and A. H. Zimmerman, eds., The Electrochemical, Society Proceedings Series. Pennington, NJ : 1994. 303
    [21] X. Mi, X.P. Gao, C.Y, Jiang, et. al. High temperature performances of yttrium-doped spherical nickel hydroxide. Electrochimica Acta, 2004, 49: 3361~3366
    [22] Anbao Yuan, Shaoan Cheng, Jiangqing Zhang, et. The influence of calcium compounds on the behaviour of the nickel electrode. Journal of Power Sources, 1998, 76: 36~40
    [23] K. Provazi, M.J. Giz, L.H. Dall' Antonia, et. The effect of Cd, Co, and Zn as additives on nickel hydroxide opto-electrochemical behavior. Journal of Power Sources, 2001, 102:224~232
    [24] D.M. Constant, E.M. Rus, L.Oniciu, et. The influence of some additives on the electrochemical behavior of sintered nickel electrode in alkaline electrolyte. Journal of Power Sources, 1998, 74:188~197
    [25] 常照荣,任行涛,彭鹏等.铈元素对镍电极性能的影响.功能材料, 2002,33:291~293
    [26] 陈猛,丛文博. 添加剂对镍电极充电性能的影响.应用科技,2001,28:29~30
    [27] 米欣,叶茂,阎杰等.外掺 Y2O3 对镍氢电池正极高温性能的影响.中国稀土学报,2004,22:119~124
    [28] 丁完春,袁安保,张鉴清等. Co(OH)2 包覆的 Ni(OH)2 电化学性能研究.电源技术,2002,24:204~206
    [29] 谢朋,翟玉春,翟秀静等.蓄电池添加剂 Co、CoO、Co(OH)2 的研究现状.电源技术,1998,22:222~224
    [30] 胡泽星,袁庆文,周勤俭等.球形氢氧化镍表面包覆 Co(OH)2 的研究.矿冶工程, 2004,24:79~82
    [31] X.Y. Wang, H. Luo, H.P. Yang, et. Oxygen catalytic evolution reaction on nickel hydroxide electrode modified by electroless cobalt coating. International Journal of Hydrogen Energy, 2004, 29: 967~972
    [32] Z.R. Chang, H.W. Tang, J.G. Chen. Surface modification of spherical nickel hydroxide for nickel electrodes. Electrochemistry Communications, 1999: 513~516
    [33] M.S. Wu, C.M. Huang, Y.Y. Wang, et. Effect of surface modification of nickel hydroxide powder on the electrode performance of nickel/metal hydride batteries. Electrochimica Acta, 1999, 44 :4007~4016
    [34] 米欣,姜长印,阎杰等.球型 Ni(OH)2 表面包覆 Y(OH)3 及其高温充放电性能.无机化学学报,2004,20:164~168
    [35] 浙江大学,武汉建筑材料工业学院,上海化工学院,等. 硅酸盐物理化学. 北京:中国建筑工业出版社,1980. 290~294
    [36] 南京化工学院,华南工学院,清华大学.陶瓷物理化学.北京:中国建筑工业出版社,1981. 218~220
    [37] 杜晓华,姜长印.覆钴层晶型对球形 Ni(OH)2 电化学性能的影响,电源技术,2002,26:346~347
    [38] J. Balej. Determination of the oxygen and hydrogen overvoltage in concentrated alkali hydroxide solutions. Int. J. Hydrogen Energy , 1985, 10(6): 365~374
    [39] Rubin EJ, Baboian R. A correlation of the solution properties and the electrochemical behavior of the nickel hydroxide electrode in binary aqueous alkali hydroxides. J. Electrochem. Soc., 1971, 118(3):428~433
    [40] H.J. Miao, D.L. Piron. Electrodeposition of Catalytically Active Nickel for the Oxygen Evolution Reaction – Effects of Anionic Composition. Canada Journal of Chemical Engineering, 1993, 71 :564~569
    [41] P.W.T.Lu, S. Srinivason. Electrochemical-Ellipsometric Studies of Oxide Film Formed on Nickel during Oxygen Evolution. J. of Electrochem. Soc., 1978, 125:1416~1422
    [42] G. Bronel, J. Reby. Mechanism of Oxygen Evolution in Basic Medium at a nickel electrode. Electrochemical Acta, 1980, 25:973~976

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700