用户名: 密码: 验证码:
锂离子电池高容量氧化钴负极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子二次电池具有比能量高、工作电压高、循环寿命长、安全无污染等优点,已成为发展最快和最受重视的高能蓄电池。商业化石墨碳负极材料具有良好的循环性能,但比容量(300~350 mA h g-1)较低,不能满足高比能量电池的发展要求,迫切需要进行新型高容量负极材料的研究和探索。而过渡族金属钴氧化物(CoO、Co_3O_4)的比容量高达700~1000 mA h g-1,很有希望成为一种新型高容量锂离子二次电池负极材料。研究表明,无论钴氧化物纳米颗粒还是纳米管,首次容量损失较大(>30%)及快速的容量衰减限制了此类材料的实际应用。本文采用合成的六方β-Co(OH)2为模板制备了层片状CoO、Co_3O_4材料及其复合负极材料;另外,以酸化处理的碳纳米纤维为模板合成了Co(OH)_2-碳纳米纤维(Co(OH)_2-CNF)前驱体并制备了Co_3O_4-碳纳米纤维(Co_3O_4-CNF)复合负极材料。结果表明,合成的CoO、Co_3O_4及其复合材料很好地改善了电池的首次效率和循环性能。主要工作包括以下几方面:
     1.层片状氧化亚钴的制备及储锂性能研究。在无模板、无表面活性剂的水热条件下,控制反应条件合成了不同尺寸的六方β-Co(OH)_2材料;研究了初始硝酸钴浓度、反应溶液组成、反应温度、反应时间等实验参数对产物形貌的影响。以层片状β-Co(OH)2为模板制备了层片状CoO材料,系统研究了形貌尺寸对CoO材料储锂容量和循环性能的影响。平均直径约为15μm,厚度约6μm层片状CoO电化学性能要比单薄片及纳米CoO要好,100次循环后其容量保持在800 mA h g-1。
     2.纳米、层片状四氧化三钴负极材料制备及储锂性能研究。在异丙醇/水(体积比,1:1)溶液中,合成了α-Co(OH)2前驱体并煅烧制备了纳米Co_3O_4材料,研究了纳米Co_3O_4电化学储锂性能。同时,采用水热-热分解法制备了层片状Co_3O_4材料,研究了层片状Co_3O_4材料电化学性能。结果表明,平均直径约15μm,厚度4~10μm层片状Co_3O_4材料循环性能较好,100次循环后其容量稳定在600 mA h g-1左右。
     3.四氧化三钴-碳纳米纤维复合负极材料制备及电化学性能研究。以酸化处理碳纳米纤维为模板在异丙醇/水溶液中合成了Co(OH)2-CNF前驱体并煅烧制备了Co_3O_4-CNF复合负极材料。详细地研究了前驱体Co(OH)2-CNF煅烧温度对复合材料中Co_3O_4的晶形、尺寸、比表面积及物相转变的影响。Co_3O_4-CNF复合材料的比表面积及碳纳米纤维的含量强烈地影响该系列复合材料的电化学性能。作为锂离子电池负极材料,Co_3O_4-CNF(CNF的百分含量为24.3%)纳米复合材料显示了优良的储锂容量和循环性能(100次循环后容量仍超过880 mA h g-1)。
     4.层片状氧化钴/碳纳米纤维复合材料制备及储锂性能研究。以合成的β-Co(OH)_2/CNF前驱体在氩气或空气氛中煅烧分别制备了层片状CoO/CNF和Co_3O_4/CNF复合材料。层片状CoO/CNF复合材料具有良好的储锂循环性能和高倍率性能。在1 M LiPF6-EC: DMC (1:1,Vol)常规电解液中,与正极材料LiNi0.5Mn1.5O4组成全电池的首次放电平台约2.8 V左右,以CoO/CNF复合材料的重量计算,其首次放电容量为450 mA h g-1,很可能成为一种有希望的、新型高容量的锂离子负极材料。
Lithium-ion batteries are considered as the most promising power sources because of their high potential, high energy density, long cycle life, no memory effect and environmental friendliness. The commercialized graphite-based anode materials exhibit excellent charge and discharge cycling performance, but their low specific capacity (300-350 mA h g?1) can’t satisfy the demand for the high energy density of batteries. Therefore, it is urgent to develop new anode materials with larger capacity. Owing to their high capacity of 700-1000 mA h g?1, transition metal cobalt oxides (CoO, Co_3O_4) are a new class of promising anode materials for rechargeable Li-ion batteries. As reported, the large irreversible capacity loss (>30%) in the first cycle and relatively fast capacity fading rate during electrochemical cycling of cobalt oxides nanoparticles and nanotubes limit their practical applications. In this thesis, we have successfully synthesized series of lamellar CoO and Co_3O_4 platelets as well as their composites prepared through as-synthesized hexagonalβ-Co(OH)_2 as templates. Moreover, Co_3O_4-carbon nanofiber (Co_3O_4-CNF) composites were also successfully prepared by calcination of Co(OH)2-carbon nanofiber (Co(OH)_2-CNF) precursors using acid-treated carbon nanofiber as templates. As a result, both the first cycle efficency and cycling performances have been greatly improved by using the prepared CoO, Co_3O_4 and their composites. The concrete research contents are summarized as following:
     1. Preparation and study on electrochemical performance of lamellar CoO materials as anode materials for lithium-ion batteries. Lamellar β-Co(OH)2 platelets with different dimensions were synthesized by a simple hydrothermal route without using surfactants or templates. The influence of reaction conditions, such as: Co(NO3)2 concentrations, composition of solutions, reaction time, reaction temperature, on the morphology and structure of the obtained products was investigated. Lamellar-type CoO platelets were prepared through thermal decomposition of lamellarβ-Co(OH)2 templates. As a typical example, the effect of the morphology and size of lamellar CoO platelets on the capacity and cycle-ability was systematically investigated. Lamellar CoO platelets with average tubular size of 15μm in diameter and 6μm thick showed larger capacities and much better electrochemical performance than monolayer CoO platelets and CoO nanoparticles. Even after 100 cycles, the reversible capacity of lamellar CoO platelets was still kept at 800 mA h g-1.
     2. Preparation of nanosized Co_3O_4 and lamellar Co_3O_4 and study on their lithium-storage performance. Co_3O_4 nanoparticles were prepared by the calcination ofα-Co(OH)2 precursors formed in isopropyl alcohol - water (1:1, v/v) solution. The electrochemical performance of Co_3O_4 nanoparticles was thoroughly studied. Furthermore, Lamellar Co_3O_4 platelets were prepared through thermal decomposition of lamellarβ-Co(OH)_2 synthesized by simple hydrothermal method. The lamellar Co_3O_4 platelet with average tubular size of 15μm in diameter and 4-10μm thick exhibited an excellent cycling performance, retaining a specific capacity of approximately 600 mA h g-1 after 100 cycles.
     3. Preparation and study on electrochemical performance of Co_3O_4-CNF composites as anode materials for lithium-ion batteries. Co_3O_4-CNF composites were prepared by the calcination of Co(OH)2-CNF precursors synthesized on acid-treated carbon nanofiber templates. The effects of the calcining temperature on the crystallinity, grain size, specific surface area of Co_3O_4 and phase transformation from Co_3O_4 to CoO were studied in detail. Both the specific surface area and CNF content in CNF-cobalt oxide composites dominated the electrochemical performance of these composites. As anode materials for lithium ion batteries, Co_3O_4-CNF (24.3 wt% CNF) composite showed excellent cyclability and high lithium-storage capacity (881 mAh g-1 after 100 cycles).
     4. Preparation of lamellar cobalt oxide/carbon nanofiber (CNF) composite and study on their lithium-storage performance. Lamellar CoO/CNF composite or Co_3O_4/CNF composite have been prepared by caicining as-synthesizedβ-Co(OH)_2/CNF precursors under Ar flow or air atmosphere, respectively. The electrochemical lithium-storage performance of these composites was investigated detailedly. As a result, lamellar CoO/CNF composite electrodes showed excellent cyclability and high charge-discharge rate capability. A complete cell was assembled by lamellar CoO/CNF composite anode coupled with LiNi0.5Mn1.5O4 cathode in 1 M LiPF6-EC: DMC (1:1, Vol) electrolyte solution. The voltage profiles of the complete cell showed a long voltage plateau at about 2.8 V during the first discharge step. The first discharge capacity was 450 mA h g-1 based on the weight of the CoO/CNF composite. It could be a promising and high-capacity negative electrode material for advanced lithium-ion batteries.
引文
1.衣宝廉,燃料电池——原理·技术·应用,北京,化学工业出版社, 2003, 1-4.
    2.顾登平,童汝亭,化学电源,北京,高等教育出版社, 1993, 1-3.
    3.杨军,解晶莹,王久林,化学电源测试原理及技术,北京,化学工业出版社, 2006, 1-6.
    4.陈立泉,混合电动车及其电池,电池, 2000, 30, (3), 98-100.
    5.毕道治,电动车电池的开发现状及展望,电池工业, 2000, 5, (2), 56-63.
    6.杨毅夫,从EVS-17看国际电动车及动力电池的发展趋势,电池, 2001, 6, (4), 192-194.
    7. Brandt K., Historical development of secondary lithium batteries, Solid State Ionics, 1994, 69, (3-4), 173-183.
    8.杨遇春,二次锂电池进展,电池, 1993, 23, (5), 230-233.
    9. Nagaura T., Tozawa K., Lithium ion rechargeable battery, Prog. Batteries Solar Cells, 1990, 9, 209-217.
    10.张世超,锂离子电池关键材料产业技术现状与发展趋势,新材料产业, 2006, 3, 32-36.
    11. Tarascon J. M., Armand M., Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414, 359-367.
    12. Goldenfeld N., Dynamics of dendritic growth, J. Power Sources, 1989, 26, (1-2), 121-128.
    13. Takohara Z.I., Kanamura K., Historical development of rechargeable lithium batteries in Japan, Electrochim. Acta., 1993, 38, (9), 1169-1177.
    14. Armand M. B., Materials for Advanced Batteries (Murphy D. W., Broodhead J., Steele B. C. H., Editors), New York, Plenum Press, 1980, 145-156.
    15. Auborn J. J., Barberio Y. L., Lithium intercalation cells without metallic lithium MO2/LiCoO2 and WO2/ LiCoO2, J. Electrochem. Soc., 1987, 134, (3), 638-641.
    16. Mizushima K., Jones P. C., Wiseman P. J., et al., LixCoO2 (0    17. Tarascon J. M., Armand M., Issues and challenges facing rechargeable lithium batteries, Nature,2001, 414, 359-367.
    18.吴宇平,万春荣,姜长印,锂离子二次电池,北京,化学工业出版社, 2002, 2-5.
    19.陈德钧,电池的近期发展与锂离子电池,电池, 1996, 26, (3), 139-143.
    20. Doron A., Yair E. E., Orit C., The correlation between the surface chemistry and the performance of Li/carbon intercalation anodes for rechargeable“Rocking-Chair”type batteries, J. Electrochem. Soc., 1994, 141, (3), 603-611.
    21. Megahed S., Ebner W., Lithium-ion battery for electronic applications, J. Power Sources, 1995, 54, (1), 155-162.
    22. AricòA. S., Bruce P., Scrosati B., Nanostructured materials for advanced energy conversion and storage devices, Nat.mater., 2005, 4, 366-377.
    23. Miura K., Yamada A., Tanaka M., Electric states of spinel LixMn2O4 as a cathode of the rechargeable battery, Electrochim. Acta, 1996, 41, (2), 249-256.
    24.吴宇平,戴晓兵,马军旗,锂离子电池-应用与实践,北京,化学工业出版社, 2004, 400.
    25. Mizushima K., Jones P. C., Wiseman P. J., LixCoO2 (0    26.杨清河,锂离子电池材料学,复旦大学材料系教材, 2005, 1-12.
    27. Ohzuku T., Ueda A., Nagayama M., Electrochemistry and structural chemistry of LiNiO2(R3m) for 4V secondary lithium cells, J. Power Sources, 1993, 140, (7), 1862-1870.
    28. Dahn J. R., Sacken U.von, Juzkow M. W., Rechargeable LiNiO2/Carbon Cells, J.Electrochem. Soc., 1991, 138, (8), 2207-2212.
    29. Koksbang R., Barker J., Shi H., Cathode materials for lithium rocking chair batteries, Solid State Ionics, 1996, 84, (1-2), 1-21.
    30. Koyama Y., Tanaka I., Ohzuku T., Crystal and electronic structures of superstructural Li1?x[Co1/3Ni1/3Mn1/3]O2 (0≤x≤1), J. Power Sources, 2003, 119-121, 644-648.
    31. Ma M., Chernova N. A., Toby B. H., Structural and electrochemical behavior of LiMn0.4Ni0.4Co0.2O2, J. Power Sources, 2007, 165, (2), 517-534.
    32. Julien A. C., Haro-Poniatowski E., Camacho-Lopez M. A., Growth of LiMn2O4 thin films by pulsed-laser deposition and their electrochemical properties in lithium microbatteries, Mater. Sci. Eng. B, 2000, 72, (1), 36-46.
    33. Thackeray M. M., David W. I. F., Bruce P. G., Lithium insertion into manganese spinels, Mater. Res. Bull, 1983, 18, 461-472.
    34. Xia Y., Yoshio M., Studies on Li-Mn-O spinel system (obtained from melt-impregnation method) as a cathode for 4 V lithium batteries Part IV. High and low temperature performance of LiMn2O4, J. Power Sources, 1997, 66, (1-2), 129-133.
    35. Guo Z. P., Wang G. X., Liu H. K., Structure and electrochemistry of LiCrxMn1?xO2 cathode for lithium-ion batteries, Solid State Ionics, 2002, 148, (3-4), 359-366.
    36. Eftekhari A., Aluminum oxide as a multi-function agent for improving battery performance of LiMn2O4 cathode, Solid State Ionics, 2004, 167, (3-4), 237-242.
    37. Lim M R., Cho W I., Kim K B., Preparation and characterization of gold-codeposited LiMn2O4 electrodes, J. Power Sources, 2001, (1-2), 92, 168-176.
    38. Arbizzani C., Balducci A., Mastragostino M., Li1.01Mn1.97O4 surface modification by poly(3,4-ethylenedioxythiophene), J. Power Sources, 2003, 119-121, 695-700.
    39.国家自然科学基金委员会工程与材料科学部主编,学科发展战略研究报告(2006-2010年):无机非金属材料科学,北京,科学出版社, 2006, 141.
    40. Padhi A. K., Nanjundaswamy K. S., Goodenough J. B., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 1997, 144, 1188-1194.
    41. Andersson A. S., Thomas J. O., The source of first cycle capacity loss in LiFePO4, J. Power Sources, 2001, 97-98, 498-502.
    42. Takahashi M., Ohtsuka H., Akuto K., Confirmation of Long-Term Cyclability and High Thermal Stability of LiFePO4 in Prismatic Lithium-Ion Cells, J. Electrochem. Soc., 2005, 152, (5), A899-A904.
    43. Passerini S., Ressler J. J., Le D. B., High rate electrodes of V2O5 aerogel, Electrochim. Acta, 1999,44, 13, 2209-2217.
    44. Saidi M. Y., Barker J., Huang H., Electrochemical Properties of Lithium Vanadium Phosphate as a Cathode Material for Lithium-Ion Batteries, Electrochem. Solid-State Lett., 2002, 5, (7), A149-A151.
    45. Azmi B. M., Ishihara T., Nishiguchi H., Cathodic performance of VOPO4 with various crystal phases for Li ion rechargeable battery, Electrochim. Acta, 2002, 48, (2), 165-170.
    46. Sakaebe H., Matsumoto H., N-methyl-N-propylpiperidium bis(trifluoromethanesulfonyl)imide (PP13-TFSI)-novel electrolyte base for Li battery, Electrochem. Commun., 2003, 5, 594-598.
    47. Garcia B., Lavallée S., Perron G.., Room temperature molten salts as lithium battery electrolyte, Electrochim. Acta, 2004, 50, 4583-4588.
    48. Egashira M., Okada S., Yamaki J. I., The preparation of quaternary ammonium-based IL containing a cyano-group ans its properties in a lithium battery electrolytes, J. Power Sources, 2004, 138, 240-244.
    49. Lebdeh Y. A., Abouimrane A., Alarco P. J., Ionic liquids and plastic crystalline phases of pyrazolium imide salts as electrolytes for rechargeable lithium-ion batteries, J. Power Sources, 2006, 154, 255-261.
    50. Bruno S., Lithium rocking chair batteries: an old concept?, J. Electrochem. Soc., 1992, 139, (10), 2776-2781.
    51. Wakihara M., Recent developments in lithium ion batteries. Materials Science and Engineering R 2001, 33, (4), 109-134.
    52. Dahn J. R., Zheng T., Liu Y., Mechanisms for lithium insertion in carbonaceous materials, Science, 1995, 270, 590-595.
    53. Yamamoto O, Imanishi N, Takeda Y, Rechargeable carbon anode, J. Power Sources, 1995, 54, (1), 72-75.
    54. Takami N., Satoh A., Hara M., Rechargeable lithium-ion cells using graphitized mesophase-pitch-based carbon fiber anodes, J. Electrochemical. Soc., 1995, 142, (8), 2564-2571.
    55.孙颢,蒲薇华,何向明,锂离子电池硬碳负极材料研究进展,化工新型材料, 2005, 33, (11), 7-10.
    56. Sato K., Noguchi M., Demachi A., A mechanism of lithium storage in disordered carbons, Science, 1994, 264, 556-558.
    57. Buiel E., Dahn J. R., Reduction of the irreversible capacity in hard-carbon anode materials prepared from sucrose for Li-ion batteries, J. Electrochemical. Soc., 1998, 145, (6), 1977-1981.
    58. Shi H., Barker J., Saidi M. Y., et al., Structure and lithium intercalation properties of synthetic and natural graphite, J. Electrochem.Soc., 1996, 143, (11), 3466-3472.
    59. Endo M., Kim C., Nishimura K., Recent development of carbon materials for Li ion batteries, Carbon, 2000, 38, (2), 183-197.
    60. Ein-eli Y., Koch V. R., Chemical oxidation: a route to enhanced capacity in Li-ion graphite anodes, J. Electrochem. Soc., 1997, 144, (9), 2968-2973.
    61.何明,刘旋,陈湘彪,树脂碳包覆微晶石墨的制备及其电化学性能,电池, 2003, 33, (5), 281-284.
    62.俞政洪,吴锋,锂离子电池炭负极材料的研究—包覆对天然石墨容量衰减的影响,新型炭材料, 2002, 17, (4), 29-32,37.
    63.刘宇,先进嵌锂材料的研究与应用,中科院上海微系统与信息技术研究所博士学位论文,上海, 2003.
    64. Winter M., Besenhard J O., Electrochemical lithiation of tin and tin-based intermetallics and composites, Electrochim.Acta, 1999, 45, (1-2), 31-50.
    65. Idota Y., Nishima M., Miyaki Y., Can. Pat. Appl. No. 2, 134053, 1994.
    66. Idota Y., Kubate T., Matsufuji A., Tin based amorphous oxides: a high-capacity lithium ion storage material, Science, 1997, 276, 1395-1397.
    67. Yang J., Takeda Y., Imanishi N., Ultrafine Sn and SnSb0.14 Powders for Lithium Storage Matrices in Lithium-Ion Batteries, J. Electrochem. Soc., 1999, 146, 4009-4013.
    68. Zheng Y., Yang J., Wang J., et al., Nano-porous Si/C composites for anode material of lithium-ionbatteries, Electrochim. Acta, 2007, 52, 5863-5867.
    69. Lee J. Y., Zhang R. F., Liu Z. L., Dispersion of Sn and SnO on carbon anodes, J. Power Sources, 2000, 90, (1), 70-75.
    70. Ohzuku T., Ueda A., Why transition metal (di) oxides are the most attractive materials for batteries, Solid State Ionics, 1994, 69, (3-4), 201-211.
    71. Courtney Ian A., Dahn J. R., Electrochemical and in situ X-ray diffractionstudies of the reaction of lithium with tin oxide composites, J Electrochem Soc., 1997, 144, (6), 2045-2052.
    72. Poizot P., Laruelle S., Grugeon S., et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 2000, 407, 496-499.
    73. Grugeon S., Laruelle S., Herrera-Urbina R., Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium, J. Electrochem. Soc., 2001, 148, (4), A285-A292.
    74. Alcántara R., Jaraba M., Lavela P., NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries, Chem. Mater., 2002, (14), 2847-2848.
    75. Suzuki S., Shodai T., Electronic structure and electrochemical properties of electrode material Li7-xMnN4, Solid State Ionics, 1999, (116), 1-9.
    76. Gregory D. H., O’Meara P. M., Gordon A. G., et al., Layered ternary transition metal nitrides, synthesis, structure and physical properties, J. Alloys and Compounds, 2001, 317-318, 237-244.
    77. Takeda Y., Nishijima M., Yamahata M., et al. Lithium secondary batteries using a lithium cobalt nitride, Li2.6Co0.4N, as the anode, Solid State Ionics, 2000, 130, (1-2), 61-69.
    78. Souza D. C. S., Pralong V., Jacobson A. J., et al. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry, Science, 2002, 296, 2012-2015.
    79. Alcantara R., Tirado J.L., Jumas J.C., et al. Electrochemical reaction of lithium with CoP3, J. Power Sources, 2002, 109, 308-312.
    80. Wang K., Yang J., Xie J., et al. Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ballmilling, Electrochem. Commun., 2003, 5, 480-483.
    81. Crosnier O., Nazar L. F., Facile Reversible Displacement Reaction of Cu3P with lithium at lowpotential, Electrochem. Solid-State Lett., 2004, 7, A187-A189.
    82. Silva D. C. C., Crosnier O., Ouvrard G., et al. Reversible lithium uptake by FeP2, Electrochem. Solid-State Lett., 2003, 6, A162-A165.
    83. Crosnier O., Mounsey C., Subramanya Herle P., et al. Crystal Structure and Electrochemical Behavior of Li2CuP: a surprising reversible crystalline-amorphous transformation, Chem. Mater., 2003, 15, 4890-4892.
    84. Zhang Z., Yang J., NUli Y., et al., CoPx synthesis and lithiation by ball-milling for anode material of lithium ion cells, Solid State Ionic, 2005, 176 693-697.
    85. Delmas C., Cognac-Auradou H., Cocciantelli J. M., et al., The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation, Solid State Ionics, 1994, 69, (3-4), 257-264.
    86.吴国良,锂离子电池负极材料的现状与发展,电池, 2001, 31, (2), 54-57.
    87. Chu Y.Q., Fu Z. W., Qin Q. Z., Cobalt ferrite thin films as anode material for lithium ion batteries, Electrochem. Acta, 2004, 49, 4915-4921.
    88.秦启宗,傅正文,储艳秋等,中国专利, 02136299, 2000.
    89. Novak P., Muller K., Santhanam K. S. V., et al., Electrochemically Active Polymers for Rechargeable Batteries, Chem. Rev., 1997, 97, (1), 207-282.
    90. Ando M., Kobayashi T., Lijima S., Haruta M., Optical recognition of CO and H2 by use of gas-sensitive Au- Co3O4 composite films, J. Mater. Chem., 1997, 7, 1779-1783.
    91. Nkeng P., Koening J. F., Gautier J. L., et al., Enhancement of surface areas of Co3O4 and NiCo2O4 electrocatalysts prepared by spray pyrolysis, J. Electroanal. Chem., 1996, 402, 81-89.
    92. Lin C., Ritter J. A., Popov B. N., Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors, J. Electrochemical Soc., 1998, 143, 4097-4103.
    93. Maruyama T., Arai S., Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition, J. Electrochemical Soc., 1996, 145, 1383-1386.
    94. Castner D. G., Watson P. R., Chan I. Y., X-ray absorption spectroscopy, x-ray photoelectronspectroscopy, and analytical electron microscopy studies of cobalt catalysts. 1. Characterization of calcined catalysts, J. Phys. Chem., 1989, 93, (8), 3188-3194.
    95. Grugeon S., Laruelle S., Dupont L., et al., An update on the reactivity of nanoparticles Co-based compounds towards Li, Solid State Sciences, 2003, 5, 895-904.
    96. Wang G. X., Chen Y., Konstantinov K., Lindsay M., Liu H.K., Dou S. X., Investigation of cobalt oxides as anode materials for Li-ion batteries, J. Power Sources, 2002, 109, 142-147.
    97. Do J. S., Weng C. H., Preparation and characteriaction of CoO used as anodic material of lithium battery, J. Power Sources, 2005, 146, 482-486.
    98. Do J. S., Weng C. H., Electrochemical and charge/discharge properties of the synthesized cobalt oxide as anode material in Li-ion batteries, J. Power Sources, 2006, 159, 323-327.
    99. Yu Y., Chen C. H., Shui J. L., et al., Nickel-foam-supportied recticular CoO-Li2O composite anode materials for lithium ion batteries, Angew. Chem. Int. Ed., 2005, 44, 7085-7089.
    100. Yu Y., Shi Y., Chen C. H., Effect of lithia and substrate on the electrochemical performace of a lithia/cobalt oxide composite thin-film anode, Chem. Asian J., 2006, 1, 826-831.
    101. Wang G. X., Chen Y., Konstantinov K., et al., Nanosize cobalt oxides as anode materials for lithium-ion batteries, Journal of Alloys and Compounds, 2002, 340, L5-L10.
    102.蔡振平,锂离子电池负极材料Co3O4的制备及性能,电源技术, 2003, 27, (4), 370-372.
    103. Yuan Z., Huang F., Feng C., et al., Synthesis and electrochemical performance of nanosized Co3O4, Mater. Chem. Phys., 2003, 79, 1-4.
    104.黄可龙,刘人生,杨幼平,等.单分散性纳米Co3O4的制备及电化学性能研究,电源技术, 2007, 31, (9), 680-682.
    105. Li W. Y., Xu L. N., Chen J., Co3O4 nanomaterials in lithium-ion batteries and gas sensors, Adv. Funct. Mater., 2005, 15, 851-857.
    106. Du N., Zhang H., Chen B., et al., Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications, Adv. Mater., 2007, 19, 4505-4509.
    107. Lou X. W., Deng D., Lee J. et al., Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes, Adv. Mater., 2008, 20, 258-262.
    108. Liu Y., Mi C., S, L., Zhang X., Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries, Electrochem. Acta, 2008, 53, 2507-2513.
    109. Zhang H., Wu J., Zhai C., et al., From cobalt nitrate carbonate hydroxide hydrate nanoweres to porous nanorods for high performance lithium-ion battery electrodes, Nanotechnology, 2008, 19, 035711.
    110. Shaju K. M., Jiao F., Aurélie D., et al., Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries, Phys.Chem.Chem.Phys.,2007, 9, 1837-1842.
    111. Li Y., Tan B., Wu Y., Mesoporous Co3O4 nanowire array for lithium ion batteries with high capacity and rate capability, Nano lett., 2008, 8, (1), 265-270.
    112. Li Y., Tan Z. W., Qin Q. Z., A nanocrystalline thin film electrode for li-ion batteries, Thin Solid Films, 2003, 441, 19-24.
    113.黄峰,袁正勇,周运鸿,等.纳米钴基氧化物锂离子电池负极材料的研究,电化学, 2002, 8, (4), 397-403.
    114. Kang Y. M., Kim K. T., Kim J. H., et al, Electrochemical properties of Co3O4 , Ni- Co3O4 mixture and Ni- Co3O4 composite as anode materials for Li ion secondary batteries, J. Power Sources, 2004, 133, 252-259.
    115.尹立辉,高俊奎,杜萍,锂离子蓄电池Co3O4负极材料,电源技术, 2006, 30, (2), 104-107.
    116.黄东,于维平,张世超,掺杂PTFE改性Co3O4负极材料的研究,电池, 2005, 35, (3), 191-192.
    117.蔡振平,张向军,金维华,等.过渡金属氧化物Co3O4的嵌锂性能及其改性,稀有金属, 2003, 27, (5), 592-595.
    118.钱建才,于维平,王朋朋,等.石墨表面电沉积-热处理制备Co3O4锂离子电池负极,金属热处理, 2006, 31, (10), 47-50.
    119.叶茂,周震,卞锡奎,等. CoO填充多壁碳纳米管作为锂离子电池负极材料,无机化学学报, 2006, 22, (7), 1307-1311.
    120. Li F., Zou Q. Q., Xia Y. Y., CoO-loaded graphitable carbon hollow spheres as anode materials for Li-ion battery, J. Power Sources, 2008, 177, 546-552.
    121. Shan Y., Gao L., Multiwalled carbon nanotubes/Co3O4 nanocomposites and its electrochemical performance in lithium storage, J. Power Sources, 2004, 33, 1560-1561.
    122. Nam K. T., Kim D. W., Yoo P. J., et al., Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes, Science, 2006, 312, 885-888.
    1. Burda C., Chen X., Narayanan R., El-Sayed M. A., Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 2005, 105 1025-1102.
    2. Wang D., Qian F., Yang C., et al., Rational growth of branched and hyperbranched nanowire structures, Nano Lett., 2004, 4, (5), 871-874.
    3. Wen J. G., Lao J. Y., Wang D. Z., et al., Self-assembly of semiconducting oxide nanowires, nanorods, and nanoribbons, Chem. Phys. Lett. 2003, 372, (5-6), 717-722.
    4. Rolison D. R., Dunn B., Electrically conductive oxide aerogels: New materials in electrochemistry, J. Mater Chem., 2001, 11, (4), 963-980.
    5. Liu Y., Zha S., Liu M., Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD), Adv. Mater., 2004, 16, (3), 256-260.
    6. Shin H. C., Liu M., Copper foam structures with highly porous nanostructured walls, Chem. Mater., 2004, 16, (25), 5460-5464.
    7. Liu B., Zeng H. C., Mesoscale organization of CuO nanoribbons: Formation of "dandelions", J. Am. Chem. Soc., 2004, 126, (26), 8124-8125.
    8. Li Z., Ding Y., Xiong Y., et al., One-step solution-based catalytic route to fabricate novelα-MnO2 hierarchical structures on a large scale, Chem. Commun., 2005, (7), 918-920.
    9. Ho W., Yu J. C., Lee S., Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity, Chem. Commun., 2006, (10), 1115-1117.
    10. Hou Y., Kondoh H., Ohta T., Self-Assembly of Co Nanoplatelets into Spheres: Synthesis and Characterization, Chem. Mater., 2005, 17, (15), 3994-3996.
    11. Guo Q., Xie Y., Wang X., et al., Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures, Chem. Commun., 2004, 15, 26-27.
    12. Hou Y., Kondoh H., Shimojo M., et al., Inorganic nanocrystal self-assembly via the inclusion interaction ofβ-cyclodextrins: toward 3D spherical magnetite, J. Phys. Chem. B, 2005, 109,4845-4852.
    13. Zhang W., Yanagisawa K., Hydrothermal synthesis of zinc hydroxide chloride sheets and their conversion to ZnO, Chem. Mater., 2007, 19, 2329-2334.
    14. Reichle W. T., Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite), Solid State Ionics, 1986, 22, 135-141.
    15. Elumalai P., Vasan H. N., Munichandraiah, N., Electrochemical studies of cobalt hydroxide-an additive for nickel electrodes, J. Power Sources, 2001, 93, 201-208.
    16. Cao L., Xu F., Liang,Y. Y., et al., Preparation of the novel nanocomposite Co(OH)2/ ultra-stable Y zeolite and its application as a supercapacitor with high energy density, Adv. Mater., 2004, 16, 1853-1857.
    17. Tani T., Itahara H., Xia C., Sugiyama J., Topotactic synthesis of highly-textured thermoelectric cobaltites, J. Mater. Chem., 2003, 13, 1865-1867.
    18. Itahara H., Seo W.-S., Lee S., et al., The formation mechanism of a textured ceramic of thermoelectric [Ca2CoO3]0.62[CoO2] onβ-Co(OH)2 templates through in situ topotactic conversion, J. Am. Chem. Soc., 2005, 127, 6367-6373.
    19. Hou Y., Kondoh H., Shimojo M., Kogure T., Ohta T., High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization, J. Phys. Chem. B, 2005, 109, 19094-19098.
    20. Liu Z., Ma R., Osada M., Takada K., Sasaki T., Selective and controlled synthesis ofα- andβ-cobalt hydroxides in highly developed hexagonal platelets, J. Am. Chem. Soc., 2005, 127, 13869-13874.
    21. Sampanthar J. T., Zeng H. C., Arresting butterfly-like intermediate nanocrystals ofβ-Co(OH)2 via ethylenediamine-mediated synthesis, J. Am. Chem. Soc., 2002, 124, 6668-6675.
    22. Zhu Y., Li H., Koltypin Y., Gedanken A., Preparation of nanosized cobalt hydroxides and oxyhydroxide assisted by sonication, J. Mater. Chem., 2002, 12, 729-733.
    23. Yang H., Ouyang J., Tang A., Single step synthesis of high-purity CoO nanocrystals, J. Phys. Chem. B, 2007, 111, 8006-8013.
    24. Xu C., Liu Y., Xu G., et al., Fabrication of CoO nanorods via thermal decomposition of CoC2O4 precursor, Chem. phys.lett., 2002, 366, 567-571.
    25. Feng J., Zeng H. C., Size-controlled growth of Co3O4 nanocubes, Chem. Mater., 2003, 15, 2829-2835.
    26. Zhang W., Han M., Jiang Z., et al., Controllable synthesis of CoO nanosheets and their magnetic properties, ChemPhyChem., 2007, 8, 2091-2095.
    27. Hou Y., Kondoh H., Shimojo M., et al., High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization, J. Phys. Chem. B, 2005, 109, 19094-19098.
    28. Faure C., Delmas C., Fouassier M., Characterization of a turbostratic -nickel hydroxide quantitatively obtained from an NiSO4 solution, J. Power Sources, 1991, 35, 279-290.
    29. Kamath P. V., Therese G. H. A., Gopalakrishnan J., On the existence of hydrotalcite-like phases in the absence of trivalent cations, J. Solid State Chem., 1997, 128, 38-41.
    30. Do J. S., Weng C. H., Preparation and characteriaction of CoO used as anodic material of lithium battery, J. Power Sources, 2005, 146, 482-486.
    31. Yu Y., Chen C. H., Shui J. L., Xie S., Nickel-foam-supportied recticular CoO-Li2O composite anode materials for lithium ion batteries. Angew. Chem. Int. Ed. 2005, 44, 7085-7089.
    32. Laruelle S., Grugeon S., Poizot P., et al., On the origin of the extra elctrochemical capacity displayed by MO/Li cells at low potential, J. Electrochem. Soc., 2002, 149 A627-A634.
    33. Doron A., Mikhail D., Levi M., et al., Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides, J. Electrochem. Soc., 1996, 143, 3024-3034.
    34. Wang G. X., Chen Y., Konstantinov K., et al., Investigation of cobalt oxides as anode materials for Li-ion batteries, J. Power Sources, 2002, 109, 142-147.
    1.张立德,牟季美,纳米材料和纳米结构,北京,科学出版社, 2002.
    2.彭子飞,于霞飞,纳米钴系列产品的应用及其展望,中国高新技术企业, 2000, (6), 36-37.
    3. Ando M., Kobayashi T., Lijima S., Haruta M., Optical recognition of CO and H2 by use of gas-sensitive Au- Co3O4 composite films, J. Mater. Chem., 1997, 7, 1779-1783.
    4.钟文彬,杨玉玺,张昭,湿化学法制备Co3O4的研究,四川有色金属, 2000, (2), 37-41.
    5.汪贻水,王志雄,沈建忠,六十四种有色金属,长沙,中南大学出版社, 1998.
    6.刘秀然,余高奇,王玲,超细氧化钴粉体的制备及表征,贵州大学学报(自然科学版), 2001, 18, (3), 194-195.
    7.蔡振平,锂离子电池负极材料Co3O4的制备及性能,电源技术, 2003, 27, (4), 370-372.
    8. Wang G. X., Chen Y., Konstantinov K., et al., Investigation of cobalt oxides as anode materials for Li-ion batteries, J. Power Sources, 2002, 109, 142-147.
    9. Lin C., Ritter J. A., Popov B. N., Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors, J. Electrochemical Soc., 1998, 143, 4097-4103.
    10.李亚栋,贺蕴普,李龙泉等,液相控制沉淀法制备纳米级Co3O4微粉,高等学校化学学报, 1999, 20, (4), 519-522.
    11. Yuan Z., Huang F., Feng C., Sun J., Zhou Y., Synthesis and electrochemical performance of nanosized Co3O4, Mater. Chem. Phys., 2003, 79, 1-4.
    12. Liu Y., Mi C., S, L., Zhang X., Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries, Electrochim. Acta, 2008, 53, 2507-2513.
    13. Li W. Y., Xu L. N., Chen J., Co3O4 nanomaterials in lithium-ion batteries and gas sensors, Adv. Funct. Mater., 2005, 15, 851-857.
    14. Yang J., Wu Y., Xie B., Xie Y., Qian Y., Moderate temperature synthesis of nanocrystalline Co3O4 via gel hydrothermal oxidation, Mater. Chem. Phys., 2002, 74, 234-237.
    15. Wang G. X., Chen Y., Konstantinov K., et al., Nanosize cobalt oxides as anode materials for lithium-ion batteries, Journal of Alloys and Compounds, 2002, 340, L5-L10.
    16. Li, Y., Tan, Z. W., Qin, Q. Z., A nanocrystalline thin film electrode for li-ion batteries, Thin Solid Films, 2003, 441, 19-24.
    17.董成勇,湛菁,张传福,邬建辉,纳米CoO粉的制备方法及其应用,硬质合金, 2005, 22, 117-120.
    18.张卫民,孙思修,俞海云,宋新宇,水热-固相热解法制备不同形貌的四氧化三钴纳米微粉,高等学校化学学报, 2002, 23, (2), 179-181.
    19. Zou G. F., Li H., Zhang, Y. G., Xiong, K., Qian, Y. T., Solvothermal/hydrothermal route to semiconductor nanowires, Nanotechnology, 2006, 17, (11), S313-S320.
    20. Zhang W., Yanagisawa K., Hydrothermal synthesis of zinc hydroxide chloride sheets and their conversion to ZnO, Chem. Mater., 2007, 19, 2329-2334.
    21. Laruelle S., Grugeon S., Poizot P., et al., On the origin of the extra elctrochemical capacity displayed by MO/Li cells at low potential, J. Electrochem. Soc., 2002, 149 A627-A634.
    22. Larcher D., Sudant G., Leriche J. B., et al., The electrochemical reduction of Co3O4 in a lithium cell, J. Electrochem. Soc., 2002, 149 A234-241.
    23. Xu Z. P., Zeng H. C., Thermal evolution of cobalt hydroxides: a comparative study of various structural phases, J. Mater. Chem., 1998, 8, 2499-2506.
    24. Do J. S., Weng C. H., Electrochemical and charge/discharge properties of the synthesized cobalt oxide as anode material in Li-ion batteries, J. Power Sources, 2006, 159, 323-327.
    25. Du N., Zhang H., Chen B., et al., Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications, Adv. Mater., 2007, 19, 4505-4509.
    26. Lou X. W., Deng D., Lee J. Y., et al., Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes, Adv. Mater., 2008, 20, 258-262.
    1. Poizot P., Laruelle S., Grugeon S., et al., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 2000, 407, 496-499.
    2. Grugeon S., Laruelle S., Herrera-Urbina R., Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium, J. Electrochem. Soc., 2001, 148, (4), A285-A292.
    3. Alcántara R., Jaraba M., Lavela P., NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries, Chem. Mater., 2002, (14), 2847-2848.
    4. Ando M., Kobayashi T., Lijima S., Haruta M., Optical recognition of CO and H2 by use of gas-sensitive Au- Co3O4 composite films, J. Mater. Chem., 1997, 7, 1779-1783.
    5. Nkeng P., Koening J. F., Gautier J. L., Chartier P., G. Poillerat, Enhancement of surface areas of Co3O4 and NiCo2O4 electrocatalysts prepared by spray pyrolysis, J. Electroanal. Chem., 1996, 402, 81-89.
    6. Lin C., Ritter J. A., Popov B. N., Characterization of sol-gel-derived cobalt oxide xerogels as electrochemical capacitors, J. Electrochemical Soc., 1998, 143, 4097-4103.
    7. Maruyama T., Arai S., Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition, J. Electrochemical Soc., 1996, 145, 1383-1386.
    8. Grugeon S., Laruelle S., Dupont L., Tarascon J. M., An update on the reactivity of nanoparticles Co-based compounds towards Li, Solid State Sciences, 2003, 5, 895-904.
    9. Wang G. X., Chen Y., Konstantinov K., et al., Investigation of cobalt oxides as anode materials for Li-ion batteries, J. Power Sources, 2002, 109, 142-147.
    10. Yuan Z., Huang F., Feng C., Sun J., Zhou Y., Synthesis and electrochemical performance of nanosized Co3O4., Mater. Chem. Phys., 2003, 79, 1-4.
    11. Bessel C. A., Laubernds K., Rodriguez N. M., Baker R. T. K., Graphite nanofibers as an electrode for fuel cell applications, J. Phys. Chem. B, 2001, 105, 1115-1118.
    12. Steigerwalt E. S., Deluga G. A., Lukehart C. M., Pt-Ru/carbon fiber nanocomposites: synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search forexceptional performance, J. Phys. Chem. B, 2002, 106, 760-766.
    13. Hacker V., Walln?fer E., Baumgartner W., et al., Carbon-naofiber-based active layers for fuel cell cathodes- Preparation and characterization, Electrochem. Commun., 2005, 7, 377-382.
    14. Wu Y. P., Rahm E., Holze, R., Carbon anode materials for lithium ion batteries, J. Power Sources, 2003, 114, 228-236.
    15. Lee J. K., An K. W., Jub J. B., et al, Electrochemical properties of PAN-based carbon fibers as anodes for rechargeable lithium ion batteries, Carbon, 2001, 39, 1299-1305.
    16. Suzuki K., Iijima T., Wakihara M., Electrode characteristics of pitch-based carbon fiber as an anode in lithium rechargeable battery, Electrochim. Acta., 1999, 44, 2185-2191.
    17. Wu Z., Pittman C. U., Gardner S. D., Nitric acid oxidation of carbon fibers and the effects of subsequent treatment in refluxing aqueous NaOH, Carbon 1995, 33, 597-605.
    18. Tsang S. C., Chen Y. K., Harris J. P. F., Green M. L. H., A simple chemical method of opening and filling carbon nanotubes, Nature 1994, 372, 159-162.
    19. Nam K. T., Kim D. W., Yoo P. J., et al, Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes, Science, 2006, 312, 885-888.
    20. Joly S., Kane R., Radzilowski L., et al., Multilayer nanoreactors for metallic and semiconducting particles, Langmuir 2000, 16, 1354-1359.
    21. Faure C., Delmas C., Fouassier M., Characterization of a turbostratic -nickel hydroxide quantitatively obtained from an NiSO4 solution, J. Power Sources, 1991, 35, 279-290.
    22. Kamath P. V., Therese G. H. A., Gopalakrishnan J., On the existence of hydrotalcite-like phases in the absence of trivalent cations, J. Solid State Chem., 1997, 128, 38-41.
    23. Wang C. Y., Li M. W., Wu Y. L., Guo C. T., Preparation and microstructure of hollow mesophase pitch-based carbon fibers, Carbon 1998, 36, 1749-1754.
    24. Xu Z. P., Zeng H. C., Thermal evolution of cobalt hydroxides: a comparative study of various structural phases, J. Mater. Chem., 1998, 8, 2499-2506.
    25. Mochida I., Kawano S., Shirahama N., et al., Catalytic activity of pitch-based activated carbon fiber of large surface area heat-treated at high temperature and its regeneration for NO- NH3reaction at ambient temperatures, Fuel, 2001, 80, 2227-2233.
    26. Laruelle S., Grugeon S., Poizot P., et al., On the origin of the extra elctrochemical capacity displayed by MO/Li cells at low potential, J. Electrochem. Soc., 2002, 149 A627-A634.
    27. Larcher D., Sudant G., Leriche J. B., et al., The electrochemical reduction of Co3O4 in a lithium cell, J. Electrochem. Soc., 2002, 149 A234-241.
    28. Doron A., Mikhail D., Levi M., et al., Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides, J. Electrochem. Soc., 1996, 143, 3024-3034.
    29. Poizot P., Laruelle S., Grugeon S.,Tarascon J. M., Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li, J. Electrochem. Soc., 2002, 149, A1212-A1217.
    1.闫俊美,杨勇,非碳类新型锂离子蓄电池负极材料研究进展,电源技术, 2004, 28, (7), 435-439.
    2. Wang G. X., Chen Y., Konstantinov K., et al., Investigation of cobalt oxides as anode materials for Li-ion batteries, J. Power Sources, 2002, 109, 142-147.
    3.蔡振平,锂离子电池负极材料Co3O4的制备及性能,电源技术, 2003, 27, (4), 370-372.
    4. Shan, Y., Gao, L., Multiwalled carbon nanotubes/Co3O4 nanocomposites and its electrochemical performance in lithium storage, J. Power Sources, 2004, 33, 1560-1561.
    5.钱建才,于维平,王朋朋,等.石墨表面电沉积-热处理制备Co3O4锂离子电池负极,金属热处理, 2006, 31, (10), 47-50.
    6.叶茂,周震,卞锡奎,等. CoO填充多壁碳纳米管作为锂离子电池负极材料,无机化学学报, 2006, 22, (7), 1307-1311.
    7. Li F., Zou Q. Q., Xia Y. Y., CoO-loaded graphitable carbon hollow spheres as anode materials for Li-ion battery, J. Power Sources, 2008, 177, 546-552.
    8. Li W. Y., Xu L. N., Chen J., Co3O4 nanomaterials in lithium-ion batteries and gas sensors, Adv. Funct. Mater., 2005, 15, 851-857.
    9. Du N., Zhang H., Chen B., Wu J., Ma X., et al., Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications, Adv. Mater., 2007, 19, 4505-4509.
    10. Shaju K. M., Jiao F., Aurélie D., Bruce, P. G., Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries, Phys.Chem.Chem.Phys., 2007, 9, 1837-1842.
    11. Liu Y., Mi C., Su L., Zhang X., Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries, Electrochim. Acta, 2008, 53, 2507-2513.
    12. Zhang H., Wu J., Zhai C., et al., From cobalt nitrate carbonate hydroxide hydrate nanoweres to porous nanorods for high performance lithium-ion battery electrodes, Nanotechnology, 2008, 19, 035711.
    13. Lou X. W., Deng D., Lee J. Y., et al., Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes, Adv. Mater., 2008, 20, 258-262.
    14. Poizot P., Laruelle S., Grugeon S., et al., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 2000, 407, 496-499.
    15. Wang G. X., Chen Y., Konstantinov K., et al., Nanosize cobalt oxides as anode materials for lithium-ion batteries, Journal of Alloys and Compounds, 2002, 340, L5-L10.
    16. Poizot P., Laruelle S., Grugeon S., et al., Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li, J. Electrochem. Soc., 2002, 149, A1212-A1217.
    17. Taberna P. L., Mitra S., Poizot P., et al., High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications, Nat. mater., 2006, 5, 567-573.
    18. Hassoun J., Panero S., Simon P., et al., High-Rate, Long-Life Ni-Sn Nanostructured Electrodes for Lithium-Ion Batteries, Adv. Mater., 2007, 19, 1632-1635.
    19. Nam K. T., Kim D. W., Yoo P. J., et al, Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes, Science, 2006, 312, 885-888.
    20. Yu Y., Chen C. H., Shui J. L., et al., Nickel-foam-supportied recticular CoO-Li2O composite anode materials for lithium ion batteries, Angew. Chem. Int. Ed., 2005, 44, 7085-7089.
    21. Li Y., Tan Z. W., Qin Q. Z., A nanocrystalline thin film electrode for li-ion batteries, Thin Solid Films, 2003, 441, 19-24.
    22. Li Y., Tan B., Wu Y., Mesoporous Co3O4 nanowire array for lithium ion batteries with high capacity and rate capability, Nano lett., 2008, 8, (1), 265-270.
    23. Doron A., Mikhail D., Levi M., et al., Common electroanalytical behavior of Li intercalation processes into graphite and transition metal oxides, J. Electrochem. Soc., 1996, 143, 3024-3034.
    24. Min Y. S., Bae E. J., Jeong K. S., et al., Ruthenium Oxide Nanotube Arrays Fabricated by Atomic Layer Deposition Using a Carbon Nanotube Template, Adv. Mater., 2003, 15, 1019-1022.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700