用户名: 密码: 验证码:
硝化棉热分解及钴催化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发射药的燃烧性能对武器获得稳定和可控弹道性能起到关键性的作用,通常研究发射药的燃烧性能是从研究发射药的热分解开始的。燃烧催化剂具有调节和改善发射药热分解和燃烧性能的作用。本论文主要的工作:一是催化剂的制备和表征;二是硝化棉热分解的研究;三是催化剂对硝化棉热分解反应的催化机理的研究。主要的研究内容如下:
     通过水合肼液相还原法,制备得到六方密堆积晶型(hcp)的钴粉;通过固相法,制备得到立方晶系的CoO;通过液相沉淀法,制备得到立方晶系的四氧化三钴。利用XRD、Raman、SEM等分析技术对制备的催化剂进行表征。
     运用TG-MS热分析质谱联用技术研究硝化棉热分解过程中主要生成的气体产物,分析得出,当温度升到200℃时,硝化棉热分解非常的剧烈,在很短的时间内完成热分解。硝化棉热分解气相产物主要包括H2O、HCN、CO(或/和N2)、HCOH、NO、C02、N02(或/和HCOOH)。
     以钴粉,氧化亚钴,四氧化三钴作为催化剂,催化硝化棉热分解反应。利用TG-MS技术对硝化棉热分解气体产物进行研究,结果发现,催化剂加入后,m/z=18(H2O+)、44(C02+)、46(NO2+或/和HCOOH+)的离子流积分强度增加,而m/z=27(HCN+)、28-(CO+或/和N2+)、30(NO+、HCHO+)的离子流积分强度降低。
     通过XRD对催化硝化棉热分解反应后的固体残留物进行分析,发现催化剂钻粉,氧化亚钴,四氧化三钴都转变为单质钻。采用SEM对固体残留物的形貌进行表征,结果发现催化剂的形貌发生明显的变化,结合XRD的分析结果推测,催化反应过程中催化剂首先通过某反应,活化为钴金属原子,钻金属原子或者金属原子簇起到催化作用。
Combustion properties of propellants are the key performance for weapons to obtain stability and controllable ballistic characteristics, and the investigation on combustion properties usually started from the study of thermal decomposition process. Combustion catalyst can regulate and improve the thermal decomposition and combustion performance of the propellants. In this thesis, three aspects of work were studied. Firstly, Catalysts Preparation and Characterization; Secondly, thermal decomposition characteristics of NC were analyzed by TG-MS method. Thirdly, the catalytic mechanism of catalyst on the thermal decomposition of NC was studied.
     In this thesis, cobalt was prepared by the method of liquid-phase reduction using hydrazine as reducer, Co(NO3)2·6H2O as raw material. Cubic CoO was got by the method of solid-phase method. Cubic Co3O4 was gained by the method of liquid precipitation method. All the catalysts were characterized by Raman、XRD、SEM and so on. The thermal decomposition of NC propellant was studied via TG-MS method. The thermal decomposition of NC was completed intensively in a very short time at the temperature of 200℃. According to the thermogravimetry-mass (TG-MS) analysis, the gaseous products evolved during the thermal decomposition of NC propellant were H2O、HCN、CO(N2)、HCOH、NO、CO2 and NO2(HCOOH) respectively.
     Co, CoO, Co3O4 were used as catalysts for the thermal decompotion of NC, respectively. Based on the results of thermogravimetry-mass (TG-MS) analysis, the integral intensities of individual ions were calculated and it was found that the addition of catalyst resulted in the increase of m/z=18(H2O+).44 (CO2+),46 (NO2+/HCOOH) MS signals, but the decrease of intensity of m/z=27(HCN+)、28 (CO+/N2+)、30 (NO+、HCHO+) MS signals during the thermal decomposition of NC propellant.
     The structures and morphologies of solid products after the thermal decomposition of NC propellant were characterized by XRD and SEM. It was shown that each of the catalysts has become Co powder. In addition, it can be seen that the morphologies of the catalysts have been completely changed by SEM analysis. After a careful analysis of solid products, it can be concluded that the catalysts changed to cobalt metal atoms or atomic cluster during the thermal decomposition of NC, and the cobalt metal atoms or atomic cluster may acted as the real catalytic species.
引文
[1]徐宏,刘剑洪,陈沛等.纳米氧化铁的制备及其对发射药热分解催化作用的研究[J].火炸药学报,2002,(3):51~52.
    [2]郑蓉晖.发射药燃烧性能及其测试方法研究[D].2008.
    [3]费海涓.改善发射药燃烧性能方法研究[D].2006.
    [4]廖听,马方生,堵平等.不同催化剂对降低双基火药燃速压力指数效果的影响[J].火炸药学报,2007,30(4):25~28.
    [5]陈沛,赵凤起,李上文等.二缩三乙二醇二硝酸酯的热分解性能[J].火工品.1999,3:5-10.
    [6]陆昌伟.热分析质谱法[M].上海科学技术文献出版社.2002.
    [7]马振叶,李风生,崔平.纳米FeO的制备及其对高氯酸铵热分解的催化性能[J].催化学报.2003,24(10):75~79.
    [8]徐宏,刘剑洪,陈沛等.纳米氧化镧对黑索今热分解的影响[J].推进技术.2002,23(4):329~331.
    [9]M.W. Beckstead. Recent progress in modeling solid propellant combustion [J]. Combustion, explosion, and shock waves,2006,42:623~642.
    [10]刘子如,张腊莹.含能材料过程中热分解化学的研究进展[J].火炸药学报,2005,28(4):72~75.
    [11]Yi Jianhua, Zhao Fengqi, Xu Siyu, et al. Thermal behavior, nonisothermal decomposition reaction kinetics of mixed ester double-base gun propellants[J]. Chemical. Research in Chinese universities,2008,24:608~613.
    [12]仪建华,徐司雨,马晓东等.太根发射药的非等温热分解反应动力学[J].火炸药学报,2007,30(4):77~80.
    [13]徐皖育,何卫东,张颖.高温长贮条件下太根发射药中RDX的迁移行为[J].火炸药学报,2006,29(3):29~31.
    [14]徐皖育,何卫东,张颖.含RDX高能太根发射药的热分解性能[J].火炸药学报,2006,29(3):63~64.
    [15]王瑞青.超细金属钴及其复合物的制备和性质研究[A].南京理工大学.2008.
    [16]关荐伊,赵元,侯士法.CoO纳米粒子的制备及催化性能初探[J].河北师范大学学报,1999,23(1):91~93.
    [17]Danick. Gallant, Michel Pezolet, Stephan Simard, J. Phys. Chem. B110 (2006):6871.
    [18]V.G. Hadjiev, M.N. Iliev, I.V. Vergilov, J. Phys. C:Solid State Phys.21(1988) L199.
    [19]D. Gallant, M. Pezolet, S. Simard, J. Phys. Chem. B110 (2006):6871~6880.
    [20]H. C. Choi, Y. M. Jung, I. Noda, S. B. Kim, J. Phys. Chem. B107 (2003):5806~5811.
    [21]J. A. Caldero, O. R. Mattos, O. E. Barcia, S. L. Cordoba de torresi, J. E. Prerira da Silva, Electrochim. Acta47(2002):4531~4541.
    [22]C. A. Melendres, S. Xu, J. Electrochem. Soc.131(1984):2239-2243.
    [23]Gibson CP, Putzer KJ. Synthesis and Characterization of Anisometric Cobalt Nanoclusters[J]. Science,1995,267:1338~1340.
    [24]熊育飞,熊仁金,周大利等.湿化学还原法合成Co纳米粒子的研究[J].材料导报,2006,20:170~174.
    [25]郑化桂,曾京辉,余华明等.联氨在金属纳米粉制备中的行为研究[J].中国科学技术大学学报,1999,29(6):22~729.
    [26]姚连增.晶体生长基础[M].合肥:中国科学技术大学出版社,1995.
    [27]Chen J K, Brill T B. Combust. Flame,1991,85:479.
    [28]汪渊,刘蓉,宁斌科等.硝化棉的热分解机理[J].含能材料.1998,6(4):157~168.
    [29]崔冰兵.硝化三乙二醇的热分解及催化机理研究[D].南京理工大学,2010.
    [30]Wenxian Wei, Bingbing Cui, Xiaohong Jiang et al. The catalytic effect of NiO on thermal decomposition of nitrocellulose[J]. J Therm Anal Calorim, DOI 10. 1007/s10973-010-0695-y.
    [31]Wenxian Wei, Xiaohong Jiang, Lude Lu et al. Study on the catalytic effect of NiO nanoparticles on the thermal decomposition of TEGDN/NC propellant[J]. Journal of Hazardous Materials,168 (2009):838~842.
    [32]刘子如.含能材料热分析[M].北京:国防工业出版社,2008.
    [33]P.S. Makashir, R.R. Mahajan, J.P.Agrawal. Studies on kinetics and echanism of initial thermal decomposition of nitrocellulose [J]. Journal of thermal analysis,1995, 45:501~509.
    [34]Arne Bergens, Rolf Danielsson. Decomposition of diphenylamine in nitrocellulose based propellants-I. optimization of a numerical model to concentration-time data for diphenylamine and its primary degradation products determined by liguid chromatography with dual-ampermetric detection [J]. talanta,1995,42:171~183.
    [35]A.L. Konkin, B.G. Ershov, Yu.M. Kargin, et al. Study of the radical products of the thermal decomposition of nitrocellulose [J]. Russian chemical bulletin,1989,38: 2426~2428.
    [36]Song Guo, Qingsong wang, Jinhua Sun, et al. Study on the influence of moisture content on thermal stability of propellant[J]. Journal of hazardous materials,2009, 168:536~541.
    [37]Xiulin zeng, Wanghua Chen, Jiacong Liu. A theoretical study of explosive sensitizers[J]. Structural chemistry,2007,18:81~86.
    [38]Xiulin zeng, Wanghua Chen, Jiacong Liu. Molecular structure, electronic structure and heats of formation of explosive sensitizers[J]. Actaphysico-chimica sinica,2007, 23:192~197.
    [39]Brain D. Roos, Thomas B. Brill. Thermal decomposition of energetic materials. Correlations of gaseous products with the composition of aliphatic nitrate esters[J]. Combustion and flame,2002,128:181~190.
    [40]Hu Rongzu, Ning Bingke, Yang Zhengquan, et al. Kinetics of the first order autocatalytic decomposition reaction of nitrocellulose(11.92%N)[J]. Chinese Journal of Explosive & Propellants,2004,27:67~72.
    [41]Ning Bingke, Yang Zhengquan, Liu Rong. A study on the denitration kinetics of highly nitrated nitrocellulcse [J]. Chinese Journal of Explosive & Propellants,2000,1: 65~67.
    [42]潘清,汪渊.铅铜复盐对硝化棉热分解反应的影响[J].火炸药学报,1999,3:53~58.
    [43]M.A.Hassan. Effect of malonyl malonanilide dimers on the thermal stability of nitrocellulose [J]. Journal of hazardous materials,2001,88:33-49.
    [44]S.M. Pourmortazavi, S.G. Hosseini, M.Rahimi-Nasrabadi, et al. Effect of nitrate content on thermal decomposition of nitrocellulose[J]. Journal of hazardous materials, 2009,162:1141~1144.
    [45]M.R. Sovizi, S.S. Hajimirsadeghi, B. Naderizadeh. Effect of particle size on thermal decomposition of nitrocellulose [J]. Journal of hazardous materials,2009,168: 1134~1139.
    [46]Katsumi Katoh, Shunsuke Ito, Shuhei Kawaguchi, et al. Effect of heating rate on the behavior of nitrocellulose[J]. Journal of thermal analysis and calorimetry,2010,100: 303~308.
    [47]Yunlan Sun, Shufen Li. The effect of nitrate esters on the thermal decomposition mechanism of GAP[J]. Journal of hazardous materials,2008,154:112~117.
    [48]R.R. Mahajan, P.S. Makashir, J.P. Agrawal. Combustion behaviour of nitrocellulose and its complexes with copper oxide[J]. Journal of thermal analysis and calorimetry, 2001,65:935~942.
    [49]Hu Rongzu, Guo Pengjiang, Song Jirong, et al. Estimation of the critical increase temperature rate of thermal explosion of nitrocellulose using non-isothermal DSC[J]. Chinese Journal of Explosive & Propellants,2003,26:53~57.
    [50]Bingke Ning, Rongzu Hu, Hai Zhang, et al. Estimation of the critical rate of temperature rise of thermal explosion of auto catalytic decomposition reaction of nitrocellulose using non-isothermal DSC[J]. Thermochimica acta,2004,416:47~50.
    [51]董林茂,李晓东,杨荣杰.HNIW的热重-质谱(TG-MS)研究[J].含能材料,2007,15(6):660~663.
    [52]O'Horo, M. P. Frisillo, A. L. White, W. B. J. Phys. Chem. Solids.1973,34,23.
    [53]De Wijs, G. A. Fang, C. M. Kresse, G. de With, G. Phys. ReV. B2002,65,094305-1.
    [54]Shebanova, O. N. Lazor, P. J. Solid State Chem.2003,174,424.
    [55]Shebanova, O. N. Lazor, P. J. Chem. Phys.2003,119,6100.
    [56]Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds Part A:Theory and Applications in Inorganic Chemistry; Wiley:New York,1997.
    [57]De Faria, D. L. A.; Venancio Silva, S.; de Oliveira, M. T. J. Raman Spectrosc.1997, 28,873.
    [58]王泽山.火炸药科学技术[M].2002.
    [59]Yu zongxue, Chen lifen, Lu lude et al. DSC/TG-MS study on in situ catalytic thermal decomposition of ammonium perchlorate over COC2O4 [J]. Chin J Catal,2009,30(1): 19~23.
    [60]Zongxue Yu, Yuxi Sun, Wenxian Wei et al. Preparation of NdCrO3 nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate by DSC/TG-MS [J]. J Therm Anal Calorim,2009,97:903~909.
    [61]贾太轩,张继昌,石蔚云等.溶胶-凝胶法制备LaNiO3及其催化性能[J].工业催化,2011,19(7):11~14.
    [62]赵越卿,梁英华,贾千一等.CuO(CoO,MnO)/SiO2纳米复合气凝胶催化剂的溶胶-凝胶法制备及成胶机理[J].硅酸盐学报,2008,36(5):658~661.
    [63]曹钦存,张战营.沉淀法制备纳米C0304前驱体的研究[J].洛阳工业高等专科学校学报,2007,17(3):5-7.
    [64]Youcun Chen, Yuanguang Zhang, Shengquan Fu. Synthesis and characterization of Co3O4 hollow spheres[J]. Materials Letters,2007,61:701~705.
    [65]Jahangeer Ahmed, Tokeer Ahmad, Kandalam V.Ramanujachary et al. Development of a microemulsion-based process for synthesis of cobalt(Co) and cobalt oxide (CO3O4) nanoparticles from submicrometer rods of cobalt oxalate[J]. Journal of Colloid and Interface Science,2008,321:434~441.
    [66]刘建勋,刘永,张小娟等.纳米NiO/CNTs复合粒子的制备及其对AP和AP/HTPB热分解的影响[J].推进技术,2008,29(1):119~123.
    [67]谈玲华,李勤华,李凤生等.负载型纳米NiO催化高氯酸按热分解的DSC/TG-MS研究[J].功能材料,2011,3(42):564~566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700