用户名: 密码: 验证码:
超临界水热合成制备超细金属氧化物的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界水热合成技术(Supercritical Hydrothermal Synthesis)在制备超细金属氧化物微粒研究领域取得快速发展。该技术是将超临界流体引入到传统的水热合成微粒制备技术中,其特点是制备的粒子纯度高、分散性好、晶形好且可控制、反应时间短、环境友好,是对微粒制备技术的有效拓展。
     首先对原有超临界水氧化装置进行了一系列改造和调整。除对所需的管路和阀门进行了调整外,还添加了小型反应釜和循环水冷却系统,以使设备在能够满足实验过程要求的前提下,提高自身的灵活性、安全性及节省能源等。同时,实验的过程参数更容易被测量和控制,设备更便于操作。
     实验以乙酸锌、乙酸钴、氧氯化锆和乙酸锰为典型材料,进行了超临界水热合成制备金属氧化物微粒的研究。考察了各过程参数(实验温度、实验压力、反应物浓度和进水速率)对产品微粒粒径的影响;利用XRD、SEM和Zetasizer对实验制备的微粒进行了表征;并对微粒的成核机理进行了初步的热力学分析。本论文的主要研究工作及所形成的主要结果与结论如下:
     实验温度、压力和反应物浓度是影响制备微粒的最为关键的因素。制备的金属氧化物微粒粒径随实验温度的升高而减小;实验压力增大,微粒粒径随之增大;应物浓度增加,微粒粒径也增大;但进水速率对制备微粒粒径的影响不是很明显,随进水速率的增大粒径略有减小。
     由表征结果可知,实验成功制备出最小平均粒径为9.55nm的ZnO球形微粒、最小平均粒径为138nm的CoO六面体微粒、最小平均粒径为170nm的ZrO_2球形微粒和最小平均粒径为305nm的Mn_3O_4球形微粒,粒径分布范围较窄。
     对水热合成过程溶质微粒的晶化趋势以及晶核的形成与生长过程进行了初步的热力学分析,推导出水热合成的成核速率公式以及核生长速率公式,成功解释了本文的部分实验现象,为今后更深入的热力学及动力学理论分析提供了一定的理论参考。
     通过本文的实验研究,对用超临界水热合成制备金属氧化物超细微粒过程有了较深入的认识,掌握了各过程参数对氧化物微粒粒径影响的基本规律,为该工艺的进一步工业应用与理论分析提供了必要的实验数据和理论基础。
The preparation technology of metal oxide particles by supercritical hydrothermal synthesis has been rapidly developed. The technology introduces supercritical fluid into the traditional hydrothermal synthesis method. The advantage of the partiles obtained is characterized by high purity, good dispersion, highly crystalline which can be well controlled, short reaction time and environment-friendly.
     The experimental setup is build upon the reconstruction of Supercritical Water Oxidation. A series of pipes and valves are reasonable modified, a small autoclave reactor and the circulating water cooling system are added, which can not only meet the equipment requirements of the experiment, but also enhance the experimental flexibility, equipment safety, and save energy required. At the same time, the equipment and the experimental process parameters are more easily to operate, measure and control.
     Zinc acetate, cobaltous Acetate, zirconium oxychloride and manganese acetate are used as typical experimental materials. The effects of four process parameters, like temperature, pressure, material concentration and water flowrate, on the particles size and distribution of the metal oxides are well investigated. The as-prepared powders are fully characterized by complementary experiments: X-ray diffraction(XRD), scanning electron microscope (SEM) and Zetasizer Analysis Apparatus(Zetasizer). The nucleation mechanism is preliminary analyzed by thermodynamics. The main experimental research results and conclusions are as follows:
     The experimental pressure, temperature and material concentration are the most important factors to effect particle size. Both the increasing operating pressure and decreasing operating temperature lead to an increase in the particle size. Besides, the increasing concentration of reactants also results in the particle with larger diameter. The strong influence of increasing water flowrate on the particle size is not obviously observed. It is just a little decrease in the particle size with the increasing water flowrate.
     The high-purity ZnO spherical particles with minimal average particle size of 9.55nm. CoO hexahedral particles with minimal average particle size of 138nm, ZrO_2 spherical particles with minimal average particle size of 170nm, and Mn_3O_4 spherical particles with minimal average particle size of 305nm are successfully obtained. The narrow particle size distribution is found as well.
     The solute particles crystallization trends and the formation and growth process of nucleation in hydrothermal synthesis are analyzed using preliminary thermodynamic theory. The rate formula for nuclear formation and its growth are educed, which explaine some experiments phenomena successfully and provide a certain theoretical reference for the future more in-depth thermodynamic and dynamical analysis.
     Through this work, the experiment technique of ultrafine metal oxide particles synthesis is investigated deeply. The basic influence rules of the process parameters working on the particle size and morphology are understood detailed. It provides experimental basis for the thermodynamic analysis behind, necessary basic data for future industrialization.
引文
[1]言渝作.纳米材料在化工生产中的应用.材料科学-化工之友.2006,No.10:44-45.
    [2]张立德,牟季美.纳米材料与纳米结构.北京:科学出版社,2001.
    [3]H.Rohrer.The Nanometer Age.Microelectronic Engineering.1995,(27):3-15.
    [4]P.Ball,Li.Garwin.Nature.355,761(1992).
    [5]都有为.纳米微粒与纳米固体.物理实验.2004,12(4):168-170.
    [6]R.Denton,B.Mahlschlegel,D.J.Scalapino.Phys.Rev.Lett.26,707(1971).
    [7]王梅生,杨夔龙.迷人的纳米材料.自然杂志.2003,14(2):25-26.
    [8]阎明朗,李淑祥.物理.23(6),335(1994).
    [9]李玲.功能材料与纳米技术.北京:化学工业出版社,2002.
    [10]McMichael R.D.,et al.J.Appl.Phys.73(10),6946(1993)(37th Annual Conf.on Magnetism and Magnetic Materials,Houston,TX,USA,1-4 Dec.1992).
    [11]李长华.材料导报.(2),75(1995).
    [12]Trudeau M.L.et al.Nanostructured Mater.1(6),457(1992).
    [13]阿部淳.超细粉末金属和陶瓷的制法及其特性.功能金属材料.辽宁科学技术出版社(1988).
    [14]梁勇.纳米微粒在医学中的应用[J].中国粉体工业,2005,(3):3-5.
    [15]马俊才,刘海笑,马英姿等.纳米材料在陶瓷方面的应用.山东陶瓷.2001,24(3):16-18.
    [16]林冠发.纳米陶瓷材料及其制备与应用.陶瓷.2002,13(5):18-21.
    [17]田军,刘吉平,郝向阳.纳米材料的制备技术与在纺织上的应用.纺织学报.2001,22(5):332-334.
    [18]唐波,葛介超等.金属氧化物纳米材料的制各新进展.化工进展.2002,21(10):707-717.
    [19]齐民,杨大智,朱敏.机械合金化过程的固态相变[J].功能材料,1995,(26):472-4751.
    [20]齐民,杨大智,朱敏.机械合金化过程的固态相变[J].功能材料,1995,(26):472-4751.
    [21]李凤生,刘宏英等.微纳米粉体制备与改型设备.北京.国防工业出版社,2004.
    [22]H Gleiter.In deformation of polycrystals:mechanisms and microstruetures[M].London:Roskilde RisNationalLab,1981.
    [23]R W Siegel,H Hahn.In crrent trends in the physics of materials[M].Singapore:World Scientific,1987.
    [24]A.Chatterzee,D.Chakravorty.J.Mater.Sci.27,4115(1992).
    [25]J.J.Watkins,T.J.Mc Carthy.Polym.Mater.Sci.Eng.73,158(1995).
    [26]A.M.Lyons,et al.J.Phys.Chem.95,1098(1991).
    [27]唐芳琼,郭广生,侯莉萍.[J].感光科学与光化学,2001,19(3):198-201.
    [28]韩晓斌,黄丽,回峥.[J].无机材料学报,1999,14(4):669-673.
    [29]潘庆宜,徐甲强,刘宏民等.[J].无机材料学报,1999,14(1):83-88.
    [30]Sharma P K,Jilavi M H,Nass R,et al.[J].J.Lumin.,1999,82:187.
    [31]Chunhui,Shoutian Chen,Ailan Xu,et al.[C].Chem.Sens.Fech.Dig.Int.Meet.7th,1998.75-77.
    [32]加藤昭夫,森满由纪子.日化.800(1984).
    [33]Hauthal W H.Chemosphere,2001,43(2):123
    [34]Frank E U.Pure Appl chem,1963,37:387.
    [35]Shaw R W,Brill T B P,Clifford A A,et al.C&EN,1991,23(12):26-38.
    [36]刘俊峰.中小型厂印染废水的处理方法[J].工业水处理,1996,16(6):6-7.
    [37]Ding Z Y,Frisch M A,Li L X,et al.Ind Eng.Chem.Res.,1997,35:3257-3279.
    [38]Schmieder H,Abeln J.Chem.Eng.Technol.,1999,22(11):903-908.
    [39]Kim Y L,Kim J D,Lim J S,et al.Ind Eng.Chem.Res.,2002,41:5576-5583.
    [40]Dunn J B,Urquhart D I,Savage P E.Adv.Synth.Catal.,2002,344:385-392.
    [41]向波涛,王涛,沈忠耀等.乙醇废水的超临界水氧化反应路径及动力学研究[J].环境科学学报,2002,22(1):21223.
    [42]DIETRICH MJ,RANDAll T L,CANNEY P J.Wet Air Oxidationof Hazardous Organics in Wastewater[J].Environ Prog,1985,(4):1712-1774.
    [43]朱自强.超临界流体技术-原理和应用[M].北京:化学工业出版社,2000.
    [44]文震,黄少烈,党志.超临界水氧化技术在环境保护中的应用与展望.环境保护,2002,6:40-41.
    [45]Oka H,Yamago S,Yoshida J,Kajimoto O.Angew.Chem.,2002,114:646-648.
    [46]Jahnke S,Hirth T,Vogel H.Chem.Eng.Tochnol.,2001,24(8):803-807.
    [47]Krammer P,Mittelstadt S,Vogel H.Chem.Eng.Technol.,1999,22(2):126-130.
    [48]Ikushima Y,Hatakeda K,Sate O,et al.J.Am.Chem.Soc,2000,122:1908-1918.
    [49]Lilac WD,Lee S.Advances in Environmental Research.2001,6:9-16.
    [50]Watanabe M,Mochiduki M,Sagamore S,et al.J.Supercrit.Fluids,2001,20:257-266.
    [51]Fang Z,Kozinski J A.Fuel,2000,81:935-945.
    [52]Suzuki Y,Tagaya H,Asou T,et al.Ind Eng.Chem.Res,1999,38:1391-1395.
    [53]赵玉龙,张荣,毕继诚.超临界水中聚乙烯降解油化的研究和开发进展[J].石油化工,2005,34(1):78-83.
    [54]Qian Y T,Su Y,Xie Y,et al.Mater Res Bull[J],1995,(30):601.
    [55]Dogan F.Mater Res See Symp Proc[J],1997,45(7):69.
    [56]Yi Ding,Guangtao zhang,Shuyuan Zhang,et al.Preparation and Characterization of Magnesium Hydroxide Sulfate Hydrate Whiskers[J].Chem.Mater,2000,(12):2845-2854.
    [57]闫鹏飞,周德瑞,王建强等.水热法制备掺杂铁离子的TiO_2纳米粒子及其光催化反应研究[J].高等学校化学学报,2002,23(12):2317-2321.
    [58]钟永科,唐国凤,朱万强等.水热法合成锐钛型纳米TiO_2的研究[J].功能材料,2003,34(1):86-88.
    [59]李酽,蔡菊芳,桑商斌等.水热法制备锰锌铁氧体纳米晶[J].陶瓷科学与艺术,2003,32(5):29-32.
    [60]杨华,黄可龙,刘素琴等.水热法制备的Fe_3O_4磁流体[J].磁性材料及仪器,2003,34(2):4-8.
    [61]部凡,蒋蒙宁.水热法合成Al_2O_3粉体的制备工艺[J].材料导报,2000,14:25-26.
    [62]刘晶冰,叶晓月,汪浩.水热法合成羟基磷灰石的结构和形貌[J].应用化学,2003,20(3):299-301.
    [63]万颖,王正,马建新等.以CTMABr和CTMAOH为共模板剂合成MCM-41[J].高等化学学报, 2002,23(6):1135-1139.
    [64]Adschiri T,Kanazawa K,Arai K.J.Am.Ceram.Soc.,1992,75:1019-1023.
    [65]Hakuta Y,Terayama H,Onai S,et al.J.Mater.Sci.Lett,1998,17:1211-1213.
    [66]Hakuta Y,Onai S,Adschiri T,Arai K.Prod Int.Symp.Supercrit.Fluids B,1997:255-259.
    [67]Hakuta Y,Adschiri T,Suzuki T,et al.J Am.Ceram.Soc.,1998,81(9):2461-2465.
    [68]Hakuta Y,Seino K,Ura H,et al.J.Mater.Chem.,1999,9(10):2671-2675.
    [69]Hakuta Y,Haganuma T,Sue K,et al.Materials Research Bulletin,2003,38:1257-1265.
    [70]Junichi Otsu,Yoshito Oshima.New approaches to the preparation of metal or metal oxide particles on the surface of porous materials using supercritical water:Development of supercritical water impregnation method[J].J.of Supercritical Fluids,2005,33:61-67.
    [71]Jaewon Lee,Amyn S.Teja.Characteristics of lithium iron phosphate(LiFePO_4)particles synthesized in subcritical and supercritical water.J.of Supercritical Fluids,2005(35):83-90.
    [72]Bo Li,Yukiya Hakuta,Hiromichi Hayashi.Hydrothermal synthesis of KNbO_2 powders in supercritical water and its nonlinear optical properties.J.of Supercritical Fluids,2005(35):254-259.
    [73]Yukiya Hakuta,Haruo Ura,Hiromichi Hayashi,Kunio Arai.Effect of water density on polymorph of BaTiO_3 nanoparticles synthesized under sub and supercritical water conditions.Materials Letters,2005(59):1387-1390.
    [74]Chunbao Xu,Jaewon Lee,Amyn S.Teja.Continuous hydrothermal synthesis of lithium iron phosphate particles in subcritical and supercritical water.J.of Supercritical Fluids,2007,ⅹⅹⅹ:ⅹⅹⅹ-ⅹⅹⅹ.
    [75]D.Zhao,X.Wu,H.Guan,et al.Study on supercritical hydrothermal synthesis of CoFe204nanoparticles.J.of Supercritical Fluids,2007,42:226-233.
    [76]Hakuta Y,Hayashi H,Arai K.Fine partic]e formation using supercritical fluids[J].Material Science,2003,7,341-351.
    [77]姚超等.纳米技术与纳米材料(Ⅵ)-纳米氧化锌在防晒化妆品中的应用.日用化学工业,2003,3(6):393-397.
    [78]祖庸,雷闫盈,王训等.纳米ZnO的奇妙用途.化工新型材料.2000,27(3):43-47.
    [79]郑文裕,陈潮钿,陈仲丛.二氧化锆的性质、用途及其发展方向[J].无机盐工业,2000,32(1):18-21.
    [80]贡长生,张克立.新型功能材料[M].北京:化学工业出版社,2002.
    [81]李吕辉.物理化学.北京:高等教育出版社,1994:180-185.
    [82]周祖康.胶体化学基础.北京:北京大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700