用户名: 密码: 验证码:
多相氧化还原法制备Mn_3O_4及锂离子电池用超微粉体研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文提出并研究成功了一种水溶液中制备超微粉体的新方法:多相氧化还原法,该方法是指在水溶液中,对固相进行氧化或还原生成新固相物质的方法(如氢氧化锰氧化生成四氧化三锰),并且当溶液中存在其它合适的离子(如锂离子)时,这些离子可借助于固相发生氧化、还原反应时的高表面反应活性参与化学反应,嵌入固相而形成新的物质(如氢氧化锰在氢氧化锂溶液中氧化生成锰酸锂)。本论文系统研究了多相氧化还原法制备超微氢氧化锰、四氧化三锰、钴酸锂和锰酸锂的机理和工艺。
     通过对金属与水的锈蚀反应机理研究,发现金属锰与纯水反应时,氧化生成的致密氢氧化锰紧紧包裹在金属锰的表面,阻碍反应的进一步进行;当有铵盐存在时,铵作为主要氢离子载体参与金属锰的反应,生成的氨与溶解的锰离子继而生成锰氨配合离子,促使锰离子从金属锰表面往溶液深处转移,从而使水解的氢氧化锰不能致密地沉积在金属锰表面,所以生成的氢氧化锰疏松、多孔、易脱落,加速氧化反应,最终使金属锰与水的反应进行完全。
     氢氧化锰氧化生成四氧化三锰的多相反应动力学研究表明,氧化反应的速度受氧气扩散传质控制,在40-60℃范围内,氧化反应的活化能为20.37 kJ/mol,氧化率与时间呈线性关系;通过进一步的实验研究,首次提出了不定量取样分析料浆锰的Mn~(2+)/Mn~(4+)价态比,并推导了氧化率Y(%)与Mn~(2+)/Mn~(4+)比X的定量关系,提出了氧化反应终点的判断方法-pH值判断法,即当悬浮溶液体系pH值迅速下降之时即为氧化反应进行完全的终点。
     以氢氧化亚钴为钴源,空气、氧气、双氧水、NaClO_3为氧化剂,在氢氧化锂溶液中,采用多相氧化还原法实现了在常压水溶液中合成钴酸锂的反应,探明了钴酸锂的形成机理。研究表明,以空气和氧气作为氧化剂时所得钴酸锂的Li、Co摩尔比较高,且Li、Co摩尔比随着反应温度的升高、反应时间的延长和Li~+浓度的提高而增大。动力学研究表明,氢氧化亚钴氧化生成钴酸锂的反应在较高温度(>80℃)下是分两阶段进行的:第一阶段是快速氧化生成钴酸锂和四氧化三钴混合物阶段;第二阶段是中间产物四氧化三钴慢速氧化转变成钴酸锂的阶段。当温度较低时以快速氧化反应为主,主要产物是钴酸锂和CoOOH的混合物。生成钴酸锂过程中,形成的不连续产物层使钴酸锂的生成反应得以持续进行,钴酸锂产物聚集形态受搅拌强度的影响较大。在研究确定的最佳合成条件下所得前驱体化学成分一致、粒度均匀、具有良好的烧结活性;并可制备粒度分布窄,结晶度高,加工性能好,振实密度大(>2.5g·cm~(-3))球状钴酸锂,产品电化学性能优异,初始放电比容量>149 mAh·g~(-1),充放电效率>97%。前8次循环的放电容量平均衰减率仅为0.04%。
     研究了以高锰酸钾、氧气、空气、双氧水为氧化剂,以氢氧化锰为锰源,通过多相氧化还原法实现了在常压水溶液中合成锰酸锂的反应,探明了其形成机理。XRD、粒度及SEM研究表明,在氧化反应过程中,产物锰酸锂是在氢氧化锰表面原位形成的、并且是非连续产物层,这就使得多相氧化反应可以持续进行。氧化剂的氧化能力的强弱对氧化嵌锂具有重要影响;对于高锰酸钾,适当提高温度和合适的锂离子浓度有利于氧化嵌锂;产物中锰平均价数与氧化反应时间的关系成线性关系。所得锰酸锂前驱体按Li/Mn=0.5经二次配方烧结(820℃,10h)后,可得到粒度均匀、颗粒表面光滑、结晶度高的尖晶石锰酸锂正极材料;其电化学性能良好,首次放电容量为119.2mAh·g~(-1),具有良好的循环性能。
     以MnO_2为锰源、水合肼或亚硫酸钠为还原剂,在氢氧化锂溶液中,采用多相氧化还原法,实现了常压水溶液中合成具有尖晶石结构的锰酸锂,探明了其形成机理。对产物进行XRD、SEM和粒度分析表明,反应过程中锰酸锂是在二氧化锰表面原位形成的,随着反应的进行及嵌锂程度的提高,产物的BET增加,表明EMD的还原嵌锂反应具有自催化特性,自催化特性是导致这一类生成固相产物层的多相氧化还原反应能够持续进行的原因;二氧化锰具有比锰酸锂更好的亲水性,也使得反应过程中形成新的二氧化锰界面优先与溶液接触,促使液一固反应的进行。将二氧化锰还原法合成的锰酸锂前驱体按Li/Mn=0.5进行二次配方后高温烧结(800℃,10h),也得到了结晶度高、电化学性能优良的锰酸锂,其0.2C初始容量达132.7mAh·g~(-1),0.5C初始容量为123.9mAh·g~(-1)。
     研究表明,采用多相氧化还原法制备超微粉体材料在技术上是可靠的,工艺上是可行,所得产品形貌和粒度易于控制,产品质量好,性能优良,且操作简便,生产成本低。其中超微四氧化三锰、锂离子电池正极材料钻酸锂超微粉体的制备已成功实现了产业化,分别建成了Mn_3O_4超微粉末5000t/a和LiCoO_2正极材料500 t/a的生产线,并取得了很好的经济效益。作为一种水溶液低温合成的软化学方法,多相氧化还原法有望推广应用于其他超微粉体材料的制备。
An aqueous-based novel process , multiphase redox method, was conceived and successfully developed for the preparation of ultra-fine powder materials. It is a aqueous-based process to achieve the transformation of solid reactants into solid products through redox reaction at atmospheric condition,such as oxidation of Mn(OH)_2 to form Mn_3O_4. Furthermore some ions existing in the aqueous solution such as Li~+ may participate in the reaction of redox to form new solid products during the multiphase transformation because of the high reactivity of the in situ produced new surface of the solid products. A typical example is the formation of LiMn_2O_4 from Mn(OH)_2 by oxidation in LiOH aqueous solution. In this paper, the mechanism for the preparation of ultra-fine Mn(OH)_2, Mn_3O_4, LiCoO_2, LiMn_2O_4 by the multiphase redox method was systematically investigated, and the technologies were well developed as well.
     From the study of the oxidative mechanism of metallic manganese in aqueous solution, it was found that the Mn(OH)_2 produced in pure water is a compact product tightly surrounding the unreacted metallic manganese, which impedes manganese from further reaction with H_2O. However, when there are some ammonia salts present in the aqueous solution as catalyzers, ammonium ion acts as the carrier of hydrogen ion in the reaction, and then the produced manganese ion is combined with ammonia molecules to give manganic ammonia complex ion, which carries manganese away from the surface of metallic manganese to the deeper solution. The manganic ammonia complex ion is then hydrolyzed to form loose and porous manganic hydroxide precipitates near the metallic manganese surface, which can easily fall off. The oxidation is, therefore, accelerated until the completion of the reaction.
     From the kinetic study of the formation of Mn_3O_4 from Mn(OH)_2 by multiphase oxidative process, it was shown that the reaction rate is controlled by oxygen diffusion. The activated energy of the reaction was measured to be 20.37kJ·mol~(-1) in the temperature range from 40 to 60℃, and a linear relationship was established between the oxidation reactivity and the retention time. Further experimental study showed that there is a quantitative relationship between the oxidation degree Y(%) and the Mn~(2+)/Mn~(4+) mole ratio of the slurry, and thus, a new method for the determination of the oxidation degree was conceived and developed by sampling an unquantitative amount of slurry and then analyzing the Mn~(2+)/Mn~(4+) mole ratio. The pH method, as a simple and feasible way to accurately determine the oxidation end point, was further built up based on the observation that the pH of the slurry drops sharply at the end point with oxidation degree of 100%.
     The reaction of the synthesis of LiCoO_2 was achieved by multiphase redox method in aqueous solution at atmospheric condition by using Co(OH)_2 as starting cobalt source and air, O_2, H_2O_2 and NaClO_3 as oxidant. The mechanism of the formation of LiCoO_2 was revealed. It was found that LiCoO_2 with higher Li/Co mole ratio can be obtained by using air or O_2 as oxidant, and the Li/Co mole ratio increases with increasing temperature, extending retention time and raising Li~+ concentration. The kinetic study revealed that the reaction of the formation of LiCoO_2 from Co(OH)_2 is conducted by two steps at temperature over 80℃: the first step is the fast oxidation to produce a mixture of LiCoO_2 and Co_3O_4, and then the second step is the slow oxidation of the produced CO_3O_4 to form LiCoO_2. Whereas at low temperature, there is only fast oxidation reaction and a mixture of LiCoO_2 and CoOOH is generated. The as-generated discontinuous product keeps the oxidation of Co(OH)_2 going on during the reaction. The aggregated state of the produced LiCoO_2 is greatly affected by the agitation. The LiCoO_2 precursor with a evenly chemical composition and homogeneous particle sizes as well as a good sintering reactivity was obtained under the optimal conditions. A well-crystallized high quality spherical LiCoO_2 positive material with a narrow particle size distribution and good manufacturing properties as well as a high density of >2.5g·cm~(-3) was prepared as well and exhibited an excellent charge/discharge performance. The first discharge capacity of >149 mAh·g~(-1) with charge/discharge efficiency of >97% was obtained. The average discharge capacity fade in the first eight cycles is only 0.04%.
     The synthesis of spinel LiMn_2O_4 was conducted in Mn(OH)_2-H_2O-LiOH system by multiphase redox method at atmospheric condition by using Mn(OH)_2 as manganese raw material, and the formation mechanism was studied as well. It was demonstrated by XRD, particle size and SEM measurements that the product LiMn_2O_4 is in situ formed as a discontinuous product layer on the surface of Mn(OH)_2 particles, which results in the reaction taking place continuously. The oxidizing capability of the oxidant has a great influence on the lithium content in the product. A suitable high temperature and appropriate high Li~+ concentration favor the formation of LiMn_2O_4 with higher Li content. A linear relationship was found between the average manganese quantivalence and the oxidation time. By re-adjusting the Li/Mn mole ratio at Li/Mn=0.5 and then sintered at 820℃for 10 h, a well-crystallized spinel LiMn_2O_4 positive material with homogeneous particle size, smooth particle surface and good electrochemical properties was produced. The first discharge capacity was measured to be 119.2 mAh·g~(-1). It demonstrated an excellent electrochemically cycle performance.
     A spinel LiMn_2O_4 material was also prepared from MnO_2 with hydrazine or sodium sulphite being a reductant in aqueous solution of LiOH at atmospheric condition via the multiphase redox method. The mechanism was investigated. From the microstructure measurement by XRD, particle size and SEM techniques, it was observed that the LiMn_2O_4 is in situ formed on the surface of MnO_2 particles. With an increase in the amount of inserting Li, the BET of the product increases, indicating the self-catalysis of the reduction of MnO_2, which is the main reason resulting in the mutiphase redox reaction occurred. The exposed fresh MnO_2 is easier to contact with solution than LiMn_2O_4 due to its better hydrophilicity. This is another main reason to cause such a multiphase redox reaction with a solid product generated taken place. By re-adjusting the Li/Mn mole ratio at Li/Mn=0.5 and then followed by sintering at 800℃for 10 h, a well-crystallized spinel LiMn_2O_4 positive material with a good electrochemical performance was prepared as well. The first discharge capacity was measured to be 132.7 mAh·g~(-1) at 0.2C and 123.9 mAh·g~(-1) at 0.5C, respectively.
     It was proved that the novel method of redox reactions accompanied by multiphase transformation for the preparation of ultra-fine powder materials is technically reliable and practically feasible. The products with high quality and excellent performance can be obtained with particle size and morphology being easily controllable. Simple operation and low production cost are, of course, the other distinct features of the technology. Two commercial production lines with capacities of 5000 t Mn_3O_4 and 500 t LiCoO_2 per year have been established based on the developed new technology, respectively, and a great financial benefit has been made in industry. There is still a great potential to improve the preparation of spinel LiMn_2O_4 and achieve the commercial production of LiMn_2O_4. It is of bright prospect to apply the new technology in the preparation of other ultra-fine powder materials.
引文
[1]黄兴章,科技日报,2001-8-10
    
    [2]P-G.德热纳,J.巴杜著(卢定伟等译).软物质与硬科学.长沙:湖南教育出版社,2000-8
    
    [3]毋伟,陈建峰,卢寿慈编著.超微粉体表面修饰.1-2,北京:化学工业出版社,2004.1-52
    
    [4]郑水林编著.超微粉体加工技术与应用.1-2,北京:化学工业出版社,2005.1-130
    
    [5]杨艳利,华贲,徐文东.低温粉碎橡胶技术在我国的发展前景.化工进展,2006,25(6):663-666
    
    [6]陈海焱,潘成君.低温粉碎系统的研究.西南工学院学报,2002,17(1):42-45
    
    [7]李蒙沂,袁秀玲.用低温粉碎法生产精细胶粉技术的进展.低温与超导,2001,29(2):26-29
    
    [8]王平,郑少华,苏登成.几种无机纳米粒子在润滑油中抗磨性对比研究.润滑与密封,2006,(9):157-159
    
    [9]国秋菊,郑少华,陶文宏.纳米SiO_2和MgO在润滑油中的抗磨减摩性.润滑与密封,2006,(5):44-46
    
    [10]黄仁和,王力.纳米石墨片制备及修饰的研究.山东科技大学学报:自然科学版,2005,24(3):14-17
    
    [11]王志成,江晓红,石晓琴.爆炸法合成纳米碳集聚体和纳米金刚石的EPR研究.波谱学杂志,2004,21(4):427-434
    
    [12]卢怡,朱珍平,吴卫泽.催化辅助爆炸法合成碳纳米管.高等学校化学学报,2003,24(6):1063-1066
    
    [13]乔小晶,张同来,任慧.爆炸法制备膨胀石墨及其干扰性能.火炸药学报,2003,26(1):70-73
    
    [14]吴卫泽, 朱珍平.热处理对爆炸法制备的碳包裹碳化铁钠米颗粒的影响.新型炭材料,2002,17(4):7-12
    
    [15]李静,吴季怀,林建明.铬掺杂的铌镧酸的合成及光催化性能研究.化学工程与装备,2006,(2):8-11
    
    [16]宓锦校,毛少瑜.过渡金属和主族元素硼磷酸盐体系的研究.厦门大学学报:自然科学版,2001,40(2):366-374
    
    [17]薛艳杰,张莉,陈娜.Nd_(0.5)Sr_(0.4)Pb_(0.1)Mn_(0.96)Fe_(0.04)O_3晶体结构的中子衍射研究.中国原子能科学研究院年报,2002,(1):59-63
    
    [18]施立发,黄进峰,赵光普.高压富氧下几种高温合金的燃烧特征和性能研究.热加工工艺,2007,36(4):26-29
    
    [19]周育先,张联盟,沈强.SHS合成Ni3Al的粉碎及其微细化机制.武汉理工大学学报,2003,25(11):36-39
    
    [20]步文博,徐洁.AlN-SiC复合超微粉制备技术的研究进展.材料导报,2002,16(3):30-33
    
    [21]陈兴权,于慧杰.超临界流体快速膨胀法制备物质微粉Ⅱ布洛芬微粉混悬剂质量评价.中国医药工业杂志,2002,33(7):328-329
    
    [22]牟善勇,王秀峰,江洪涛.RESS技术在无机粉体制备中的应用.陶瓷(咸阳),2002,(2):21-24
    
    [23]陈兴权,于慧杰.超临界CO_2快速膨胀法制备布洛芬细颗粒工艺过程的研究.宁夏石油化工,2001,20(4):16-18
    
    [24]马荣骏,邱电云.湿法制备纳米级固体粉末材料的进展.湿法冶金,2001,20(1):1-8
    
    [25]乔吉超,胡小玲,张团红.溶剂蒸发法制备药物微胶囊研究进展.化工进展,2006,25(8):885-889
    
    [26]段友容,张志荣,唐永刚.PELGE纳米粒的制备及影响粒径大小的因素.四川大学学报:医学版,2005,36(1):115-118
    
    [27]余家国,余济美,程蓓.高光活性纳晶二氧化钛粉末的溶剂蒸发诱导结晶方法制备与表征.中国科学:B辑,2003,33(4):280-286
    
    [28]刘军,徐成海,窦新生.冷冻干燥法制备氢氧化铜纳米粉.材料与冶金学报,2006,5(1):50-52
    
    [29]高雪艳,凌程凤,谈技.冷冻干燥法制备纳米氧化镁条件的研究.海湖盐与化工,2005,34(5):10-11
    
    [30]陈汝芬.宋秀芹.冷冻干燥法制备(Y_2O_3·MgO)-ZrO_2超微粉.稀有金属,2004,28(4):635-637
    
    [31]童培云,席晓丽,蒋亚宝.冷冻干燥技术制备超微粉体的研究进展.粉末冶金工业,2007,17(2):45-50
    
    [32]翟立力,席晓丽,聂祚仁.冷冻干燥法制备超微镍粉的研究.粉末冶??金工业,2006,16(3):10-13
    
    [33]罗君航,张孝彬,李昱.Fe/Mo/MgO冻凝胶催化剂大规模合成单壁纳米碳管,材料科学与工程学报,2006,24(4):561-564
    
    [34]于卫强,张修银.化学沉淀法制备纳米氧化锆的研究进展.口腔材料器械杂志,2007,16(2):83-85
    
    [35]肖劲,万烨,周峰.尿素均匀沉淀法制备超微α-Al_2O_3粉体.中国有色金属学报,2007,17(5):783-788
    
    [36]刘海峰,孙红娟.均匀共沉淀法制备掺锡α-Fe_2O_3粉体及其气敏性能研究.传感技术学报,2007,20(5):965-969
    
    [37]郭建,王志华,陶栋梁.直接沉淀法中不同晶型钛酸锌的X射线粉末衍射研究.光谱学与光谱分析,2007,27(5):111024-1028
    
    [38]周宏明,易丹青,肖来荣.化学沉淀法制备CeO_2-La_2O_3-ZrO_2陶瓷粉末.中国有色金属学报,2007,17(2):265-269
    
    [39]王开军,胡劲,刘建良.醇水共沉淀法制备氧化锆超微粉末及团聚控制.无机盐工业,2007,39(3):25-27
    
    [40]贺干武,刘应亮,张俊文.沉淀法合成纳米晶长余辉材料Y2O2S:Eu^3+,Ti.无机化学学报,2007,23(2):315-318
    
    [41]张文魁,黄娜,黄辉.均匀沉淀法制备片状结构α-Ni(OH)_2.中国有色金属学报,2007,17(1):166-171
    
    [42]张超武,李娟莹.共沉淀法制备羟基磷灰石影响因素的研究.材料导报,2006,20(11):390-392
    
    [43]卢旭东,姜承志,邵忠财.水解沉淀法制备纳米TiO_2及其光催化性能研究.化学与生物工程,2006,23(11):31-32
    
    [44]彭东阳,吴萍,杜洪明.化学共沉淀法制γ'(Fe1-xNix)4N粉末的微结构及磁性研究.材料科学与工程学报,2006,24(6):880-882
    
    [45]韩冰,李志宏.沉淀法制备纳米α-Al_2O_3的工艺.化学工业与工程,2006,23(6):512-515
    
    [46]陈惠,王建明.络合沉淀法制备Al取代α-Ni(OH)_2的正交实验研究.电化学,2002,08(1):54-59
    
    [47]邢明铭,曹望和,付姚.络合沉淀法合成纳米Y_2O_3:Yb,Er及其上转换发光性能.功能材料,2006,37(09):1375-77
    
    [48]龙海云,李芬芳,樊玉川.水解法制备纳米二氧化钛.湖南有色金属,2002,22(01):13-15
    
    [49]周双六,朱其永.金属醇盐水解法制备纳米氧化物LiAlO_2.硅酸盐通报,2005,24(3):25-28
    
    [50]谭俊茹,沈腊珍,付贤松.尿素水解法制备(1-x)SnO_2·xSb_2O_3导电颜料的研究.硅酸盐通报,2004,23(1):45-49
    
    [51]王焕平,张启龙,杨辉.溶胶~凝胶法制备(Ca1-xMgx)SiO_3陶瓷及其微波介电性能.物理化学学报2007,23(4):609-614
    
    [52]付芳,贾晓林,张海军.溶胶-凝胶和微波碳热还原氮化法合成β~sialon超微粉.硅酸盐学报,2007,35(3):317-321
    
    [53]陈振宁 程世婧 刘欣荣.水热法合成纳米粉体LiNbO_3及其烧结体介电特征.传感技术学报,2006,19(05B):2307-2309
    
    [54]吁霁,刘兴泉.铌酸锂多晶粉体的水热合成及表征.高等学校化学学报2005,26(4):595-598
    
    [55]邹晨,金向朝,鲍婕.水热法制备四方相钛酸钡纳米粉末的工艺研究.绝缘材料,2004,37(2):25-27
    
    [56]徐峙晖,赖琼钰,吉晓洋.微乳液法合成LiFePO_4/C正极材料及其电化学性能.无机化学学报,2006,22(9):1610-1614
    
    [57]马天,杨金龙,张立明.微乳液法制备球形氧化锆粉体及其分散特性的研究.无机化学学报,2004,20(4):121-127
    
    [58]骆锋,阮建明,万千.微乳液法制备纳米二氧化硅粉末工艺的研究.硅酸盐通报,2004,23(5):48-52
    
    [59]晋传贵,檀杰.化学还原法制备金属镍纳米颗粒.安徽工业大学学报,2007,24(1):3336-38
    
    [60]程继贵,弓艳飞,宋鹏.介孔CeO_2的化学沉淀法合成及表征.中国有色金属学报,2006,16(12):2126-2631
    
    [61]陕绍云,杨建锋,高积强.用碳热还原法制备多孔氮化硅陶瓷.无机材料学报,2006,21(4):99913-918
    
    [62]袁林生,沈晓冬,崔升.液相还原法制取纳米银粉的研究.电子元件与材料,2006,25(6):40-42
    
    [63]鲍久圣,刘同冈,杨志伊.蒸发冷凝法制备纳米粉体反应容器中的温度场研究.机械科学与技术(西安),2006,25(11):1334-1337
    
    [64]魏胜,王朝阳.蒸发冷凝法制备纳米Al粉及其热反应特性研究.原子能科学技术,2002,36(4):367-370
    
    [65]刘兴昉,黄启忠,苏哲安.化学气相反应法制备SiC涂层.硅酸盐学??报2004,32(7):906-910
    
    [66]钟炜,杨君友,段兴凯.电弧等离子体法在纳米材料制备中的应用.材料导报,2007,21(F05):14-16
    
    [67]张现平,张志煜,崔作林.氢电弧等离子体法制备碳包铁纳米粒子.材料科学与工程学报,2004,22(4):596~598
    
    [68]唐斌,邓宏,税正伟.CVD法制备高质量ZnO纳米线及生长机理.人工晶体学报,2007,36(2):293-296
    
    [69]陈磊,黄永攀,浦坦.激光法制备纳米氮化硅及其光谱特性研究.量子电子学报,2006,23(2):268-272
    
    [70]尹衍升,刘英才,李静.LICVD法纳米硅制各过程中的成核及生长.2人工晶体学报,2004,33(4):1-5
    
    [71]潘其经.四氧化三锰的性质、用途及质量标准.中国锰业,1998,16(2):43-45
    
    [72]伍喜庆,丁九生.四氧化三锰的制备方法.中国锰业,1996,14(1):37-41
    
    [73]吴胜云,朱春华.四氧化三锰的制备方法及市场展望.中国锰业,1997,15(4):49-51
    
    [74]潘其经.四氧化三锰的制备方法与发展前景.中国锰业,1998,16(3):51-55
    
    [75]汤林,陈权启,黄可龙.水热法四氧化三锰超微粉体的研制与表征.矿冶工程,2003,23(2):63-65
    
    [76]张三田.用原生锰矿石制取高纯四氧化三锰.中国锰业,2000,18(3):22-24。
    
    [77]陈飞宇,梅光贵,谭柱中.硫酸锰溶液制备电子级四氧化三锰的研究.中国锰业,2003,21(3):14-16
    
    [78]薛娟琴,王成刚,小勇.以硫酸锰为原料制备四氧化三锰的理论分析.西安建筑科技大学学报,2000,32(3):297-299
    
    [79]银瑰,曾维勇,宁杨.低硒四氧化三锰制备新方法研究.矿冶工程,2004,24(2):59-60
    
    [80]王积森,孙金全,鲍英.氧化锰纳米带的合成研究.山东科技大学学报:自然科学版2003,22(2):27-29
    
    [81]ChangLuSHAO HongYuGUAN ShangBinWEN.Preparation of Mn3O4Nanofibres via An Electrospinning Technique.中国化学快报:英文版2004,15(4):??471-474
    
    [82]杨则恒,张卫新,许俊.溶剂热合成法制备Mn_3O_4纳米粉体.应用化学,2005,22(7):722-725
    
    [83]唐爱东黄可龙.Mn_3O_4的溶剂热法制备及晶粒生长动力学研究.无机化学学报,2005,21(6):929-932
    
    [84]董俊.高品质Mn3O4粉末的制备.贵州大学学报:自然科学版,2001,18(2):151-153
    
    [85]连锦明,童庆松.微晶电解二氧化锰制备Mn_3O_4的研究.吉林化工学院学报,2002,19(3):20-23
    
    [86]汤林,陈权启.水热法四氧化三锰超微粉体的正交实验设计及讨论.精细化工中间体,2003,33(1):28-30
    
    [87]田甜,罗红玉,杨超.用软锰矿直接制备高纯高比表面四氧化三锰.地球科学:中国地质大学学报2007,32(1):119-122
    
    [88]曹栋,徐旺生,伍锦红.相转变法由软锰矿制备磁性四氧化三锰工艺.无机盐工业,2007,39(1):31-33
    
    [89]田高,吴超,陈文,周静.有序介孔氧化硅孔道氧化锰团簇组装研究.功能材料2005,36(7):1080-1082
    
    [90]汤晓壮,谭柱中,潘其经.用金属锰粉湿法制取四氧化三锰的理论和实践.中国锰业,1997,15(1):42-44。
    
    [91]张野.四氧化三锰超微粉体的制备.金属矿山,2001,7:22-23
    
    [92]汤晓壮,潘其经.悬浮液氧化法制取四氧化三锰的反应速率.中国锰业,2002,20(1):4-7
    
    [93]何志奇 于利红 郑曦.球形钴酸锂的乳液法合成及其结构、性能研究.化学学报,2005,63(24):2185-2188
    
    [94]黄祖飞,魏英进,刘伟.溶胶~凝胶法制备LiCoO2薄膜的研究.高等学校化学学报,2004,25(5):810-813
    
    [95]贺益,陈召勇.类凝胶法制备锂离子二次电池正极材料镍钴酸锂.合成化学,2001,9(2):142-144
    
    [96] Mizushima K., Jones P. C, Wiseman P. J., et al. Li_xCoO_2(0    
    [97] Junji Akimoto, Yoshito Gotoh, Yoshinao Oosawa. Synthesis and structure refinement of LiCoO_2 single crystals[J]. Journal of solid State Chemistry, 1998, 141:??298-302
    
    [98] Euh-Duck Jeong, Mi-Sook Won, Yoon-Bo Shim. Cathodic properties of a lithium-ion secondary battery using LiCoO_2 prepared by a complex formation reaction [J]. Journal of Power Sources, 1998, 70: 70-77
    
    [99] Kang G. S., Kang Y. S., Ryu S., et al. Electrothemical and structural properties of HT-LiCoO_2 prepared by the citrate sol-gel method[J]. Solid State Ionics, 1999, 120:155-161
    
    [100] Shao-Horn Y., Hackney A. S., Johnson S. C, et al. Structural feature of low-temperature LiCoO_2 and acid-delithiated products [J]. Journal of Solid State Chemistry, 1998,140:116-127
    
    [101] Garcia B., Farcy J., Pereira-Ramos P. J. Electrochemical properties of low temperature crystallized LiCoO_2[J]. J. Electrochem Soc, 1997,144(4): 1179-1184
    
    [102] Wolverton C, Zunger Alex. Prediction of Li intercalation and battery voltages in layered vs. cubic Li_xCoO_2 [J]. J Electrochem Soc, 1998, 145(7): 2424-2431
    
    [103] Garcia B, Farcy J., Pereira-Ramos P. J. Low temperature cobalt oxide as rechargeable cathodic material for lithium batteries[J]. Journal of Power Sources, 1995, 54: 373-377
    
    [104]高虹,翟玉春,翟秀静.锂离子蓄电池阴极材料LiCoO_2的合成[J].中国有色金属学报,1998,8(增刊):185-187
    
    [105]唐新村等.低热固相反应法制备锂离子电池正极材料LiCoO_2[J].功能材料,2002,33(2):190-192
    
    [106] Peng S. Z., Wan R. C, Jiang Y. C. Synthesis by sol-gel process and characterization of LiCoO_2 cathode materials[J]. Journal of Power Sources, 1998, 72: 215-220
    
    [107] Myung T. S., Umagai K. N., Komaba S., et al. Preparation and electrochemical characterization of LiCoO_2 by the emulsion drying method[J]. Journal of Applied Electrochemisty, 2000, 30: 1081-1085
    
    [108] Larcher D., Palacin R. M., Ammtucci G. G, et al. Electrochemically active LiCoO_2 and LiNiO_2 made by cationic exchange under hydrothermal conditions [J]. J Electrochem Soc, 1997,144(2):408-417
    
    [109]杨书廷,贾俊华,陈红军等.微波-高分子网络法合成微米级LiCoO_2[J].电源技术,2001,25(6):410-412
    
    [110] Kumta N. P., Gallet K., Waghray A., et al. Synthesis of LiCoO_2 powders for lithium-ion batteries from precursors derived by rotary evaporation [J]. J. PowerSources, 1998, 72: 91-98
    
    [111] Huang D, et al. Solid solution: New cathodes for next generation lithium-ion batteries[J]. Advanced Battery Technology, 1998, (11): 23-27
    
    [112]吴国良,刘人敏等.LiCoO_2正极材料的制备及其应用研究[J].电池,2000,30(3):105-107
    
    [113]李阳兴等.喷雾干燥法制备LiCoO_2超微粉[J].无机材料学报,1998,14(4):657-660
    
    [114] Yazami R, et al. High performance LiCoO_2 positive electrode material [J]. J Power Sources, 1995, 54(2): 389-392
    
    [115]刘兴泉等.氧化还原溶胶-凝胶法制备LiCoO_2[J].电池,2002,32(5):258-260
    
    [116]齐力等.草酸沉淀法合成LiCoO_2正极材料.功能材料,1998,29(6):623-625
    
    [117] Amatucci G. G., Rarascon J. M., Larcher D., et al. Synthesis of electrochemically active LiCoO_2 and LiNiO_2 at 100℃[J]. Solid State Ionics, 1996, 84(3-4): 169-180
    
    [118] Kumata P. N., et al. Synthesis of LiCoO_2 powders for lithium-ion batteries from precursors derived by rotary evaporation[J]. J Power Sources, 1998, 72: 91-98
    
    [119]陶颖,陈振华,黄尉庄.软溶胶-凝胶法制备LiCoO_2薄膜[J].材料科学与工程,19(4):29-41
    
    [120] Larcher D., et al. Electrochemically active LiCoO_2 and LiNiO_2 made by cationic exchange under hydrothermal conditions [J]. J Electrochem Soc, 1997, 144(2): 408-417
    
    [121]习小明,黄焯枢.一种制备锂钴氧化合物(LiCoO_2)的湿化学方法.ZL00126736.1,2000.12.
    
    [122] Haitan Huang, G. V. Subba Rao, B. V. R. Chowdari. LiAl_xCo_(1-x)O_2 as 4V cathodes for lithium ion batteries[J]. Journal of Power sources, 1999, 81-82: 690-695
    
    [123] Buta S., Morgan D., et al. Phase Separation Tendencies of Aluminum-Doped Transition-Metal Oxides(LiAl_(1-x)M_xO_2)in the α-NaFeO_2 Crystal Structure[J]. Journal of The Electrochemical Society, 1999,146(12): 4335-4338
    
    [124] Alcantara R., Jumas C. J., Lavela P., Olivier-Fourcade J., Perez-Vicente??C, Tirado L. J. X-ray diffraction Fe Mossbauer and setp potentianl electrochemical spectroscopy study of LiFe_yCo_(1-y) compounds[J]. Journal of Power Sources 1999, 81-82: 547-553
    
    [125] Zhaolin Liu, Aishui Yu, Jim Y Lee. Synthesis and characterization of LiNi_(1-y)Co_xMn_yO_2 as the cathode materials of secondary lithium batteries[J]. Journal of Power Sources 1999, 81-82: 416-419
    
    [126] George Ting-Kuo, Kuo-Song Chen. Synthesis, characterization, and cell performances of LiNiVO_4 cathode materials prepared by a new solution precipitation method[J]. Journal of Power Sources 1999, 81-82: 467-471
    
    [127] Alcantara R., Lavela P., and Tirado L. J. Sturcture and Electrochemical Properties of Boron-Doped LiCoO_2[J]. Journal of Solid State Chemistry, 1997, 134: 265-273
    
    [128] Tukamoto H., et al. Electronic conductivity of LiCoO_2 and its enhancement by magnesium doping[J]. J Electrochem Soc., 1997,144(9): 3164-3168
    
    [129] Arstrog A. R., Alastair D. R., Robert G, et al. The layered intercalation compounds Li(Mn1-yCoy)O_2: positive electrode materials for lithium-ion batteries[J]. J Solid State Chemistry, 1999, 145(2): 549-556
    
    [130]能间俊之,古川修弘.日本特许公报,特开平05~82131,1993
    
    [131] Akihisa K., Kazunori T., Taro I., et al. Synthesis and electrochemical properties of LixCo0.5Mn0.5O2[J]. Solid State Ionics, 2002, 149(1-2): 39-45
    
    [132] Seung-Taek Myung, Shinichi Komaba, Naoaki Kumagai. Hydrothermal Synthesis of Orthorhombic LiCo_(1-x)Mn_xO_2 and Their Structure Changes during Cycling[J]. Journal of The Elecrochemical Society, 2002,149(10): A1349-A1357
    
    [133] Koichi Numata, Chie Sakaki, Shoji Yamanaka. Synthesis and characterization of layer structured solid solution in the system of LiCoO_2-Li_2MnO_3. Solid Sstate Ionics, 1999,117: 257-263
    
    [134]刘人敏,罗江山,王新波.锂离子蓄电池用活性正极材料LiCo_(1-x)Ni_xO_2[J].中国有色金属学报,1997,7(3):34-37
    
    [135]李阳兴,万春荣,姜长印,朱永贝睿.锂离子电池用正极材料Li_xCo_(0.8)Ni_(0.2)O_2[J].功能材料,1999,32(1):59-61
    
    [136]张胜利,韩周祥,宋文顺,余仲宝.LiCo_xNi_(1-x)O_2的合成及其性能[J].电池,1999,29(2):61-63
    
    [137]韩景立,刘庆国.锂镍钴复合氧化物锂离子电池正极材料的研究[J].电??化学,2000,6(4):469-472
    
    [138]刘国强,徐宁,曾潮流,杨柯.锂离子电池正极材料LiCo_xNi_(1-x)O_2的制备和性能[J].金属学报,2003,39(2):209-212
    
    [139]何莉萍,陈宗璋等.低热固相反应法在多元金属复合物合成中的应用——锂离子电池正极材料LiCo_(0.8)Ni_(0.2)O_2的合成、结构和电化学性能研究[J].无机化学学报,2002,18(16):591-596
    
    [140]田彦文.正极材料Li_xNi_(1-y)Co_yO_2的制备及其性能[J].电池,1999,29(3):103-106
    
    [141]邹正光.锂离子蓄电池正极材料LiNi_xCo_(1-x)O_2合成及电化学性能[J].电源技术,2001,25(5):343-345
    
    [142]郝万君,陈岗,史延慧.Al掺杂对Li(Al_yCo_(1-y))O_2材料结构的影响[J].高等学校化学学报,2001,22(2):175-178
    
    [143] Tukamato H., West A. R. J Electrochem. Soc[J]. 1997,144: 3164-3168
    
    [144] Mladenov M., Stoyanova R., Zhe Cheva E., et al. Electrochem Communications, 2001, 3: 410-416
    
    [145]李畅,徐晓光,陈岗等.高电导率LiAl_(0.3)Co_(0.7-x)Mg_xO_2的制备与表征[J].高等化学学报,2003,24(3):462~464
    
    [146]徐晓光.Mg,Al掺杂对LiCoO_2体系电子结构影响的第一原理研究[J].物理学报,2004,vol.53(1):210-213
    
    [147]小田修司,大崎隆久.日本特许公报,特开平05-36411,1993
    
    [148]三岛洋光.日本特许公报,特开平04-301366,1992
    
    [149]Yoshio Idota.EPApplication.EP0567149,1993
    
    [150]邓斌,阎杰.LiCoO_2掺杂稀土元素研究[J].电池,2003,33(2):74-76
    
    [151] M.P.J.Peeters, M.J.Van Bommerl, P.M.C.Neilen-ten Wolde, et al. A 6Li, 7Li and 59Co MAS NMR study of rock salt type Li_xCoO_2(0.48≤x≤1.05) [J]. Solid State Ionics, 1998, 112:41-52
    
    [152] Carewska M, Scaccia S., Croce Fausto, et al. Electrical conductivity and Li NMR studies of Li_(1-y)CoO_2[J]. Sold State Ionics, 1997, 93: 227-237
    
    [153] Imanishi N., Fujii M., Hirano A., et al. Structure and electrochemical behavior of Li_xCoO_2 (x>1)treated under high oxygen pressure[J]. Solid State Ionics, 2001,140:45-53
    
    [154] ZhaoXiang Wang, Lijun Liu, Liquan Chen, Xuejie Huang. Structural and electrochemical characterizations of surface-modified LiCoO_2 cathode materials for??Li-ion batterie[J]. Solid State Ionics, 2002, 148: 335-342
    
    [155] Kannan. A. M, et al. High Capacity of Surface-Modified LiCoO_2 Cathodes for Lithium-Ion Batteries[J]. Electrochemical and Solid-State Letters, 2003, 6(1): A16-18
    
    [156]李运姣,常建卫,杨敏.锂离子电池正极材料锂锰氧化物的固相合成研究进展.功能材料,2002,33(6):578-580.
    
    [157] Atsuo Yamada,Masahiro Tanaka,Koichi Tanaka, et al. Jahn-Teller instability in spinel Li-Mn-O. J powers sources,1999,81-82:73-78
    
    [158]徐仲榆,苏玉长,王要武.锂锰氧材料在充放电过程中的结构变化.电池,2000,30(3):101-104
    
    [159] Xia Y., Zhou Y., Yoshio M. Capacity fading on cycling of 4V Li/LiMn_2O_4 cells. J Electrochem Soc, 1997, 144: 2593-2600
    
    [160] Takayuki Aoshima, Kenji Okahara, Chikara Kiyohara, et al. Mechanisms of manganese spinels dissolution and capacity fade at high temperature. J. powers sources, 2001, 97-98: 377
    
    [161] Kaoru Dokko, Soichi Horikoshi, Takashi Itoh, et al. Microvoltammetry for cathode materials at elevated temperatures: electrochemical stability of single particles. J. powers sources, 2000: 109
    
    [162] Atsuo Yamada, Masahiro Tanaka, Koichi Tanaka, et al. Jahn-Teller instability in spinel Li-Mn-O. J. Powers Sources, 1999, 81-82: 73-78
    
    [163]吕正中,周震涛.锰酸锂充放电过程中的化学变化.电源技术,2004,28(5):270
    
    [164] Xia Y, Zhou Y, Yoshio M. Capacity fading on cycling of 4V Li/LiMn_2O_4 cells. J. Electrochem. Soc, 1997,144: 2593-2600
    
    [165] Takayuki Aoshima,Kenji Okahara, Chikara Kiyohara, et al. Mechanisms of manganese spinels dissolution and capacity fade at high temperature. J. Powers Sources, 2001, 97-98: 377
    
    [166] Kaoru Dokko, Soichi Horikoshi, Takashi Itoh, et al. Microvoltammetry for cathode materials at elevated temperatures: electrochemical stability of single particles. J. Powers Sources, 2000, 90(1), 109-115
    
    [167] Hisayuki Yamane, Takao Inoue, Miho Fujita, et al. A causal study of the capacity fading of Li_(1.01)Mn_(1.99)O_4 cathode at 80℃, and the suppressing substances of its fading. J. Powers Sources, 2001, 99: 60-65
    
    [168]张国均,姜长印,万春荣等.以Mn_3O_4为前驱体的LiMn_2O_4及其电化学性能.无机材料学报,2001,16(4):667-671
    
    [169]孙玉城,卢世刚,刘人敏.正尖晶石LiMn_2O_4的合成与电化学性能研究.电源技术,2000,24(5):277-279
    
    [170] E. Zhecheva, R. Stoyanova, M. Gorova, et al. Co/Mn distribution and electrochemical intercalation of Li into Li[Mn_(2-y)Co_y]O_4 spinels, 0    
    [171] Yoshio M., Noguchi H,Miyashita T., et al. Three V or 4V: Li-Mn composite as cathode in Li batteries prepared by LiNO_3 method as Li source. J. Power Source, 1995, 54:483-489
    
    [172] Xia Y. J., Hideshima Y, Nagamo M., et al. Studies on Li-Mn-O spinel system (obtained from melt-impregnation method) as a cathode for 4V lithium batteries. J. Power Source, 1998, 74(1): 24-28
    
    [173]卢集政,赖琼钰.锂脱嵌化合物的微波烧结研究.化学研究与应用.1998,10(6):620-623
    
    [174]杨书廷,贾俊华,陈红军.亚微米级正极材料LiMn_2O_4的合成.电池,2002,32(5):261-263
    
    [175] Sun Y. K., Kim D. W., Chio Y. M. Synthesis and characterization of spinel LiMn_(2-x)Ni_xO_4 for lithium/polymer battery applications. J. powers sources, 1999, 79(2): 231-237
    
    [176] B. J. Hwang, R. Santhanam, S. G. Hu. Synthesis and characterization of multidoped lithium manganese oxide spinel, Li_(1.02)Co_(0.1)Ni_(0.1)Mn_(1.8)O_4, for rechargeable lithium batteries. J . Powers Sources, 2002, 108: 250-255
    
    [177] Myung S. T, Komaba S., Kumaqai N. Enhanced structure stability and cycle ability of Al-doped LiMn_2O_4 spinel synthesized by the Emulsion drying method. J. Electrochem Soc, 2001, 148(5): A482-A489
    
    [178] Chung-Hsin Lu, Hsien-Cheng Wang. Effectsof Cobalt-ion doping on the electrochemical properties of Spinel lithium manganese oxide prepared via a reverse-micelle route. J. of the European Ceramic Society, 2003,23: 865-871
    
    [179]刘兴泉,李庆,于作龙.锂离子电池阴极材料Li_(1+x)Mn_2O_4的水热合成及表征.合成化学,1999,7(4):382-383.
    
    [180]李运姣,李洪桂,赵中伟等.一种锂离子电池正极材料的湿化学合成方法.中国专利,02114391.9,2004.3.17
    
    [181]唐致远,李建刚,薛建军.锂电池正极材料LiMn_2O_4的改性与循环寿命.化学通报,2000,8:10-14
    
    [182] Gao Y., Dahn J. R. Synthesis and characterization of Li_(1+x)Mn_(2-x)O_4 for Li-ion battery applications. J. Electrochem. Soc, 1996,143(1): 140-144
    
    [183]刘培松,刘兴泉,李庆等.液相法合成锂离子电池正极材料Li_(1+x)Mn_2O_4.电化学,2000,6(3):363-368
    
    [184] She-huang Wu, Hsiang-Jui Su. Electrochemical characteristics of partially cobalt-substituted LiMn_(2-y)Co_yO_4 spinels synthesized by Pechini process. Materials Chemistry and Phyzics, 2002, 78: 189-195
    
    [185] S. Nieto, S. B. Majumder, R. S. Katiyar. Improvement of the cycleability of nano-crystalline lithium manganate cathodes by cation co-doping. J. Powers Sources, 2004, 136:88-98
    
    [186] Hsien-Cheng Wang, Chung-Hsin Lu. Dissolution behavior of chromium-ion doped spinel lithium manganate at elevated temperatures. J. Powers Sources, 2003,11-121: 738-742
    
    [187] Masaki Yoshio, Yongyao Xia, Naoki Kumada, et al. Storage and cycling performance of Cr-modified spinel at elevated temperatures. J. Powers Sources, 2001, 101:79-85
    
    [188] Jong H. Lee, Jin K. Hong, Dong H. Jang, et al. Degradation mechanisms in doped spinels of LiM_(0.05)Mn_(1.95)O_4(M=Li,B,Al,Co,and Ni) for Li secondary batteries. J. powers sources, 2000, 89: 7-14
    
    [189] Youngjoon Shin, A. Manthiram. Influence of microstructure on the electrochemical performance of LiMn_(2-y-z)Li_yNi_zO_4 spinel cathodes in rechargeable lithium batteries. J. Power Sources, 2004, 126: 169-174
    
    [190] C. Julien, Ziolkiewicz, Lemal, et al. Synthesis,structure and electrochemistry of LiMn_(2-y)Al_yO_4 prepared by a wet-chemistry method. J. Mater Chem.,2001, 11: 1837-1842
    
    [191] Bing-Joe, Hwang, Yin-Wen Tsai, Raman Santhanam, et al. Structure transformation of LiAl_(0.15)Mn_(1.85)O_4 cathode material during charging and discharging in aqueous solution. J. Powers Sources, 2003, 119-121: 727-732
    
    [192] A. Veluchamy, H. Ikuta, M. Wakihara. Boron-substituted manganese spinel oxide cathode for lithium ion battery. Solid State Ionics, 2001, 143: 161-171
    
    [193] Sang Ho Park, Ki Soo Park, Sung Sik Moon, et al. Synthesis and??electrochemical characterization of Li_(1.02)Mg_(0.1)Mn_(1.9)O_(3.99)S_(0.01) using sol-gel method. J. Power Sources, 2001, 92: 244-249
    
    [194] Yuka Ito, Yasushi Idemoto, Yuka Tsunoda, et al. Relation betweencrystal structures, electronic structures, and electrode performances of LiMn_(2-x)M_xO_4(M=Ni,Zn) as a cathode active material for 4V secondary Li batteries. J. Power Sources, 2003, 119-121: 733-737
    
    [195] Youhei Shiraishi, Izumi Nakai, Koji Kimoto, et al. EELS analysis of electrochemically deintercalated Li_(1-x)Mn_2O_4 and substituted spinels LiMn_(1.6)M_(0.4)O_4(M=Co,Cr,Ni). J. Power Sources, 2001, 97-98: 461-464
    
    [196] Amatucci G. G, Pereira, Zheng T.,et al. Failure Mechanism and improvemeng of the elevated temperature cycling of LiMn_2O_4 compound through the use of the LiAlxMn_(2-x)O_(4-z)F_z solid solurion. J. Electrochem. Soc, 2001, 148(2): A171-A182
    
    [197] Chi-Hwan Han, Young-Sik Hong, Hyun-Sil, et al. Electrochemical properties of iodine-containing lithium manganese oxide spinel. J. Power Sources, 2002,111: 176-180
    
    [198]周振平,赵世玺,夏君磊等.LiMn_2O_4正极循环性能的改善.电池,2001,31(6):268-270
    
    [199]张仁刚,赵世玺,夏君磊等.尖晶石LiMn_2O_4的表面改性研究.电化学,2002,8(3):269-274
    
    [200] Zheng Z. S.,Tang Z. L, Zhang Z. T., et al. Surface modification of Li_(1.03)Mn_(1.97)O_4 spinels for improved capacity retention. Solid State Ionics, 2002, 148: 317-321
    
    [201] A. Robert Armstrong, Peter G. Bruce. Synthesis of layered LiMnO_2 as an electrode for rechargeable lithium batteries[J]. Nature, 1996, 381: 499
    
    [202] I. M. Kotschau, J. R. Dahn. In Situ X-Ray Study of LiMnO_2[J]. J. Electrochem Soc, 1998,145(8): 2672-2677
    
    [203] J. N. Reimers, Eric W. Fuller, Erik Rossen. Synthesis and Electrochemical Studies of LiMnO_2 Preparded at Low Temperatures [J]. J. Electrochem Soc, 1993, 140(2): 3396-3401
    
    [204] Y. Shao-Horn, S. A. Hackney, A. R. Armstrong, et al. Structural Characterization of Layed LiMnO_2 Electrodes by Electron Diffraction and Lattice Imaging. J. Electrochem. Soc, 1999,146(7): 2404-2412
    
    [205] L. Croguennec, P. Deniard, R. Brex. Electrochemical Cyclability of Orthorhombic LiMnO_2 Characterization of Cycled Materials. J. Electrochem. Soc, 1997,144(10): 3323-3330
    
    [206] Young-I, Jang, Biying Huang, Haifeng Wang, et al. Electrochemical Cycling-Induced Spinel Formation in High-Charge-Capacity Orthorhombic LiMnO_2[J]. J. Electrochem. Soc, 1999, 146(9): 3217-3223
    
    [207] Young-I 1 Jang, Yet-Ming Chiang. Stability of the monoclinic and orthorhombic phases of LiMnO_2 with temperature,oxygen partial pressure, and Al doping[J]. Solid State Ionics, 2000, 130: 53-59
    
    [208] Young-I 1 Jang, W. Douglas Moorehead, Yet-Ming Chiang. Synthesis of the monoclinic and orthorhombic phases of LiMnO_2 in oxidizing atmosphere [J]. Solid State Ionics, 2002, 149: 201-207
    
    [209] Y. S. Lee, Y. K. Sun, K. Adachi, et al. Synthesis and electrochemical characterization of orthorhombic LiMnO_2 material [J]. Electrochimica Acta, 2003, 48: 1031-1039
    
    [210] B. Ammundsen, J. Desilvestro, T. Groutso, et al. Formation and Structural Properties of Layered LiMnO_2 Cathod Materials[J]. J. Electrochem. Soc, 2000, 147(11): 4078-4082
    
    [211] Z. P. Guo, G. X. Wang, H. K. Liu, et al. Structure and electrochemistry of LiCr_xMn_(1-x)O_2 cathode for lithium-ion batteries[J]. Solid State Ionics, 2002, 148: 359-366
    
    [142]肖婕,詹晖,周运鸿.层状结构LiCr_xMn_(1-x)O_2材料合成电化学性能研究.电化学,2004,10(3):324-329
    
    [213] S. -T. Myung, N. Kumagai, S. Komaba, et al. Preparation and electrochemical characterization of LiCoO_2 by the emulsion drying method[J]. J. Applied Electrochem. 2000, 30: 1081-1085
    
    [214] S. -T. Myung, Shinichi Komaba, Naoaki Kumagai. Synthetic optimization of orthorhombic LiMnO_2 by emulsion-drying method and cycling behavior as cathode material for Li-ion battery. Solid State Ionics, 2002, 150: 199-205
    
    [215] S. -T. Myung, S. Komaba, N. Hirosaki, et al. Emulsion drying preparation of layed LiMn_xCr_(1-x)O_2 solid solution and its application to Li-ion battery cathode material. J. Power Sources, 2003, 119-121: 211-215
    
    [216] Jung-Min Kim, Hoon-Taek Chung. Electrochemical characteristics of??orthombic LiMnO_2 with different degrees of stacking faults. J. Power Sources, 2003, 115: 125-130
    
    [217] Mitsuharu Tabuchi, Kazuaki Ado, Hironori Kobayashi, Hiroyuki Kageyama. Synthesis of LiMnO_2 with α-NaMnO_2-Type Structure by a Mixed-Alkaline Hydrothermal Reaction[J]. J. Electrochem. Soc, 1998, 145(4): L49
    
    [218] Shinichi Komaba, S. -T. Myung, Naoaki Kumagai, et al. Hydrothermal synthesis of high crystalline orthorhombic LiMnO_2 as a cathode material for Li-ion batteries. Solid State Ionics, 2002,152-153: 311-318
    
    [219] Mengqiang Wu, Ai Chen, Rongqiang Xu, et al. Low temperature hydrothermally synthesized nanocrystalline orthorhombic athode material for lithium-ion cells[J]. Microelectronic Engineering, 2003, 66: 180-185
    
    [220]吕光烈,屠小燕,曾跃武.掺Cr层状LiMn_xCr_(1-x)O_2的合成与电化学性能研究.中国储能电池与动力电池及其关键材料学术研讨会,2005,5:70-75
    
    [221] J. M. Paulsen, C. L. Thomas, J. R. Dahn. Layered Li-Mn-Oxide with the O_2 Structure: A Cathod Material for Li-Ion Cells Which Does Not Convert to Spinel[J]. J. Electrochem. Soc, 1999, 146(10): 3560-3565
    
    [222] J. M. Paulsen, D. Larcher, J. R. Dahn. O_2 Structure Li_(2/3)[Ni_(1/3)Mn_(1/3)]O_2: A New Layered Cathode Material for Rechargeable Lithium Batteries. J. Electrochem. Soc, 2000,147(8): 2862
    
    [223] P. Suresh, A. K. Shukla, N. Munichandraiah. Synthesis and Characterization of Novel, High-Capacity, Layered LiMn_(0.9)Ni_(0.05)Fe_(0.05)O_2 as a Cathode Material for Li-ion Cells. Electrochemical and Solid-State Letters, 2005, 8(6): A263-A266
    
    [224] Tom A. Eriksson, Marca M. Doeff. A study of layered lithium manganese oxide cathode materials. J. Powers Sources, 2003, 119-121: 145-149
    
    [225]雷太鸣,汤吴,张克立.层状LiMnO_2的软化学法合成及电化学性能的研究.武汉大学学报(理学版),2004,50(2):165-168
    
    [226]钟辉,许惠,周燕芳.离子交换法制备层状Li_xNi_(0.3)Mn_(0.7)O_2正极材料及其离子交换规律的研究.无机化学学报,2004,20(3):261-266
    
    [227] Alastair D. Robertson, A. Robert Armstrong, Amelia J. Fowkes, et al. Li_x(Mn_(1-y)Coy)O_2 intercalation compounds as electrodes for lithium batteries influence of ion exchange on structure and performance. J. Mater. Chem., 2001,11: 113-118
    
    [228] Seong-Ju Hwang, Hyo-Suk Park, Jin-Ho Park, et al. Variation of chemical bonding nature of layered LiMnO_2 upon delithiation/relithiation and Cr substitution. Solid State Ionics, 2002,151: 275-283
    
    [229]文士美,赵中伟,霍广生.Li-Co-H_2O系热力学分析及E-pH图.电源技术,2005,29(7):423-426
    
    [230]赵中伟,霍广生.Li-Mn-H_2O系热力学分析.中国有色金属学报.,2004,14(11):1926-1933
    
    [231]李运姣,李洪桂,赵中伟.机械活化.湿化学合成LiMn_2O_4的组成、结构与表征.2004.14(F01):112-117
    
    [232]李运姣,洪良仕,李洪桂.Structure and electrochemical performance ofspinel LiMn2O4 synthesized by mechanochemical process.中国有色金属学会会刊:英文版,2005,15(1):171-175
    
    [233]李运姣,李洪桂,孙培梅.LiMn_2O_4的机械活化.湿化学合成机理.功能材料2004,35(2):183-185
    
    [234]李运姣.锂离子电池正极材料锂锰氧化物的温化学合成与表征(博士学位论文),长沙,中南大学,2002
    
    [235]叶大伦,胡建华.实用无机物热力学数据手册(第二版).北京:冶金工业出版社,2002
    
    [236]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2002.
    
    [237]陆文佩主编.无机材料科学基础.武汉:武汉工业大学出版社,P142,P238-254
    
    [238]刘海涛,杨丽,张树军.无机材料合成.北京:化学工业出版社,2003:
    
    [239]J.Y.欧舒编著(王英琛,林猛流,施力田,徐鸿译).液体混合技术.北京,化学工业出版社,1991.1-240
    
    [240]朱骥良,吴申年.颜料工艺学(第二版).北京,化学工业出版社,2002,239-256
    
    [241]都有为,罗河烈.磁记录材料.北京,电子工业出版社,1992
    
    [242]杨熙珍,杨武.金属腐蚀电化学热力学电位-pH图及其应用.北京,化学工业出版社,1991,
    
    [243]沈钟,赵振国,王果庭.胶体与表面化学(第三版).北京,化学工业出版社,1-130
    
    [244]谢高阳,申泮文,徐绍龄.锰分族,铁系,铂系.北京.科学出版社,1-374
    
    [245]李洪桂等编著.湿法冶金学.长沙,中南大学出版社,441-494
    
    [246]刘永辉,张佩芬.金属腐蚀学原理.北京,航空工业出版社.1-84,178-183
    
    陈冠荣,陈褴远,时钧等.化工百科全书(第8卷)[M].北京:化学工业出版社,1994
    
    [247]徐如人、庞文琴主编.无机合成与制备化学.北京,高等教育出版社,P1-13,P59-67,P523-540
    
    [248]3ahbk A M,C_(Te)Фahobckhii B Ф,ЖОХ,1934,4(3):404
    
    [249] В多利伏-多布洛沃尔斯基,Ю В克利门科,矿石物相分析.北京:冶金工业出版社,1956,176-180
    
    [250]Babcan J.Hutn,Listy,1959,14(10):1084
    
    [251]姚元恺,胡树芬,郑震菲,徐素蕊,冶金分析,1982,2(5):16
    
    [252]谢国铮,化学物相分析研究论文集,西安:陕西科学技术出版社,1996:297-301
    
    [253]黄宝贵,黄荣,丁凤华等,分析化学,1981,9(6):674
    
    [254]Pangtony D A,Siddigi A.Talanta,1962,9(10):811
    
    [255]华一新 编著.冶金过程动力学.北京,冶金工业出版社,2004,188-230
    
    [256]洪广言 编著.无机固体化学.北京,科学出版社,2002,186-210
    
    [257]H.y.Sohn M.E.Wadsworth(.郑蒂基译).湿法冶金过程:提取冶金速率过程(146.160).北京:冶金工业出版社,1984
    
    [258]陈敏恒.《化学工程手册(上)》,北京,化学工业出版社,1993
    
    [25 9]Birks,N.High Temperature Oxidation of Metals
    
    [260]王佛松,王夔,陈新滋等.展望21世纪的化学.北京:化学工业出版社.2005
    
    [261]国家自然科学基金委员会工程与材料科学部.无机非金属材料科学(学科发展战略研究报告2006-2010年).北京:科学出版社.2006
    
    [262] DIB YENDU GANGULI MINATI CHATTERJEE CERAMIC PREPARATION: A HAND BOOK KLUWER ACADEMIC PUBLISHERS Boston/Dordrecht/London 1997
    
    [263]中国科学院化学部,国家自然科学基金委员会化学科学部组织编写:展望21世纪的化学工程.北京:化学工业出版社.2004年10月
    
    [264]习小明.生产高纯四氧化三锰的方法.98112699
    
    [265]习小明.生产四氧化三锰的方法.98112698.7
    
    [266]宁孝生,习小明.共晶合成法制取锰锌铁氧体颗粒料.99115479.7
    
    [267] C.N.R.Rao,BRaveau.TransitionMetal Oxides(structure, Properties, and??Synthesis of Ceramic Oxides)New York: WILEY-VCH. 1998
    
    [268]谭柱中,梅光贵,李维健.锰冶金学.长沙:中南大学出版社.546-573.2004
    
    [269]余侃萍,黄宝贵.四氧化三锰中锰的存在价态及料将试样的分析方法.矿冶工程.2004,24(1):58-63
    
    [270]陈志平,章序文,林兴华等,搅拌与混合设备设计选用手册
    
    [271]丁楷如,余逊贤等编著.锰矿开发与加工技术.长沙,湖南科学技术出版社,1992
    
    [272]李同庆.电解二氧化锰的理化特性.电池工业,2007,12(2):109-112,121
    
    [273]朱立才,袁中直,孙峰.γ-MnO_2第一电子放电机理及质子嵌入模型.广东化工,2007,34(3):58-60
    
    [274]夏熙.二氧化锰结构参数与嵌Li^+和H^+的行为.电池,2005,35 (4):276-280
    
    [275]夏熙.二氧化锰的物理、化学性质与其电化学活性的相关(1).电池,2005,35(6):433-436
    
    [276]夏熙.二氧化锰的物理、化学性质与其电化学活性的相关(2).电池,2006,36(1):37-40
    
    [277]夏熙.二氧化锰的物理、化学性质与其电化学活性的相关(3).电池,2006,36(2):118-121
    
    [278]夏熙.二氧化锰的物理、化学性质与其电化学活性的相关(4).电池,2005,35(3):199-203
    
    [279]夏熙.二氧化锰的物理、化学性质与其电化学活性的相关(5).电池,2006,36(4):276-279
    
    [280]夏熙.木合塔尔·依米提.γ-MnO_2结构模型现状与EMD的性能.电池工业,2002,7(3):169-173
    
    [281]ALEX ANDER B, OLEG B Hydrothermal synthesis of LiCoO_2 for lithium rechargeable batteries[J]Solid State Ionic, 2002, 151:259-263
    
    [282]习小明等.科技成果鉴定资料:超微高比表面四氧化三锰工艺技术研究.长沙矿冶研究院,2004,附件:关于四氧化三锰料浆氧化度
    
    [283] http://www.corrosionsource.com/technicallibrary/corrdoctors/index.htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700