用户名: 密码: 验证码:
层燃—流化复合垃圾焚烧炉燃烧与排放研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焚烧是实现垃圾减量化、无害化和资源化的有效方法,研究其燃烧和污染物的排放特性具有重要意义。本文对层燃-流化复合垃圾焚烧炉的燃烧及排放进行了系统的实验和模型研究,取得了以下主要成果。
     通过对垃圾热值和燃烧温度的分析,指出对我国高水分、低热值的垃圾,采用层燃炉排预热干燥,进而使用循环流化床焚烧是独具优势的技术路线。对垃圾的干燥过程进行了实验和理论分析,得到了桔子皮等典型垃圾成分在不同干燥温度下的失水率和干燥的活化能等参数,得出了干燥床的优化结构和设计原则。
     利用TGA等分析手段,系统研究了多种垃圾组分的着火温度和燃烧过程中释放的气体成分,得到了热解产物烷烃、苯等随垃圾成分、加热温度的变化规律及着火温度,并得到了热解过程的活化能和指前因子等参数,为垃圾焚烧及排放模型的建立提供了基础。
     对单组分垃圾进行了燃烧实验,发现层燃条件下经过干燥后的垃圾在燃烧过程中CO、CxHy的峰值较大,必须注意二次风的配入;在流化床燃烧条件下,水分闪蒸和挥发分急剧释放会导致焚烧床内出现爆燃;二次风率增加,CO和NOx排放降低。
     分别在1MW垃圾焚烧实验台、150t/d和260t/d层燃-流化复合垃圾焚烧炉上进行了垃圾焚烧实验和热态工业测试,结果表明,沿炉膛高度CO和有机可燃气体的最大浓度和燃尽时间都明显大于燃煤锅炉,多级合理的配风是垃圾燃烬和降低污染物原始生成的决定因素;并表明垃圾在干燥床内预干燥,不仅有利于炉膛内燃烧稳定,降低掺煤比,还可以有效抑制爆燃和降低污染物的排放。
     提出了层燃-流化复合垃圾焚烧炉焚烧及排放的半经验计算模型,使用工业测试数据对计算结果进行了比较和验证。通过计算研究了过量空气系数、一次风率等运行参数对燃烧和污染物生成的影响。本模型对层燃-流化复合垃圾焚烧炉的设计改进和运行操作具有一定的指导意义。
The incineration is an effective method to treat municipal solid waste (MSW) for its volume reduction, harmless treatment and energy recovery. It is important to study on the combustion process and pollutant emission in MSW incineration. The experiments and model simulating of MSW combustion and pollutant emission in a combined grate and circulating fluidized bed incinerator (grate-CFBI) have been performed. Through the study, following results are obtained.
     The analysis of low heating value and ignition temperature of MSW was carried out. The analysis results indicate that the technology of grate-CFBI, that is, to use at first the grate bed to dry out MSW and then to use the fluidized bed to incinerate MSW is very effective for MSW treatment. The drying process of MSW was experimentally investigated in test rigs and in a simulated grate bed respectively. The moisture loss rate and activation energy of typical waste at different temperature were obtained from the experiments. Based on the experimental and theoretical analysis results, the optimized structure of the grate bed of grate-CFBI and its design principle were proposed.
     The ignition temperature and evolved gas components of typical waste in drying, pyrolysis and oxidization process were experimentally studied by using the thermal gravimetric analysis (TGA). The changing trend of pyrolysis products including alkanes, benzene, et al. and the ignition temperature of MSW ware obtained. In addition, the activation energy and exponential factor of MSW in pyrolysis were analyzed. The obtained kinetic parameters of MSW pyrolysis and the ignition temperatures can be used as the data base in the model simulation of MSW incineration.
     The experiments of combustion of typical MSW components were performed in an experimental facility. It was found from the experiments that the peak values of CO and CxHy appeared in combustion process of post-drying waste at the grate bed were very high and the secondary air was required for their complete combustion. When MSW incinerated in fluidized bed, the flash vaporization of water and rapid release of volatile matter of MSW induced deflagration combustion, which lead to the pressure and temperature fluctuations in the furnace. With the increase of secondary air flow rate, the emission of CO and NOx decreased.
     The combustion experiment of raw MSW collected from community and the test carried out in the industrial grate-CFBI of 150t/d (ton per day) and 260t/d grate-CFBI were performed respectively. The results from both the experimental work and the industrial test showed that CO and other combustible gas concentrations along the height of the furnaces were higher and the burnout time of these gases were longer respectively than that in coal fired boilers. The multi-staging air supply was decisive to reduce the original pollutant formation. The experiment and the industrial test also indicated that the pre-drying of waste on the grate bed could not only maintain the stable combustion in furnace and reduce the supplement coal, but also inhibit the deflagration combustion and reduce pollutant emission.
     A semi-theoretical model for the simulation of MSW combustion and pollutant emission in the grate-CFBI was presented and verified by the experimental and industrial test data. The influence of operation parameters such as the excess air and primary air rate on combustion and pollutant formation was studied by the model simulation. This semi-theoretical simulation model is useful for the design and the operation of the grate-CFBI.
引文
[1]中华人民共和国统计局编.中国统计年鉴.北京:中国统计出版社,2006.
    [2]杜吴鹏,高庆先,张恩琛,等.中国城市生活垃圾处理及趋势分析.环境科学研究,2006,19(6):115-120.
    [3] Mark D. Hunsicker. An overview of the municipal waste incineration industry in Asia and the former Soviet union. Journal of hazardous materials, 1996,47:31-42.
    [4]聂永丰,刘富强,王进军.我国城市垃圾焚烧技术发展方向探讨.环境科学研究,2000,13(3):20-23.
    [5]简瑞民.城市生活垃圾燃烧特性及逆推式焚烧炉中燃烧过程模型研究:[博士学位论文],上海:同济大学机械学院,1993.
    [6]聂永丰.我国生活垃圾处理技术现状及发展方向探讨.环境经济杂志,2005,(22):30-35.
    [7]中国城市环境卫生协会.第二次城市生活垃圾焚烧炉处理技术与设施专题研讨会论文集.中国重庆,2007
    [8] Dong Suocheng. Municipal solid waste management in China: using commercial management to solve a growing problem. Utilities policy, 2001,10:7-111.
    [9] Yangsheng Liu,Yushan Liu. Novel incineration technology integrated with drying, pyrolysis, gasification, and combustion of MSW and ashes vitrification. Environmental Science and Technology, 2005,39(10):3855-3863.
    [10]郑明辉,张兵.台湾城市生活垃圾焚烧处理现状.环境科学研究,2000,13(3).
    [11]陶邦彦,余鸿达,曹剑文.国外城市垃圾焚烧炉的环保措施.动力工程,1999,19(6).
    [12]徐海云,龙吉生.欧洲各国采用的垃圾焚烧烟气排放指标.中国环保产业,1997,(4).
    [13]沈伯雄,姚强.垃圾焚烧中二恶英的形成与控制.电站系统工程,2002,18(5).
    [14]曾慕成,张雄文.国外二恶英污染及其控制.工业安全与环保,2002,18(9).
    [15]国家环境保护总局.生活垃圾焚烧污染控制标准. GB 18485 2001.
    [16]陈亮,江爱朋,金余其,等.两种城市生活垃圾焚烧方式的比教.锅炉技术,2002,33(2):28-32.
    [17]别如山,王国庆.采用循环流化床技术焚烧城市生活垃圾.环境污染治理技术与设备,2003,4(11):79-82.
    [18] Martin Lemann. Fundamental of waste technology. Switzerland : C. Herrmann Consulting, 1997.
    [19]张益,赵由才.生活垃圾焚烧技术.北京:化学工业出版社,2000.
    [20]谢裕生,赵黛清,赵哲石,等译.燃烧生成物的发生与抑制技术.北京:科学出版社,2001.
    [21]汪玉林.垃圾发电技术及工程实例.北京:化学工业出版社,2003.
    [22]李爱民,姜秀民,王擎.层燃-流化床内循环双床城市垃圾焚烧技术.工业锅炉,1996,(3):2-5.
    [23]张衍国,吕俊复,姚忠建.燃用多成分低热值燃料的流化床锅炉及其运行方法.中国发明专利,ZL 97103977.1,1997.
    [24]陈继辉,卢啸风,刘汉周.城市生活垃圾循环流化床处理技术的研究进展.燃烧科学与技术,2006,12(5):473-479.
    [25]吕清刚,那永洁,包绍麟,等.城市垃圾与煤在CFBC试验台上的混烧实验.工程热物理学报,2003,24(3).
    [26]李晓东,杨家林,池涌. 150t/d城市生活垃圾流化床焚烧炉的设计及其运行,2002,22(1).
    [27] Yuichi. Dynamic characteristics analysis and combustion control for a fluidized bed incinerator. Control engineering practice, 1998,(6):1159-1168.
    [28]李诗媛,别如山.城市生活垃圾焚烧过程中二次污染物的生成与控制.环境污染治理技术与设备,2003,4(3).
    [29]李忠林,梁炽琼,蔡明招,等.城市模化垃圾焚烧烟气中二氧化硫的生成特性.重庆环境科学,2000,22(3).
    [30] Y B Yang, V Nasserzadeh, J Goodfellow, et al. Parameter study on the incineration of municipal solid waste fuels in packed beds. Journal of the institute of energy, 2002, 75(9):66-80.
    [31] Y B Yang, Y R Goh, R Zakaria, et al. Mathematical modeling of MSW incineration on a traveling bed. Waste management, 2002,22,369-380.
    [32] Hans-Heinz Frey, Bernhard Peters, Hans Hunsinger, et al. Characterization of municipal solid waste combustion in a grate furnace. Waste management, 2003,23: 689-701.
    [33] M Wobst, H Wichmann, M Bahadir. Distribution behavior of heavy metals investigated in laboratory-scale incinerator. Chemosphere, 2001,44:981-987.
    [34]蔡明招,梁炽琼,陈烈强,等.城市有机垃圾焚烧烟气中氮氧化物生成特性的研究.四川环境,2000,19(14).
    [35] Peter Glarborg, Anker Jensen, Kim Dam-Johansen. Formation of NO from combustion of volatiles from municipal solid wastes. Combustion and flame, 2001,123:195-512.
    [36]钟北京,傅维标.燃烧过程中快速型氧化氮形成机理及其影响因素.燃烧科学与技术,1997,3(4):388-393.
    [37]姜凡,潘忠刚,张立斌,等.垃圾在流化床中燃烧的特性.环境科学,2001,22(1).
    [38] Estelle Desroches-Ducarne, J Christophe Dolignier, Eric Marty, et al. Modeling of gaseous pollutants emissions in circulating fluidized bed combustion of municipal refuse, Fuel, 1998,77(13): 1399-1410.
    [39] K. Suksankraisorn, S. Patumsawad, P. Vallikul, et al. Co-combustion of municipal solid waste and Thai lignite in a fluidized bed. Energy Conversion and Management , 2004,45: 947-962.
    [40]李斌.流化床圾焚烧炉中流动、燃烧及二次污染特性研究:[博士学位论文],杭州:浙江大学热能工程系,1998.
    [41] Ming-Yen Wey, Lih-Jyh Yu, Suen-Iou Jou. The influence of heavy metals on the formation of organics and HCl during incinerating of PVC-containing waste. Journal of hazardous materials,1998,60:259-270.
    [42] Ming-Yen Wey, Wen-Yu, Zhen-Shu Liu, et al. Pollutants in incineration flue gas. Journal of hazardous materials, 2001,82: 247-262.
    [43]闫涛.循环流化床焚烧炉中生活垃圾燃烧特性研究: [博士学位论文].北京:清华大学,2004.
    [44] S. Patumsawad, K. R. Cliffe. Experimental study on fluidized bed combustion of high moisture municipal solid waste. Energy conversion and management, 2002,43:2329-2340.
    [45]阿世孺,张洪波.提高垃圾焚烧电厂热能利用效率的几个途径.安全与环境学报,2004,(6):38-40.
    [46]贾其亮,陈德珍,张鹤声.高水分垃圾焚烧热回收和烟气净化系统的合理布置.环境工程,2004,22(4):34-37.
    [47]魏小林.高水分煤在流化床中燃烧时NOx的排放特性,热能动力工程,1999,14(81).
    [48]罗春鹏,池涌,刘渊源,等.流化床垃圾焚烧有害气体排放特性研究.锅炉技术,2003,34(6).
    [49] Shimizu, T,Franke, H.-J., Hori, S. et al. Porous bed material - An approach to reduce both unburnt gas emission and NOx emission from a bubbling fluidized bed waste incinerator, Journal of the Japan Institute of Energy, 2001,80(5): 342-348.
    [50] Piao Guilin, Aono, Shigeru, Kondoh Motohiro, et al. Combustion test of refuse derived fuel in a fluidized bed. Waste Management, 2000,20(5):443-447.
    [51]金余其.水分对城市垃圾焚烧的影响.电站系统工程,2004,20(4):39-40.
    [52] J. M. Sanchez-Hervas, L. Armesto, E. Ruiz-Martinez, et al. PCDD/PCDF emissions from co-combustion of coal and PVC in a bubbling fluidized bed boiler. Fuel, 2005,84:2149-2157.
    [53]郑守忠,曾东,巢江辉,等.流化床焦炭燃烧过程中NO排放特性的实验研究.东南大学学报,1999,18(4).
    [54]蒲舸,张力,辛明道,等.医疗垃圾与煤在循环流化床中的混烧试验.重庆大学学报,2003,26(8).
    [55]董长青,金保生,仲兆平,等.燃煤循环流化床搀烧城市生活垃圾过程中酸性气体的排放.中国电机工程学报,2002,22(3):32-37.
    [56]张东平,李晓东,严建华.垃圾在流化床中焚烧NO排放特性研究.燃料化学学报,2003,31(4).
    [57] Mircea Cardu, Malvina Baica. Regarding the relation between the NOx content and CO content in thermo power plants flue gases. Engergy conversion and management, 2005, 46: 47-59.
    [58]赵宗彬,陈皓侃,李保庆.流化床燃煤过程中氧化亚氮的生成和还原机理.煤化工,2000,2:29-31.
    [59]周一工.流化床燃烧中氧化亚氮形成机理研究概述.环境技术,1998,(5):41-44.
    [60] T. Rogaume, J. Koulidiati, F. Richard. A model of the pathways leading to NOx formation during combustion of mixtures of cellulostic and plastic materials. International journal of thermal science, 2006,45:359-366.
    [61] B. Leckner, L. E. Amand, K Lucke, et al. Gaseous emissions from co-combustion of weage sludge and coal/wood in a fluidized bed. Fuel, 2004,83:477-486.
    [62] M. Sanger, J. Werther, T. Ogada. NOx and N2O emission characteristics from fluidized bed combustion of semi-dired municipal sewage sludge. Fuel, 2001, 80:167-177.
    [63] Mikko Hupa. Interaction of fuels in co-firing in FBC. Fuel, 2005,84:1312-1319.
    [64] Lars Sorum, Oyvind Skreiberg. Formation of NO from combustion of volatiles from municipal soild wastes. Combustion and flame, 2001,123:195-212.
    [65]别如山,李鑫,杨励丹,等.含氯有机废水在流化床中焚烧HCl生成与控制的实验研究,环境科学学报,2001,21(4).
    [66]董长青,金保升,仲兆平.循环流化床煤与生活垃圾混烧过程中HCl的排放.锅炉技术,2001,32(10).
    [67] Kuen-Sheng Wang, Kung-Yun, Shin-Ming Lin, et al. Effects of chlorides on emissions of hydrogen chloride formation in waste incineration. Chemosphere, 1999,38(7):1571-1582.
    [68] Kuen-Sheng Wang, Kung-Yuh Chiang, Shin-Ming Lin, et al. Effect of chlorides on emissions of toxic compounds in waste incineration: Study on partitioning characteristics of heavy metal. Chemosphere, 1999,38(8):1833-1849.
    [69]李香排,蒋旭光,张东平,等.典型垃圾组分焚烧中HCl排放的试验研究.煤炭学报,2004,29(1):83-87.
    [70]尤孝方,李晓东,严建华,等.流化床焚烧塑料垃圾多环芳烃的生成特性.燃烧科学与技术,2003,19(4).
    [71] J. D. Kilgroe, T.G, Brna, A. Finkelstein, et al. Control of PCDD/PCDF emissions from refuse-derived fuel combustors. Chemosphere, 1990,20:1809-1815.
    [72] Gullett Brian K., Raghunathan K. Observation on the effect of process parameters on Dioxin/Furan yield in municipal solid waste and coal system. Chemsphere, 1997,34(5-7):1027-1032.
    [73] Y R Goh, R G Siddall, V Nasserzadeh, et al. Mathematical modeling of the burning bed of a waste incinerator. Journal of the institute of energy. 1998,71(6):110-118.
    [74] Y R Goh, Y B Yang, R Zakaria, et al. Development of an incinerator bed model for municipal solid waste incineration. Combustion science and technology, 2001, 162:37-58.
    [75] M. Saito, K. Amagai, G. Ogiwara, et al. Combustion characteristics of waste material containing high moisture. Fuel, 2001,80:1201-1209.
    [76]孙振刚,马晓茜,卢苇.农产品加工剩余物焚烧过程的干燥热解特性研究.农业机械学报,2001,32(2):49-51.
    [77]李爱民,曲艳丽,陈满堂,等.污水污泥干燥特性的试验研究.燃烧科学与技术,2003,9(5):404-408.
    [78]陈允轩.焚烧炉条件下典型城市生活垃圾干燥过程的试验研究:[硕士学位论文].北京:北京交通大学,2006.
    [79] L. Sorum, M. G. Gronli, J. E. Hustad. Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel, 2001,80:1217-1227.
    [80]郭小芬,杨雪莲,李海滨,等.聚氯乙稀燃烧特性及HCl生成机理.燃料化学学报,2000,28(1):67-70.
    [81] Carmen Branca, Colomba Di Blasi. Global interinstic kinetics of wood oxidation. Fuel, 2004,83:81-87.
    [82] S A Scott, J S Dennis, J F Davidson, et al. Thermogravimetric measurements of the kinetics of pyrolysis of dried sewage sludge. Fuel, 2006, 85:1248-1253.
    [83] I. Pitkanen, J. Huttunen, H. Halttunen, et al. Evolved gas analysis of some fuels by TG-FTIR. Journal of thermal analysis and calorimetry, 1999,56:1253-1259.
    [84] R. Bassilakis, R. M.. Carangelo, M. A. Wojtowicz. TG-FTIR analysis of biomass pyrolysis. Fuel, 2001,80:1765-1786.
    [85] Marek A. Wojtowicz, Rosemary Bassilakies, Wayne W. Smith. Modeling the evolution of volatile species during tobacco pyrolysis. J. Anal. Appl. Pyrolysis, 2003,66:235-261.
    [86] W. de Jong, A. Pirone, M. A. Wojtowicz. Pyrolysis of miscanthus giganteus and wood pelletes: TG-FTIR analysis and reaction kinetics. Fuel, 2003,82:1139-1147.
    [87]苏学泳,王智微,程从明,等.生物质在流化床中的热解和气化研究.燃料化学学报,2000,28(4):298-305.
    [88]闫涛,左禹,张衍国,等.生活垃圾燃烧特性实验研究.燃烧科学与技术,2002,8(6):543-547.
    [89] Hairui Yang, Junfu Lu, Hai Zhang, et al. Coal ignition characteristics in CFB boiler. Fuel, 2005, 84:1849-1853
    [90]喻秋梅,庞亚军,陈宏国,等.煤燃烧试验中着火点确定方法的探讨.华北电力技术,2001,(7):9-10.
    [91] Thomas Grotkjaer, Kim Dam-Johansen, Anker D. Jensen. An experimental study of biomass ignition. Fuel, 2003,82:825-833.
    [92]秦成,田文栋,肖云汉.垃圾衍生燃料热重法的燃烧特性.燃烧科学与技术, 2004,10(3):232-236.
    [93]田文栋,魏小林,黎军,等.城市固体废物的焚烧实验.中国环境科学,2001,21(1),49-53.
    [94]李晓东,陆胜勇,徐旭,等.中国部分城市生活垃圾热值的分析.中国环境科学,2001,21(2):156-160.
    [95]董长青,金保升.神经网络法用于预测城市生活垃圾热值.热能动力工程,2002,17(99):275-278.
    [96]王述洋,谭文英,赵殊,等.生物质的能量预测及建模.东北林业大学学报,2003,31(2):72-74.
    [97]刘晓红,张增强,胡京利,等.杨凌城市生活垃圾热值测定分析.延安大学学报,2004,23(3):48-51.
    [98] Laura Meraz, Armando Domingguez, Isaac Kornhauser, et al. A thermochemical concept-based equation to estimate waste combustion enthalpy from elemental composition. Fuel, 2003, 82:1499-1507.
    [99] Xifeng Zhu, Robbie Venderbosch. A correlation between stoichiometrical ratio of fuel and its higher heating value. Fuel, 2005,84:1007-1010.
    [100] P Thipkhunthod, V Meeyoo, P Rangsunvigit. Predicting the heating value of sweage in Thailand from proximate and ultimate analyzer. Fuel, 2005,84:849-857.
    [101] Jigisha Parikh, S. A. Channiwla, G. K. Ghosal. A correlation for calculating HHV from proximate analysis of solid fuels. Fuel, 2005,84:487-494.
    [102] Sivapalan Kathiravle, Muhd Noor Muhd Yunus, K. Sopian. Modeling the heating value of municipal solid waste. Fuel, 2003,82:1119-1125.
    [103] L. B. M. van Kessel, A. R. J. Arendesen, G. Brem. On-line determination of the caloric value of solid fuels. Fuel, 2004,83:59-71.
    [104]沈凯.垃圾焚烧炉自适应控制策略及热值监测模型研究. :[博士学位论文].武汉:华中科技大学,2005.
    [105] John M. Sweeten, Kalyan Annamalai, Ben Thien, et al. Co-firing of coal and catte feedlot biomass (FB) fuel1. Part I. Feedlot biomass (cattle manure) fuel quality and characteristics. Fuel, 2003,82:1167-1182.
    [106] A Buekens, H Huang. Comparative evaluation of techniques for controlling the formation and emission of chlorinated dioxinsrfurans in municipal waste incineration. Journal of Hazardous Materials, 1998,62:1-13.
    [107] Everaert K, Baeyens J. Correlation of PCDD/F emissions with operating parameters of municipal solid waste incinerators. Journal of the Air and Waste Management Association, 2001, 51(5).
    [108] Elena Daniela Lavric, Alexander A. Konnoy, Jacques De Ruyck. Surrogage compounds for dioxin in incineration . A riview. Waste management, 2005,25:755-765.
    [109] J. D. Kilgroe, T.G, Brna, A. Finkelstein, et al. Control of PCDD/PCDF emissions from refuse-derived fuel combustors. Chemosphere, 1990,20:1809-1815.
    [110] W. Jangsawang, B. Fungtammasan, S. Kerdsuwan. Effects of operationg parameters on the combustion of medicak waste in a controlled air incinerator. Energy conversion and management, 2005,46:3137-3149.
    [111] A. Khalfi, G. Trouve, R. Delobel, et al. Correlationm of CO and PAH emissions during laboratory-scale incineration of wood waste furniturues. J. Anal. Appl. Pyrolysis, 2000,56:243-262.
    [112] M. C. M. Alvim-Ferraz, S. A. V. Afonso. Incineration of different types of medical wastes: emission factors for gaseous emissions. Atmospheric environment, 2003,37:5415-5422.
    [113]肖显斌,杨海瑞,吕俊复,等.循环流化床燃烧数学模型.煤炭转化,2002, 25(3):11-16.
    [114]雍玉梅,吕清刚.一种构建准三维循环流化床整体模型的方法.锅炉技术,2004,35(1):6-8.
    [115]王智微.生物质燃料循环流化床锅炉的模型化设计:[硕士学位论文].北京:清华大学热能工程系,1999.
    [116]李政.循环流化床锅炉通用总体数学模型,仿真与性能预测: [博士学位论文].北京:清华大学热能工程系,1995.
    [117]王勤辉.循环流化床锅炉总体数学模型及性能试验: [博士学位论文].杭州:浙江大学,1997.
    [118]吕亮.城市生活垃圾焚烧系统整体数学模型与仿真:[博士学位论文].北京:清华大学热能工程系,2006.
    [119] C N Lim, Y R Goh, V Nasserzadeh. The modeling of solid mixing in municipal solid incinerators. Power technology, 2001,114:89-95.
    [120] V nasserzadeh, J Swithenbank, B Jones. Three-dimensional modeling of a municipal solid-waste incinerator. Journal of the institute of energy, 1991,64(9):166-175.
    [121] Gungor A. Analysis of combustion efficiency in CFB coal combustors. Fuel (2007), doi: 10.1016/j.fuel.2007.06.005.
    [122] M. Manickam, M. P. Schwarz, J. Perry. CFD modeling of waste heat recovery boiler. Appied mathematical modeling, 1998,22: 823-840.
    [123] F. Marias. A model of a rotary kiln incinerator including processes occurring within the solid and the gaseous phases. Computers and Chemical Engineering, 2003,27: 813-825.
    [124] K S Chen, Y J Tsai, J C Lou. Three-dimensional combustion modeling in municipal solid-waste incinerator. Journal of environmental engineering, 1999,(2).
    [125]曹玉春.流化床垃圾焚烧炉内流动和燃烧污染物生成数值模拟研究:[博士学位论文].杭州:浙江大学机械与能源工程学院,2005.
    [126]沈来宏.循环流化床燃烧数学模型及试验研究.煤炭转化, 1999,22(4).
    [127]岳峻峰,金保升,董长青,等.流化床城市生活垃圾与煤混烧数学模型及其原理性验证.锅炉技术,2004,32(1):73-78.
    [128] Pilar Gayan, Juan Adanez, Luis F. de Diego Circulating flyuidized bed co-combustion of coal and biomass. Fuel, 2004,83:277-286.
    [129]吴久桓,张衍国,李清海.大颗粒在循环床密相区运动规律的可视化研究.中国电机工程学报,2006,26(4):41-45.
    [130]张衍国,郭亮,李清海.一种用于垃圾焚烧设备的进料及干燥装置.中国,实用新型专利,ZL 01201538.5,2002.
    [131]冯俊凯,沈幼庭,杨瑞昌.锅炉原理及计算,北京:科学出版社,2003.
    [132]邹嵘,李岚. F250-23-3. 82 /450 /150循环流化床垃圾焚烧锅炉的设计.江西能源,2007,(1):16-19.
    [133]刘平,唐鸿寿,王如松.我国城市垃圾焚烧处理技术经济分析.中国人口·资源与环境,2001,11(2):22-24.
    [134]中华人民共和国建设部. J 184-2002.生活垃圾焚烧处理工程技术规范.北京:中国建筑工业出版社, 2002.
    [135] Ebru Kavak Akpinar. Experimental determination of convective heat transfer coefficient of some agricultural products in forced convrction drying.Int.Comm.Heat Mass Transfer,2004.31(4):585-595.
    [136] Fahrettin.Air drying characteristics of solid waste(pomace)of olive oil processing. Journal of food engineering, 2006,72:378-382.
    [137]王裕明,胡建红,冉景煜,等.混合工业污泥燃烧及动力学特性实验研究.中国电机工程学报,2007,27(17):44-50.
    [138]陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985.
    [139]傅维镳.煤燃烧理论及其宏观通用规律.北京:清华大学出版社,2003.
    [140]卢洪波,徐海军,马文军,等.煤与玉米秸秆混合燃烧的试验研究.东北电力学院学报, 2005,25(6):5-8.
    [141]李清海,张衍国,吴占松.城市污水污泥的成分分析与热分析.环境工程(2002)增刊.
    [142]李永华,李松庚,冯兆兴,等.褐煤及其混煤燃烧NOx生成的试验研究.中国电机工程学报,2001,21(8):34-36.
    [143] BIE Ru-shan, LI Ji, YANG LI-dan. NOx emission from incineration of organic hazardous liquid waste containing hexamethylendiamine in fluidized bed. Journal of Harbin Institute of Technology, 2002,9(1):24-28.
    [144]马晓茜,张笑冰,卢苇,等.垃圾焚烧层燃炉与CAO系统的分析比较.工业炉,1999,21(3):12-20.
    [145]王勤辉,骆仲泱,方梦祥,等.循环流化床锅炉炉内流动和燃烧特性的试验研究.动力工程,1999,19 (3):11-17.
    [146]邢兴.循环流化床锅炉的热态测试研究:[硕士学位论文].北京:清华大学,1999.
    [147]张建胜,吕俊复,金晓钟,等. 75t/h水冷异型分离器循环流化床燃烧室浓度分布.清华大学学报,1998,38 (5):11-14.
    [148]刘青,陈科宇,张守玉,等.循环流化床锅炉炉膛内气体浓度的分布.应用基础与工程科学学报,2003,11(1):71-76.
    [149]陈丽梅,金燕.出口结构对循环流化床锅炉床内轴向密度的影响.太原理工大学学报,2006,37(5):140-142.
    [150]王玉召,吕俊复,张建胜,等. 220 t/h水冷方形分离器循环流化床锅炉的性能.动力工程,2005,25(3):343-347.
    [151]金燕,郑洽余,杨瑞昌.循环流化床锅炉的出口端头效应及其强化.锅炉技术,1999,30(10):10-13.
    [152]王智微,李晓峰.分宜100 MW循环流化床锅炉旋风分离器分离效率的计算.锅炉制造,2006(1):1-3.
    [153]武俊.260t/d循环流化床垃圾焚烧炉工业性能研究:[硕士学位论文].北京:清华大学,2005.
    [154]吕俊复,白玉刚,岳光溪,等.方形分离器入口加速段宽度.清华大学学报(自然科学版), 2000,40(4):66-69.
    [155]赵长遂,孙昕,陈晓平,等.造纸废弃物与煤循环流化床混烧特性研究.东南大学学报(自然科学版),2005,35(1):95-98.
    [156] Wen C Y,Chen L H. Fluidized bed freeboard phenomena: entraiment and elutriation. AIChE Journal, 1982, 28(1): 117-128.
    [157]高建强.大型循环流化床锅炉实时仿真模型与运行特性研究:[博士学位论文].北京:华北电力大学能源与动力工程学院,2005.
    [158] Turnbull E, Davidson J F. Fluidized combustion of char and volatiles from coal. AIChE Journal, 30(6): 881-889.
    [159] Wei Dong, Wlodzimierz Blasisk. CFD modeling of ecotube system in coal and waste grate combustion. Energy conversion and management, 2001,42: 1887-1896.
    [160] W Dong, W Blasiak. Computational fluid dynamics modeling and optimization of a new ecotube air system for clean combustion of coal in a grate fired boiler. Journal of the institute of energy, 2001,74(6) 48-56.
    [161]王智微,唐松涛,苏学泳,等.流化床中生物质热解气化的模型研究.燃料化学学报,2002,30(4):342-345.
    [162]王智微,李定凯,唐松涛,等.高挥发分燃料在循环流化床燃烧室中挥发分释放的统计模型.工程热物理学报,2001,22(1):123-126.
    [163] La Nauze R D, Jung K. 19th Symp (Int.) on Combustion, the Combustion Institute, Pittsburgh, 1982: 1087-1092.
    [164] Srinivassan R A, Sriramulu S, Kulasekaran S, etal. Mathematical modelling of fluidized bed combustion-2: Combustion of gases. Fuel, 1998, 77(10): 1033-1049.
    [165] Pannek U, Mleczko L. Comprehensive model of oxidative coupling of methane in a fluidized-bed reactor. Chemical Engineering Science, 1996, 51(14): 3575-3590.
    [166]张云,张力,冉景煜.城市混合垃圾组分及其燃烧产物特性分析,2001,27(108):13-18.
    [167]张中林,王文选,王凤君,等.循环流化床煤和石油焦混烧污染物生成及脱除模型研究.洁净煤燃烧技术,2003,4:9-12.
    [168]吕清刚,雍玉梅,那永洁,等.循环流化床燃煤锅炉的SO2和NOx排放的试验和数值计算.中国电机工程学报,2005,25(1):142-146.
    [169]蒋旭光,李香排,池涌,等.木屑燃烧过程中氯化氢排放特性研究.燃料化学学报,2004,32(3):307-310.
    [170]冯立斌,张衍国,吴占松,等.城市生活垃圾焚烧中的气体污染与防治.环境保护,1999(2):16-18.
    [171]李斌,池涌,李水清,等.流化床固体废弃物焚烧的HCl排放特性.环境工程,1998,16(3):61-63.
    [172]蒋旭光,李香排,池涌,等.流化床中典型垃圾组分与煤混烧时HCl排放和脱除研究.中国电机工程学报,2004,24(8):210-214.
    [173]郭小汾,杨雪莲,李海滨,等.钙化物对HCl的脱除动力学研究.中国环境科学,2000,20(3):211-214.
    [174]李依丽,高晋生,吴幼青,等.高温煤气中氯化氢脱除反应动力学研究.环境工程,2005,23(6):35-37.
    [175]朱延钰,肖云汉,陈凡,等.循环流化床脱除氯化氢研究.环境科学学报,2001,21(2):194-197.
    [176]逄锦福.蒸汽活化钙基吸收剂脱除烟气中HCl的研究. [硕士学位论文].北京:清华大学热能工程系,2005.
    [177]陈德珍,张鹤声.垃圾焚烧尾气中HCl干式净化过程的数学模拟.同济大学学报,1996,24(3):281-286.
    [178] Tian Fujun, Hongwei Wu, Jiang-long Yu, et al. Formation of NOx precursors during the pyrolysis of coal and biomass. Fuel, 2005,84:2102-2108.
    [179]潘葱英,蒋旭光,尚娜,等.垃圾焚烧烟气中HCl的高温腐蚀研究进展.锅炉技术,2003,34(5):72-76.
    [180]岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运行,北京:中国电力出版社,1998:44-46.
    [181]肖显斌.循环流化床锅炉燃烧室多维数学模型与试验研究. [博士学位论文].北京:清华大学热能工程系,2006.
    [182]王智微,石波,孙涛,等. 100MW CFB锅炉炉膛压力分布的研究.电站系统工程. 2004 , 20 (6) :15- 16.
    [183]陈晓平,顾利锋,赵长遂,等.城市污泥与煤混烧过程中NOx和N2O的排放特性.东南大学学报(自然科学版),2005,35(1):122-125.
    [184]白泉,李政,倪维斗.循环流化床锅炉脱硫整体精细模型的研究.动力工程,2003,23(3):2450-2457.
    [185]潘忠刚,任爱峰,王达三,等.循环流化床上部空间燃料燃烧份额和传热.工程热物理学报,1988,9(1):81-85.
    [186]金晓钟,吕俊复,乔锐,等.循环床锅炉燃烧份额分布的实验研究和理论分析.洁净煤技术,1999,5(1):26-29.
    [187]刘辉,姜秀民,吴少华,等.循环流化床燃烧室密相区燃烧份额计算的数学模型.动力工程,2003,23(4):2511-2514.
    [188]林宗虎,魏敦崧,安恩科,等.循环流化床锅炉.北京:化学工业出版社,2003:13-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700