用户名: 密码: 验证码:
重庆市地下河发育、分布的控制机制及水文地球化学区域特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国南方岩溶区3066条地下河水资源是我国重要的战略资源,是区域可持续发展的重要支撑。然而,由于岩溶环境本身的脆弱性,以及人类活动的影响,岩溶地下河正面临水质退化,水源枯竭等多方面的威胁。重庆地区是我国西南岩溶地区的重要组成部分,岩溶分布面积约3.0万km2,主要分布在东北部和东南部。2006年夏和2010年春重庆都遭遇了百年不遇的特大干旱灾害。在抗旱救灾的紧急关头,对岩溶地区丰富的地下水资源作为应急水源的需求显得非常迫切。因此了解重庆地区的地下河发育、分布及水文地球化学特征,对于重庆地区岩溶水资源的开发、利用与保护显得非常重要。
     岩溶地下河的发育、分布受到区域岩性、构造、地貌等条件的综合控制。国内这方面的研究多关注于我国南方其它岩溶地区,如贵州、云南、广西等地,而关于重庆地区地下河的发育、分布及其控制机制缺少深入研究。地下河的水文地球化学特征受到地质、环境条件的综合影响,具有明显的空间特征。研究地下河水文地球化学特征的区域演化及与地质、环境的耦合关系,对于地下河水资源的开发利用与保护具有重要意义。
     根据历史资料分析和野外调查得出重庆地区分布有岩溶地下河380条,总长度约2155公里,多年平均流量151.5m3/s,水资源量47.77亿m3/a,岩溶区地下河发育密度为116.64m/km2,多年平均径流模数为6.56L/s.km2。重庆市岩溶地下河长度以中、短型为主,长度小于5km的占50%;流量以中、小流量为主,流量小于200L/s的地下河占总量的58.9%。
     研究发现重庆地区岩溶地下河发育、分布主要受区域线状构造的控制,地下河主要分布在川东褶皱带,川东南陷褶带和大巴山弧形断褶带等三个主要的构造带内。在渝东北大巴山弧形断褶带地区由于受到北西向构造的控制,地下河管道主要呈NW-SE展布;而在渝东南川东南陷褶带地区由于受到北东、北北东构造的控制,地下河管道主要呈NE-SW展布。在主城、渝东川东褶皱带地区由于地下河多位于背斜核部的碳酸盐岩中,因此地下河管道主要沿背斜展布方向(主要为北东向)成纵向分布。根据重庆地区地下河的构造控制因素和岩溶水的运动特征,系统地将重庆地区地下河分为汇流型、分流型和平行流型三种类型。汇流型地下河多分布向斜地区和宽缓背斜地区以及垄脊槽谷地区。分流型地下河多分布于背斜地区和一些向斜台原地区。平行流型地下河多分于可溶岩与非可溶岩相间分布的紧密褶皱地区。
     通过对70条典型地下河水文地球化学特征的研究,揭示了重庆岩溶地区分布的地下河水化学特征从渝东北、渝东南“两翼”地区向主城地区水质变差,水化学类型变复杂的区域演化规律。渝东南、渝东北地区主要受自然条件控制,水质较好,水化学类型主要是Ca-HCO3型、Ca+Mg-HCO3型;由于人类活动引入大量外来离子,主城周边、渝东地区水化学类型复杂,出现了Ca+Na- HCO3+SO4型,Ca- SO4+HCO3型,Ca+Mg-SO4+HCO3等多种类型。渝东南的万盛—南川—綦江三角形地区,由于工矿企业林立,人类活动频繁,出现了Ca+Na-SO4型、Ca+Na-SO4+HCO3型、Ca-SO4+HCO3型的复杂的水化学类型,水质较差,形成地下河水化学分布“黑三角”地区。
     利用多种同位素结合技术研究重庆岩溶地下河水文地球化学特征的区域演化规律及溶质来源。通过δ18O、δD值分析揭示重庆市地下河水主要起源于大气降水。受雨季降水云团运动规律(环流效应)和区域地形的影响,雨季δ18O、δD值表现出渝东北地区<主城周边<渝东地区<渝东南地区的明显区域分布规律(“<”表示偏负于),旱季由于地下河水在含水层中运动较慢,δ18O、δD值的区域性规律不明显。由于地下河水体具有较快的运动速度,水体水-岩相互作用程度相对于孔隙含水层,裂隙含水层较低,因此岩溶含水层中d-excess值的水文地质学意义并不十分明显。而通过δ180,δD值与高程的关系,建立了二者之间的二元回归模型,揭示了重庆岩溶地下河水旱季δ18O值随高度的变化率为-0.34‰/100m,雨季为-0.31‰/100m;旱季δD值随高度的变化率为-2.3‰/100m,雨季为-2.9‰/100m,可据此反推重庆地区降水的高程效应,这对于区域水循环研究具有重要意义。根据δ13C同位素质量平衡方法,计算得到重庆地下河旱季碳酸盐岩溶蚀对DIC贡献为45.1%~79.7%,雨季平均为17.2%~82.1%。计算结果表明,碳酸盐岩溶解参与岩溶地下水DIC的形成并不一定是岩溶作用方程中所计算的50%,而是有一定的变化范围,因此在计算岩溶作用碳汇时建议通过δ13C值计算碳酸盐岩溶蚀占DIC的比例后再进一步推算岩溶作用形成的碳汇
     通过87Sr/86Sr同位素分析发现地下河水中的Sr主要来自于碳酸盐岩溶蚀。但一部分地下河显著的受到人类活动Sr输入的影响,它们主要分布在渝东地区的三叠系地层中。渝东南地区寒武系地层中发育的地下河也受到了一定的人类活动的影响。通过634S-SO42-同位素分析发现地下河中SO42-具有多重来源,也有明显的区域差异。具有蒸发岩硫来源的地下河多发育在三叠系地层中。具有硫化物氧化硫来源的地下河多发育在二叠系地层中。雨水和人类活动排放废水对地下河硫输入也有贡献。渝东地区和主城周边地区发育的地下河多具有人类活动的硫来源。分布在渝东南和渝东北海拔较高人类活动影响较小的地区的地下河,其SO42-具有大气降水硫来源特征。
     综上所述,重庆地区地下河的发育、分布的控制机制主要是区域线状构造,地下河水质存在从渝东北、渝东南地区向主城地区变差的区域演化规律,利用多种同位素技术研究了地下河的同位素水文地球化学特征的区域演化规律,探索了地下河的溶质来源,能够为重庆地区岩溶地下河的合理开发利用与保护提供技术支撑。
Karst groundwater is an important strategic resources and life-support system for sustainable development in China. The storage type of karst groundwater in south China is mainly separate subterranean stream system. According to the latest geology survey, there are 3066 subterranean streams (SS) in south China, which are the important water resources for local people. However, karst aquifer in this region is facing some threats such as the water quality deterioration, water sources exhaustion due to the fragility of karst environment and the disturbance of human activities. The karst areas in Chongqing distribute mainly in the northeast and southeast with the area about 3.0×104km2 is an important area of the southwest karst China. Chongqing have suffered serious and rare drought in the summer 2006 and the spring 2010. The demand for the rich groundwater as an emergency water supply in karst areas was very urgent for the fighting against drought. Therefore, researching on the formation, distribution and hydrogeochemistry of subterranean streams in Chongqing is very important for exploitation, utilization and protection of karst groundwater resources of Chongqing.
     The formation and distribution of SS is combined controlled by the carbonate rock, structure and relief in karst areas. In south China including Guizhou, Yunnan. Guangxi, many researchers have focused on the controlling factors of formation and distribution of SS. But the same researches are seldom in Chongqing. Hydrogeochemistry of SS is combined influenced by the geological and environmental characters and it has significance spatial variation features. It is very important for the utilization and protection of SS to study on the regionality of SS's hydrogeochemistry and its coupling relationships with the geology and environmental features.
     Based on the historical references analysis and field surveys, we researched the formation and distribution of SS of Chongqing and sectioned their types in this dissertation. There are approximately 380 subterranean streams with a total length of about 2155km, the multi-annual mean discharge about 151.5m3/s, and the water resources about 47.77×108m3/a in Chongqing. The mean coefficient of development density of subterranean streams is 116.64m/Km2, and the multi-annual mean coefficient of runoff modulus of subterranean streams is 6.56L/s·Km2. Most of the length of SS is short and medium length, and the numbers of SS of which the length is less than 5km account for about 50% of the total SS numbers. Most of the discharge of SS is medium and small discharge, and the numbers of SS of which the discharge is less than 200L/s account for 58.9% of the total discharges. Overall, the SS exists mostly in the southeast and northeast of Chongqing. Its distribution is consistent with the area of carbonate rock in Chongqing.
     In this dissertation, a new founding is that the formation and distribution of SS is controlled by the lineament structure in Chongqing. As a whole, the SS distributes mostly in the Eastern Sichuan fold belt, Southeastern Sichuan fall-fold belt and Daba Mt. arc-shaped fault-fold belt of Chongqing. The bearing of trend of SS in Daba Mt. arc-shaped fault-fold belt in northeastern Chongqing is NW-SE direction because of the control of the NW trend lineament structure. Due to the influence of the NE and NNW trend lineament structure, the bearing of trend of SS in Southeastern Sichuan fall-fold belt in southeastern Chongqing is NE-SW direction. The SS mainly locates in the core part of a series of anticlines in Eastern Sichuan fold belt in the main districts of Chongqing city and central area of Chongqing municipality, which is the carbonate rock area, and its trends is along the anticline extension direction (NE direction). According to the structure features and groundwater movement features of SS, it is divided into the following three types:afflux-flow type, distributary-flow type and parallel conduit-flow type. The afflux-flow type SS largely distributes in the syncline areas, wide-spaced shallow-dip anticline areas and ridge-trough valley areas. The distributary-flow type SS mainly locates in the anticline areas and syncline chapada areas, and the parallel conduit-flow type SS in the appressed fold areas which is the areas of soluble rock alternating with non-soluble rock.
     By analyzing the hydrogeochemistry of 70 typical SSs in Chongqing, this study reveals that the water quality is deteriorating and the hydrochemistry type is complicating from the northeastern Chongqing and southeastern Chongqing to the main districts of Chongqing city. The water quality of subterranean streams existed in the main districts of Chongqing city and central area of Chongqing municipality is poorer than that existed in the southeast and northeast Chongqing municipality. In the northeastern and southeastern Chongqing, the solutes of SS mainly originated from the dissolution of carbonate rock by water-rock interaction, which lead to the fact that most groundwater chemistry of SS were typical Ca-HCO3 type or Ca+Mg-HCO3 type. However, some of subterranean karst streams have been changed into the type of Ca+Na-SO4, Ca+Na-HCO3+SO4, Na+Ca-Cl+HCO3 or Ca-SO4+HCO3 in the main districts of Chongqing city and central area of Chongqing municipality due to the strong impact of human activities. The water quality of SSs, which is mainly Ca+Na-SO4, Ca+Na-SO4+HCO3 or Ca-SO4+HCO3 type, is worse in the triangle areas of Wansheng district-Nanchuan district-Qijiang county, where is called the "black triangle" area, of hydrogeochemistry.
     Multi isotopes were used to study the solute origin and regionality of hydrogeochemistry of SSs, Chongqing. All of the SS water origin from the modern precipitation because theirδ18 O andδD plot along the line of GMWL or LMWL, which shows that the evaporation of groundwater does not occur or is not strong. Under the control of movement of rain cloud cluster from south to north (atmospheric circulation effect) and the regional relief, the regionality ofδ18O and 8D for SS in Chongiqng is shown in the following way: the northeastern Chongqing< the main districts of Chongqing city< the central area of Chongqing municipality< the southeastern Chongqing (the symbol "<" means "more minus"). In dry season, the regionality ofδ18O and 8D for SS is not clear due to the slower movement velocity in karst aquifer. The hydrogeological implication of d-excess value is not clear for karst aquifers because the movement velocity of groundwater in it is faster than pervious aquifers and fissure aquifers with the lower degree of water-rock interaction. Considering the relations between the altitude and the mean value forδ18O or 8D of subterranean streams within 100m altitude differences, we established the second order polynomial of karst groundwater betweenδ18O orδD and altitude. According to the equations, theδ18O-elevation gradient of karst groundwater in Chongqing is -0.34‰/100m in dry season and-0.31‰/100m in wet season, as well as the 8D-elevation gradient is-2.3‰/100m in dry season and-2.9‰/100m in wet season. In most test sites, theδ13C values of SS in wet season is more minus than in dry season, except in main districts of Chongqing city, which shows the concentrations of biogenic CO2 in groundwater may be more in wet season. Based on theδ13C isotope mass balance equation, we calculated the amounts of DIC which came from the carbonate rock dissolution. The calculated results show that 45.1%-79.7% of the DIC in the dry season and 17.2%-82.1% in the wet season is from dissolution of carbonate rocks in karst groundwater. The range of calculated results also shows that the DIC proportion of karst groundwater originated from the carbonate rock dissolution is not necessarily the 50% according to the molar ration of karst chemical reaction equation, but has a range of changes at some extend. As a result, this dissertation suggests that we should count first the rate of carbonate rock dissolution in groundwater DIC using theδ13C when we calculate the carbon sink of karst processes, and then calculate further the karst carbon sink.
     According to the results of 87Sr/86Sr, the Sr element in test sites mainly origin from the carbonate rock dissolution. Also, Sr element may come from the silicate rock weathering in some test sites. By analyzing the relationship of the 87Sr/86Sr and [K++Na+]/Sr2+, some SSs are greatly impacted by human activities, which exist mainly in the Triassic limestone aquifer in southeast Chongqing. Some subterranean streams are also affected by human activities in Cambrian karst aquifer in Southeast Chongqing. Based on the analysis ofδ34S values, this research found that the SO42- in SS has multiple sources and has obvious regional differences. The sources of SO42- include the source of gypsum solution, oxidation of sulfide minerals, atmospheric acid deposits and human activities by the relation of 87Sr/86Sr vs.δ34S. With the source of the evaporating SO42-, the SSs mainly develop in the Triassic karst aquifer. With the source of the oxidation of sulfide minerals, the SO42- mainly develops in the Permian karst aquifer. The S in rainwater and sewage also contributed to the SO42 of SSs. The SO42- originated mainly from the human activities in the main districts of Chongqing city and in east Chongqing. The SO42- of SSs originated mainly from the atmospheric acid deposits in the areas of higher altitude and smaller disturbance of human activities in southeast and north east Chongqing. Overall, the multiple sources of S clearly contribute to the existence of the SO42- in some SSs, so that those SSs tend to lie in the combined influenced area of multiple S sources.
     Generally, the controlling factor of formation and distribution of SS is the regional lineament structure in Chongqing. The water quality of SS is deteriorating and the hydrochemistry type is complicating from the northeastern Chongqing and southeastern Chongqing to the main districts of Chongqing city. The regionality of isotope hydrogeochemistry and the solutes origin were revealed using the multi- isotope coupling technology. The research productions of this dissertation will provide science and technology supports for the rational exploitation and protection of subterranean streams in Chongqing municipality.
引文
Aberg G.. Tracing pollution and its sources with isotopes[J].Water, Air, and Soil Pollution.2001, 130:1577-1582.
    Amiotte-Suchet P., Aubert D., Probst J., et al.δ13C pattern of dissolved inorganic carbon in a small granitic catchment:The strengbach case study (Vosges mountains, France) [J].Chemical Geology.1999,159:129-145.
    Aucour A., Sheppard S., Guyomar O., et al. Use of 13C to trace origin and cycling of inorganic carbon in the Rhone river system[J]. Chemical Geology.1999,159 (1-4):87-105.
    Azzaz H., Cherchali M., Meddi M., et al. The use of environmental isotopic and hydrochemical tracers to characterize the functioning of karst systems in the Tlemcen Mountains, northwest Algeria[J]. Hydrogeology Journal.2008,16:531-546.
    Baran N., Lepiller M.. Agricultural diffuse pollution in a chalk aquifer (Trois Fontaines, France): Influence of pesticide properties and hydrodynamic constraints [J]. Journal of Hydrology.2008, 358:56-69.
    Barbieri M., Boschetti T., Petitta M., et al. Stable isotope (δ2H,δ18O and 87Sr/86Sr) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy) [J]. Applied Geochemistry.2005,20:2063-2081.
    Barth S R. Geochemical and boron, oxygen and hydrogen isotopic constraints on the origin of salinity in groundwaters from the crystalline basement of the Alpine Foreland[J]. Applied Geochemistry.2000,15:937-952.
    Bohlke J.K., Horan M.. Strontium isotope geochemistry of groundwaters and streams affected by agriculture, Locust Grove, MD[J]. Applied Geochemistry.2000,15:599-609
    Bottrell S., Tellam J., Bartlett R., et al. Isotopic composition of sulfate as a tracer of natural and anthropogenic influences on groundwater geochemistry in an urban sandstone aquifer, Birmingham, UK[J]. Applied Geochemistry.2008,23:2382-2394.
    Brenot A., Baran N., Petelect-Giraud E,et al. Interaction between different water bodies in a small catchment in the Paris basin(Brevilles, France):Tracing of multiple Sr sources through Sr isotopes coupled with Mg/Sr and Ca/Sr ratios[J]. Applied Geochemistry.2008,23:58-75.
    Brooke D.. Aquifer development in folded and fractured limestone; the Scott Hollow drainage basin, Monroe County, West Virgina[D].University of Akron, Akron, OH, United States.1999.
    Burdon D. J., Safadi C.. Ras el Ain:the great spring of Mesopotamia[J].Journal of Hydrology.1963, 1:58-95.
    Buzek J., Cerny J., Sramek A.. Sulphur isotope studies of atmospheric S and the corrosion of monuments in Praha, Czechoslovakia. In:Krouse H.& GrinenkoV. (Eds.), Stable isotopes in the assessment of natural and anthropogenic sulphur in the environment. SCOPE43[M]. Chichester: John Wiley & Sons Ltd..1991, p399-404.
    Cane G., and Clark I.. Tracing ground water recharge in an agricultural watershed with isotopes[J]. Ground Water.1999,37(1):133-139.
    Capaccioni B., Didero M., Paletta C.. Hydrogeochemistry of groundwaters from carbonate formations with basal gypsiferous layers:an example from the Mt Catria-Mt Nerone ridge (Northern Appennines, Italy) [J].Journal of Hydrology.2001,253(1-4):14-26.
    Cerling T., Solomon D., Quade J., et al. On the isotopic composition of carbon in soil carbon dioxide[J]. Geochimica et Cosmochimica Acta.1991,55:3403-3405.
    Chapelle F., Knobel L.. Stable carbon isotopes of HCO3- in the aquia aquifer, Maryland:evidence for an isotopically heavy source of CO2[J]. Ground Water.1985,23:592-599.
    Chen J., ChuX.. Sulphur isotope composition of Triassic marine sulfates of South China[J]. Chemial Geology.1988,72:155-161.
    Chetelat B., Liu C. Q., Zhao Z., et al. Geochemistry of the dissolved load of the Changjiang Basin rivers:Anthropogenic impacts and chemical weathering[J]. Geochimica et Cosmochimica Acta.2008,72:4254-4277.
    Chow V.T., Maident D.R., Mays L.W., Applied Hydrology[M]. New York:McGraw-Hill, Inc.. 1988, p4.
    Clark I., Fritz P.. Environmental isotopes in hydrogeology[M].New York:Lewis Publishers.1997, p352.
    Clow D. W., Mast M.A., Bullen T.D., et al.87Sr/86Sr as a tracer of mineral weathering reactions and calcium sources in an alpine/subalpine watershed. Loch Vale, Colorado[J]. Water Resources Research.1997,33:1335-1351.
    COST Action 65. Hydrogeology Aspects of Groundwater Protection in Karstic Areas, Final reports (COST Action 65) Report EUR 16547, Directorate-General Science, Research and Development, European Commission,Office for Official Publications of the European Communities,Luxembourg.1995, p446.
    Craig H.. Isotopic variations in meteoric waters[J]. Science.1961.133:1702-1703.
    Crowther J.. Magnesium and calcium in carbonate bedrock and groundwaters, Peninsular Malaysia[J].Journal of Southeast Asian Earth Sciences.1988,2(3-4):189-200.
    Dalai T.K., Krishnaswami S., Kumar A..Sr and 87Sr/86Sr in the Yamuna River system in the Himalaya:Sources, Fluxes and controls on Sr isotope composition [J]. Geochimica et Cosmochimica Acta.2003,67(16):2931-2948.
    Dansgaard W.. Stable isotopes in precipitation[J].Tellus.1964,16(4):436-468.
    Deines P., Langmuir D., Harmon R.. Stable carbon isotope ratios and the existence of a gas phase in the evolution of carbonate waters[J]. Geochimica et Cosmochimica Acta.1974,38:1147-1164.
    Depaolo D.J.,Ingram B.L.,High-resolution stratigraphy with strontium isotopes[J]. Sciences, 1985,227:938-941
    Deshpande R., Bhattacharya S., Jani R., et al. Distribution of oxygen and hydrogen isotopes in shallow groundwaters from Southern India:influence of a dual monsoon system[J]. Journal of Hydrology.2003,271:226-239.
    Dogramaci S. S., Herczeg A. L., Schiff S. L., et al. Control on δ34S and δI8O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes[J]. Applied Geochemistry.2001,16:475-488.
    Dotsika E., Lykoudis S., Poutoukis D.Spatial distribution of the isotopic composition of precipitation and spring water in Greece[J]. Global and Planetary Change.2010,71:141-149.
    Dowuona G.N., Mermut A. R., Krouse H. R.. Stable isotope geochemistry of sulfate in relation to hydrogeology in souther Saskatchewan, Canada[J]. Applied Geochemistry.1993,8:2552-2563.
    Drew D., Hotzl H.. International Contributions to Hydrogeology [M].Rotterdam:Balkema,1999. 235-240.
    Dreybrodt W., Buhmann D., Michaelis J., et al. Geochemically controlled calcite precipitation by CO2 outgassing:Field measurements of precipitation rates to theoretical predictions [J]. Chemical Geology,1992,97:287-296.
    Edmunds W., Shand P.. Natural Groundwater Quality[M]. UK. Blackwell Publishing.2008.p1-21.
    Einsiedl F., Maloszewski P., Stich W.. Multiple isotope approach to the determination of the natural attenuation potential of a high-alpine karst system[J]. Journal of Hydrology.2009,365:113-121.
    Elliot T., Andrews J., Edmunds M. Hydrochemical trends, palaeorecharge and groundwater ages in the fissured Chalk aquifer of the London and Berkshire Basins, UK[J]. Applied Geochemistry.1999,14:333-363.
    Fang J., Barcelona M., Krishnamurthy R., et al.Stable carbon isotope biogeochemistry of a shallow sand aquifer contaminated with fuel hydrocarbons [J]. Applied Geochemistry.2000,15:157-169.
    Faure G.. Principles of isotope geology (Second edition)[M].John wiley & Sons,Inc.1986.p589.
    Ford D., Williams P.. Karst hydrogeology and geomorphology [M]. UN:John Wiley & Sons, Ltd, 2007,562.
    Francisco W., Cruz J., Karmann I.,et al. Stable isotope study of cave percolation waters in subtropical brazil[J]. Chemical Geology.2005,220:245-262.
    Friedli H., Lotscher H., Oeschger H., et al. Icecore record of the 12C/13C ratio of atmospheric CO2 in the past two centuries[J]. Nature.1986,324:237-238.
    Friedman I., Smith G., Gleason J., et al. Stable isotope compositions of waters in southeastern California:1. Modern precipitation[J]. Journal of Geophysical Research.1992,97(D5): 5795-5812
    Fritz P., Fontes J. C., Frape S. K., et al. The isotope geochemistry of carbon in groundwater at Stripa[J]. Geochimica et Cosmochimica Acta.1989,53(8):1765-1775.
    Gaillardet J., Dupre B., Louvat P., et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers [J].Chemical Geology,1999,159.3-30.
    Galy A., France-landord C., Derry L.. The strontium isotopic budget of Himalayan Rivers in Nepal and Bangladesh[J]. Geochimica et Cosmochimica Acta.1999.63, No(13/14):1905-1925.
    Gao Q., Tao Z., Huang X., et al. Chemical weathering and CO2 consumption in the Xijiang River basin, South China [J]. Geomorphology,2009,106:324-332.
    Gat J. R.. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annu. Rev. Earth Planet. Sci.. 1996,24:225-62.
    Goldscheider N., Drew D., Methods in karst hydrgeoology[M]. Taylor&Francis.2007, p262.
    Graustein W.C., Armstrong R.L. The use of 87Sr/86Sr ratios to measure atmospheric transport into forested watershed[J].Science.1983,219:289-292.
    Green R., Painter S., Sun A., et al. Groundwater contamination in karst terranes[J]. Water, Air, and Soil Pollution. Focus.2006,6:157-170.
    Groves C., Meiman J.. Inorganic Carbon Flux and Aquifer Evolution in the South Central Kentucky Karst[C]. In Eve L. Kuniansky, editor,2001, U.S. Geological Survey Karst Interest Group Proceedings, Water-Resources Investigations Report 01-4011, p.99-105.
    Guenther W. Chemical equilibrium. New York:Plenum Press.1975.p106.
    Guo F., Jiang G.. Nitrogen budget of a typical subterranean river in peak cluster karst area[J]. Environmental Geology.2009,58:1741-1748.
    Gutierrez M., Neill H., Grand R.V.. Metal in sediments of springs and cave stream as environmental indicators in karst areas[J]. Environmental Geology.2004,46:1079-1085.
    Han G., Liu C. Water geochemistry controlled by carbonate dissolution:a study of the river waters draining karst-dominated terrain, Guizhou Province, China [J].Chemical Geology,2004,204 (1):1-21.
    Han G., Liu C. Strontium isotope and major ion chemistry of the rainwaters from Guiyang, Guizhou Province, China[J]. Science of the Total Environment.2006,364:165-174.
    Han G., Tang Y., Wu Q.et al.Chemical and strontium isotope characterization of rainwater in karst virgin forest, Southwest China[J]. Atmospheric Environment.2010,44:174-181.
    Herman J., Lorah M. CO2 outgassing and calcite precipitation in Falling Spring Creek, USA [J]. Chemical Geology,1987,62:251-262.
    Hess J. W., White W. B.. Groundwater geochemistry of the carbonate karst aquifer, southcentral Kentucky, USA[J]. Applied Geochemistry.1993,8(2):189-204.
    Hu M., Stallard R., Edmond J.. Major ion chemistry of some large Chinese rivers [J]. Nature,1982, 298.550-553.
    Huntoon P. W.. The Case for upland recharge area protection in the rocky mountain karst of the western United States[C], Karst Waters and Environmental Impacts, Balkema, Rotterdam,1997a, pp.95-102.
    Huntoon P. W.. Impacts of modern deforestration on the unconfined karst aquifers of south China.Karst[C] Waters and Environmental Impacts, Balkema, Rotterdam,1997b, pp.37-44.
    Ibrahim A. Effects of the tectonic movement on the karstification in Anatolia, Turkey[J]. Acta Carsologica.2003,32(2):195-203.
    Jacobson A. D., Wasserburg G J.Anhydrite and the Sr isotope evolution of groundwater in a carbonate aquifer[J].Chemical Geology.2005,214(3-4):331-350.
    James I., Sams I., Rick L., et al. Influence of land use and open—water wetlands on water quality in the lake wallenpaupack basin. Northeastern Pennsylvania[J]. USGS,1999,16-25.
    Jiang Y., Strontium isotope geochemistry of groundwater affected by human activities in Nandong underground river system, China[J]. Applied Geochemistry.2010,26:371-379.
    Jiang Y., WuY., Groves C., et al. Natural and anthropogenic factors affecting the groundwater quality in the Nandong karst underground river system in Yunan, China[J]. Journal of Contaminant Hydrology.2009a,109:49-61.
    Jiang Y., Yan J.. Effects of Land Use on Hydrochemistry and Contamination of Karst Groundwater from Nandong Underground River System, China[J]. Water Air Soil Pollut,2009b, doi 10.1007/s11270-009-0229-z
    Jiang Y., Wu Y., Yuan D.. Human impacts on karst groundwater contamination deduced by coupled nitrogen with strontium isotopes in the Nandong underground river system in Yunan, China[J]. Environmental Science & Technology.2009c.43 (20),7676-7683.
    Johnson T.M., Depaolo D.J.. Interpretation of isotopic data in groundwater-rock systems:model development and application to Sr isotope data Yucca Mountain[J]. Water Resource Research. 1994,30:1571-1587.
    Kacaroglu F.. Review of groundwater pollution and protection in karst areas[J]. Water, Air, and Soil Pollution.1999,113:337-346.
    Katz B., Griffin D., Davis J.. Groundwater quality impacts from the land application of treated municipal wastewater in a large karstic spring basin:Chemical and microbiological indicators[J]. Science of the Total Environment.2009,407:2872-2886.
    Katz B., Bullen T..The combined use of 87Sr/86Sr and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst[J]. Geochimica et Cosmochimica Acta.1996.60(24):5075-5087.
    Kirste D., Caritat P., Dann R.. The application of the stable isotopes of sulfur and oxygen in groundwater sulfate to mineral exploration in the Broken Hill region of Australia[J]. Journal of Geochemical exploration.2003, (78-79):81-84.
    Kollarits S., Veselic M., Kuschnig G., et al. Decision-support systems for groundwater protection:innovative tools for resource management[J]. Environmental Geology.2006,49: 840-848.
    Lang Y., Liu C., Zhao Z., et al. Geochemistry of surface and ground water in Guiyang, China: Water/rock interaction and pollution in a karst hydrological system [J].Applied Geochemistry, 2006,21:887-903.
    Larssen T., Carmichael G. R.. Acid rain and acidification in China:the importance of base cation deposition[J]. Environmental Pollution,2000,110(1):89-102.
    Li Q., Sun H., Han J., et al. High-resolution study on the hydrochemical variations caused by the dilution of precipitation in the epikarst:an example spring of Langdiantang at Nongla, Mashan, China[J]. Environmental Geology.2008,54:347-354.
    Li S., Liu C., Tao F., et al.Carbon Biogeochemistry of Ground Water, Guiyang, Southwest China[J]. Ground Water.2005,43(4):494-499.
    Li X., Liu C., Harue M., et al. The use of environmental isotopic (C, Sr, S) and hydrochemical tracers to characterize anthropogenic effects on karst groundwater quality:A case study of the Shuicheng Basin, SW China[J]. Applied Geochemistry.2010,25:1924-1936
    Li X., Masuda H., Kusakabe M., et al. Degradation of groundwater quality due to anthropogenic sulfur and nitrogen contamination in the Sichuan Basin, China[J]. Geochemical Journal.2006,40: 309-332.
    Liu C., Lang Y., Satake H., et al. Identification of anthropogenic and natural inputs of sulfate and chloride into the karstic ground water of guiyang, SW China:combined δ37C1 and δ34S approach[J]. Environmental Science & Technology.2008,42 (15):5421-5427.
    Liu C., Li S., Lang Y., et al.Usingδ15N and δ18O values to identify nitrate sources in karst ground water, Guiyang, southwest China[J]. Environmental Science & Technology.2006,40 (22):6928-6933.
    Liu Z., Li Q., Sun H., et al. Seasonal, diurnal and storm-scale hydrochemical variations of typical epikarst springs in subtropical karst areas of SW China:Soil CO2 and dilution effects[J]. Journal of Hydrology.2007,337:207-223.
    Lyons W., Tyler S., Gaudette H., et al.The use of strontium isotopes in determining groundwater mixing and brine fingering in a playa spring zone, Lake Tyrrell, Australia[J].Journal of Hydrology.1995,167:225-239.
    Mahler B., Masseib N.. Anthropogenic contaminants as tracers in an urbanizing karst aquifer[J]. Journal of Contaminant Hydrology.2007,91:81-106.
    Marfia A., Krishnamurthy R., Atekwana E.,et al. Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting:a case study from Belize, Central America[J]. Applied Geochemistry.2004,19:937-946.
    Marques L., Dupre B., Piccirillo E.. Mantle source compositions of the parana Magmatic province (Southern Brazil):Evidence from trace element and Sr-Nd-Pb isotope geochemistry[J]. Journal of Geodynamics.1999,28 (4-5):439-458.
    Matano F., Barbieri M., Nocera S., et al. Stratigraphy and strontium geochemistry of Messinian evaporite-bearing successions of the southern Apennines foredeep, Italy:implications for the Mediterranean "salinity crisis" and regional palaeogeography[J]. Palaeogeography, Palaeoclimatology, Palaeoecology.2005,217:87-114.
    Mayer, B., Potential and limitations of using sulphur isotope abundance ratios as an indicator for natural and anthropogenic induced environmental change. In Isotope techniques in the study of environmental change[C]. Proceedings of an international conference in Vienna, Austria. IAEA, 1998, p 423-435.
    Meybeck M.. Global occurrence of major element in rivers[M]. In:Drever J. ed. Treatise on Geochemistry, surface and Ground Water, Weathering, and soils. Amsterdam:Elsevier Sciences. 207-223.
    Miller E.K.,Blum J.D., Friedland A.J..Determination of soil exchangeable-cation loss and weathering rates using Sr isotope[J]. Nature.1993,362:438-441.
    Mook W., Bommerson J., Staverman W.. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide[J].Earth and Planetary Science Letters.1974, 22:169-176.
    Moral F., Cruz-Sanjulian J, Olias M. Geochemical evolution of groundwater in the carbonate aquifers of Sierra de Segura (Betic Cordillera, southern Spain)[J]. Journal of Hydrology.2008, 360:281-296
    Musgrove M., Stern L., Banner J.. Springwater geochemistry at Honey Creek State Natural Area, central Texas:Implications for surface water and groundwater interaction in a karst aquifer[J]. J. Hydrol.2010, doi:10.1016/j.jhydrol.2010.04.036.
    Negrel P., Roy S.. Chemistry of rainwater in the Massif Central (France):A strontium isotope and major Element Study[J]. Applied Geochemistry.1998,13 (8):941-952.
    Negrel P., Petelect-Giraud E., Strontium isotopes as tracers of groundwater-induced floods:the Somme case study(France) [J].Journal of Hydrology.2005,305,99-119.
    Negrel P., Guerrot C., Millot R., Chemical and strontium isotope characterization of rainwater in France:influence of sources and hydrogeochemical implications[J]. Isotopes in Environmental and Health Studies.2007,43:179-196.
    Nielsen H., Pilot J., Grinenko L., et al. Lithospheric Sources of Sulphur. In:Krouse H.& GrinenkoV. (Eds.), Stable isotopes in the assessment of natural and anthropogenic sulphur in the environment. SCOPE43[M]. Chichester:John Wiley & Sons Ltd..1991, p69-82.
    Nielson H.. Isotopic composition of the major contributors to atmospheric sulphur[J].Tellus 1974, 26:211-221.
    Nriagu J., Rees C., Mekhtiyeva V., et al. Hydrosphere. In:Krouse H.& Grinenko V. (Eds).Stable isotopes in the assessment of natural and anthropogenic sulphur in the environment. SCOPE43. [M]. Chichester:John Wiley & Sons Ltd..1991, p229-230.
    Palmer M., Edmond J.. Controls over the strontium isotope composition of river water[J]. Geochimica et Cosmochimica Acta.1992.56:2099-2011.
    Palmer M., Helvaci C., Fallick A., Sulphur, sulphate oxygen and strontium isotope composition of Cenozoic Turkish evaporites[J]. Chemical Geology.2004,209:341-356.
    Palmer S., Hope D., Billett M., et al. Sources of organic and inorganic carbon in a headwater stream:Evidences from carbon isotopic studies [J]. Biogechemistry.2001,52 (3):321-338.
    Panettiere P., Cortecci G., Dinelli E., et al.Chemistry and sulfur isotopic composition of precipitation at Bologna, Italy [J]. Applied Geochemistry.2000,15:1455-1467.
    Panno S. V., Kelly W. R.. Nitrate and herbicide loading in two groundwater basins of Illinois' sinkhole plain[J]. Journal of Hydrology.2004,3:229-242.
    Pitman J. I.. Carbonate chemistry of groundwater from chalk, Givendale, East Yorkshire[J]. Geochimica et Cosmochimica Acta.1978,42(12):1885-1897.
    Poage M., Chamberlain C. Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters:Considerations for studies of paleoelevation change[J].American Journal of Science.2001,301 (1):1-15.
    Prohic E.. Pollution Assessment in Carbonate Terrains[J]. In:Hydrology of limestone terrains: Annotated bibliography of carbonate rock. International Contrbutions to Hydrogeology.1989, 250-253.
    Querol X., Alastuey A., Chaves A.,et al. Sources of natural and anthropogenic sulphur around the Teruel power station, NE Spain:Inferences from sulphur isotope geochemistry [J]. Atmospheric Environment.2000,34:333-345.
    Quinif Y.. Karst and the evolution of rivers-a case study of Ardennes[J]. Geodinamica Acta.1999, 12 (3-4):267-277.
    Rivett M., Buss S., Morgan P., et al. Nitrate attenuation in groundwater:a review of biogeochemical controlling process[J].Water Resources.2008,42(16):4215-4232.
    Roy S., Gillardet J., Allegre J..Geochemistry of dissolved and suspended loads of the Seine river, France:Anthropogenic impact, carbonate and silicate weathering[J]. Geochimica et Cosmochimica Acta,1999,63(9):1277-1292.
    Samborska K., Halas S..34S and 18O in dissolved sulfate as tracers of hydrogeochemical evolution of the Triassic carbonate aquifer exposed to intense groundwater exploitation (Olkusz-Zawiercie region, southern Poland)[J].Applied Geochemistry.2010,25:1397-1414.
    Shand P., Darbyshire D.P.F., Love A.J., et al. Sr isotopes in natural waters:Applications to source characterization and water-rock interaction in contrasting landscapes[J]. Applied Geochemistry. 2009,24:574-586.
    Shaw, T.R., History of cave science:New South Wales, Australia[J].Sydney Speleological Society.1992,338 p.
    Smith G., Friedman I., Gleason J., et al. Stable isotope composition of waters in southeastern California:2. Groundwaters and their relation to modern precipitation[J]. Journal of Geophysical Research.1992,97(D5):5813-5823.
    Solomon S, Qin D, Manning M, et al. IPCC,2007:Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [R]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,996 pp.
    Stevanovic Z., Dragisic V..Some case of accidental karst water pollution in the Serbian Carpathians[J]. Theoretical and Applied karstology.1995,8:137-144.
    Strauss H.. Geological evolution from isotope proxy signals-sulfur[J].Chemical Geology.1999,161: 89-101.
    Stumm W., Morgan J., Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters.2nd edition [M]. Toronto:Wiley Interscience.1996, p148-251.
    Ted W B, Water quality impacts from agricultural land-use in the karst groundwater basin of Qingmuguan, Chongqing, China[D]. Western Kentuchy University.2008.
    U.S. Environmental Protection Agency. A Lexicon of Cave and Karst Terminology with Special Reference to Environmental Karst Hydrology[M].2002,2,162-189.
    Vandenschrick G., Wesemael B., Frot E., et al. Using stable isotope analysis (δD-δ18O) to characterise the regional hydrology of the Sierra de Gador, south east Spain[J]. Journal of Hydrology.2002,265:43-55.
    Vespear D.J., White W. B.. Metal transport to karst spring during storm flow:an example from Fort Campbell, Kentucky/Tennesse, USA[J]. Journal of Hydrology.2003,276:20-36.
    Vesper D, White W. B.. Storm pulse chemographs of saturation index and carbon dioxide pressure: implications for shifting recharge sources during storm events in the karst aquifer at Fort Campbell, Kentucky/Tennessee, USA[J]. Hydrogeology Journal.2004,12:135-143.
    Vesper D.J., White W. B.. Spring and conduit sediments as storage reservoirs for heavy metals in karst aquifers[J]. Environmental Geology.2004,45:481-493.
    Vilomet J., Angeletti B., Moustier S., et al. Application of strontium isotopes for tracing landfilll leachate plumes in groundwater[J]. Environmental Science & Technology.2001,35:4675-4679.
    Vitoria L., Otero N., Soler A., et al. Fertiliaze characterization:isotopic date (N, S, O, C and Sr) [J]. Environmental Science & Technology.2004,38.3254-3263.
    Vitoria L., Soler A., Canals A.,et al..Environmental isotopes (N, S, C, O, D) to determine natural attenuation processes in nitrate contaminated waters:Example of Osona (NE Spain) [J]. Applied Geochemistry.2008,23:3597-3611.
    Vogel J.. Variability of carbon isotope fractionation during photosynthesis. In:Ehleringer J R, Hall A E, and Farquhar (Eds).Stable isotopes and plant carbon-water relations[M]. San Diego:Academic Press,1993:29-38.
    Wang Y., Guo Q., Su C., et al. Strontium isotope characterization and major ion geochemistry of karst water flow,Shentou, northern China[J]. Journal of Hydrology.2006,328:592-603.
    White W. B.. A brief history of karst hydrogeology:contributions of the NSS[J]. Journal of Cave and Karst Studies.2007,69(1):13-26.
    White W. B.. Geomorphology and hydrology of karst terrains[M]. Oxgord University press.1988. p464.
    White W. B.. Karst hydrology:recent development and open questions[J]. Engineering Geology. 2002,65:85-105.
    Wigley T. M. L., Plummer L N, Pearson F J.. Mass transfer and carbon isotope evolution in natural systems[J]. Geochimica et Cosmochimica Acta.1978,42(8):1117-1139.
    Wiglet T. M. L..WATSPEC.A computer program for determining the equilibrium of aqueous solutions[R]. British Geomorphological Reasearch Group Technical Bulletin.1977,20. p48.
    Williams P. W.. Karst terrains:environmental changes and human impact [J]. Catena.1993, 25(suppl):268.
    Wu W., Xu S., Yang J.,et al.Sr fluxes and isotopic compositions in the headwaters of the Yangtze River, Tongtian River and Jinsha River originating from the Qinghai-Tibet Plateau[J]. Chemical Geology.2009,260:63-72.
    Wu Y, Jiang Y, Yuan D et al. Modeling hydrological responses of karst spring to storm events: example of the Shuifang spring (Jinfo Mt., Chongqing, China) [J]. Environmental Geology.2008. 55(7):1545-1553.
    Wu Y., Zhang J., Liu S., et al. Sources and distribution of carbon within the Yangtze River system[J]. Estuarine, Coastal and Shelf Science.2007,71:13-25.
    Wynn P., Fairchild Ⅰ., Baker A., et al. Isotopic archives of sulphate in speleothems[J]. Geochimica et Cosmochimica Acta.2008,72:2465-2477.
    Xu Y.. Draining our earth—fueling a water war. Perspectives [J], The University of Western Cape Review.2008.1:4-7.
    Yin L., Hou G., Su X.,et al.Isotopes (δD and 818Ω) in precipitation, groundwater and surface water in the Ordos Plateau, China:implications with respect to groundwater recharge and circulation[J]. Hydrogeology Journal.2010, doi 10.1007/s10040-010-0671-4.
    Yuan D.. Sensitivity of karst process to environmental change along the PEP II transect [J]. Quaternary International,1997,35:105-113.
    Zhang J., Quay P., Wilbur D.. Carbon isotope fractionation during gas-wate exchange and dissolution of CO2[J]. Geochimica et Cosmochimica Acta.1995,59(1):107-114.
    Zhao M., Zeng C., Liu Z., et al. Effect of different land use/land cover on karst hydrogeochemistry:A paired catchment study of Chenqiand Dengzhanhe, Puding, Guizhou, SW China[J]. Journal of Hydrology.2010,388(1-2):121-130.
    Zhou T., Yu R..Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China[J]. Journal of Geophysical research.2005,110. D08104, doi:10.1029/ 2004JD005413.
    Zilberbrand M.. The effect of carbonates and gypsum precipitation in the root zone on the chemical composition of groundwater[J]. Journal of Hydrology.1995,171(1-2):5-22.
    《地球科学大辞典》编委会编.地球科学大辞典(基础科学卷)[M].北京:地质出版社.2006,293-294.
    巴金,汤洁,王淑凤,等.重庆地区近10年酸雨时空分布和季节变化特征分析[J].气象.2008,39(4):81-88.
    北村守次等.根据硫稳定同位素比值推断日本石川县降水中硫酸根离子的来源[J].曾毅强译.地质地球化学.1995,6:48-56.
    曹建华,袁道先,章程,等.受地质条件制约的中国西南岩溶生态系统[J].地球与环境.2004,32(1):1-8.
    晁念英,王佩仪,刘存富,等.河北平原地下水氘过量参数特征[J].中国岩溶.2004,23(4):335-338.
    陈任良,巫金裕,李芳贤.香花岭岩溶暗河特征及开发利用[J].中国岩溶.1985,3:249-256.
    陈文俊.地苏岩溶地下河系[J].中国岩溶.1988,7(3):223-227.
    陈忠,任雪梅,周心琴,等.重庆市降水量的时空分布[J].四川师范学院学报(自然科学版).2003,24(2):171-176.
    储雪蕾.北京地区地表水的硫同位素组成与环境地球化学[J].第四纪研究.2000,20(1):87-97.
    戴景春.贵州岩溶区地下河开发利用及其工程地质问题[J].中国岩溶.1984,2:130-139.
    丁坚平,毛健全,杨先寿,等.大干沟岩溶地下水磷污染评价[J].贵州工业大学学报(自然科学版).2001,3(1):16-20.
    丁林,许强,张利云,等.青藏高原河流氧同位素区域变化特征与高度预测模型建立[J].第四纪研究.2009,29(1):1-12.
    丁悌平.氢氧同位素地球化学[M].北京:地质出版社.1980.p178.
    地理系研究所(西南师范学院).青木关背斜地下水的分布规律及其利用[J].西南师范大学学报(自然科学版).1960.2:102-112
    高彦芳.金佛山地区地下水及微(常)量元素研究[D].[硕士学位论文].重庆:西南大学.2008.p1-66.
    格里年科B.A.,格里年科(?)H..硫同位素地球化学[M].赵瑞译.北京:科学出版社.1980.p235.
    顾慰祖,林曾平,费光灿,等.环境同位素硫在大同南寒武-奥陶系地下水资源研究中的应用[J].水科学进展.2000,11(1):14-20.
    广西壮族自治区科学工作委员会.广西喀斯特论文选集(第一集).1961.1.
    郭纯青主编.中国岩溶生态水文学[M].北京:地质出版社,2007,100-104.
    郭芳,姜光辉,裴建国,等.广西主要地下河水质评价及其变化趋势[J].中国岩溶,2002,21(3):195-201.
    郭芳,姜光辉,袁道先.南方岩溶区地下河主要离子浓度变化趋势分析[J].水资源保护.2008,24(1):16-19.
    贺秋芳,杨平恒,袁文昊,等.微生物与化学示踪岩溶地下水补给源和途径[J].水文地质工程地质,2009,36(3):33-38.
    洪业汤,顾爱良,王宏卫,等.黄河硫同位素组成与青藏高原隆起[J].第四纪研究.1995,20(1):360-366.
    洪业汤,张洪斌,朱泳煊,等.中国大气降水硫同位素组成特征[J].自然科学进展.1994,4(6):741-745.
    洪业汤,张洪斌,朱泳煊,等.中国煤的硫同位素组成特征及燃煤过程硫同位素分馏[J].中国科学B辑.1992,8:868-873.
    胡进武,王增银,周炼,等.岩溶水锶元素水文地球化学特征[J].中国岩溶.2004,23(1):37-42.
    扈志勇,杨平恒,杨梅,等.川东槽谷区岩溶泉水物理化学动态特征及其环境效应研究——以重庆青木关岩溶槽谷姜家泉为例[J].现代地质.2009,23(6):1167-1173.
    贾鹏.利用N和Sr同位素示踪农业区岩溶地下河系统硝酸盐污染来源[D].[硕士学位论文].重庆:西南大学.2010.p1-47.
    贾亚男,刁承泰,袁道先.土地利用对埋藏型岩溶槽谷区岩溶水质的影响——以涪陵丛林岩溶槽谷区为例[J].自然资源学报.2004,4:420-425.
    贾亚男,袁道先.土地利用对贵州水城盆地岩溶水水质的影响[J].地理学报.2003,58(6):632-838.
    蒋颖魁,刘丛强,陶发祥.贵州乌江水系河水硫同位素组成特征研究[J].水科学进展.2009,18(4):558-565.
    蒋勇军,袁道先,谢世友等.典型岩溶农业区地下水质与土地利用变化分析[J].地理学报.2006,5:471-481.
    旷颖仑.重庆青木关地下河阳离子对降雨响应研究[D].[硕士学位论文].重庆:西南大学.2009.
    郎赞超,刘丛强,Satake H.,等.贵阳地表/地下硫和氯同位素组成特征及其污染物示踪意义[J].地球科学进展.2008,23(2):151-159.
    郎赟超.喀斯特地下水文系统物质循环的地球化学特征——以贵阳市和遵义市为例[D].[博士学位论文].贵阳:中国科学地球化学研究所.2005,p56-58.
    朗赞超,刘丛强.贵阳市地表水地下水水化学组成:喀斯特水文系统水-岩反应及污染特征影响[J].水科学进展.2005,16(6):826-832.
    李国芬,韦复才,梁小平,等.中国岩溶水文地质图说明书[M].中国地图出版社,1992.
    李国芬.广西岩溶水文地质特征及水资源[J].中国岩溶.1996,15(3):253-258.
    李瑾,夏克勤,张强.重庆走马岭隧道岩溶及岩溶水发育特征[J].水土保持研究.2005,12(6):36-38.
    李林立.西南典型岩溶区生态环境对表层岩溶水调蓄功能的影响研究[D].[博士学位论文].重庆:西南大学.2009.1-113.
    李思亮,刘丛强,陶发祥,等.碳同位素和水化学在示踪贵阳地下水碳的生物地球化学循环及污染中的应用[J].地球化学.2004,33(2):166-170.
    李廷勇,李红春,李俊云,等.重庆芙蓉洞洞穴沉积物δ13C,δ180特征及意义[J].地质论评.2008,54(5):712-720.
    李廷勇,李红春,沈川洲,等.重庆2006-2008年大气降水δD和δ18O特征初步分析[J].水科学进展.2010.21(6):757-764.
    李廷勇,李俊云,李红春,等.重庆芙蓉洞洞穴沉积物δ13C、δ18O特征及意义[J].地质论评.2008,54(5):712-720.
    李营刚.岩溶地下水质动态变化和影响因素研究——以重庆金佛山水房泉为例[D].[硕士学位论文].重庆:西南大学.2009.p1-51.
    柳鉴容,宋献方,袁国富,等.中国东部季风区大气降水δ18O的特征及水汽来源[J].科学通报.2009,54(22):3521-3531.
    刘方,王世杰,罗海波,等.喀斯特石漠化过程中植被演替及其对径流水化学的影响[J].土壤学报.2006,43(1):27-32.
    刘方,王世杰,罗海波,等.喀斯特森林群落退化对浅层岩溶地下水化学的影响[J].林业科学.2007,43(2):21-25.
    刘进达,刘恩凯,赵迎昌,等.影响中国大气降水稳定同位素组成的主要因素分析[J].勘查科学技术.1997,4:14-18.
    刘仙.基于BASINS/HSPF模型的岩溶槽谷区地下水模拟研究——以重庆青木关地下河系统为例[D].[硕士学位论文].重庆:西南大学.2009.
    刘裕国,孙海涛,庞革平,等.多策促春耕,抗旱保民生[N].人民日报.2010-3-19(1).
    刘再华.娘子关泉水来源的再研究[J].中国岩溶.1989,8(3):200-207.
    刘再华.岩溶水文地球化学研究中pH值野外测定的必要性[J].中国岩溶.1990.9(4):310-317.
    刘再华.桂林岩溶水文地质试验场岩溶水文地球化学的研究[J].中国岩溶.1992,11(3):209-217.
    刘再华.不同岩溶动力系统的碳稳定同位素和地球化学特征及其意义[J].地质学报.1997,71(3):281-288.
    刘再华,Dreybridt W.流动CO2-H2O系统中方解石溶解动力学机制——扩散边界层效应和CO2转换机制[J].地质学报.1998a,72(4):340-348.
    刘再华,何师意,袁道先,等.土壤中的CO2及其对岩溶作用的驱动[J].水文地质工程地质.1998b,4:42-45.
    刘再华,袁道先.中国典型表层岩溶系统的地球化学动态特征及其环境意义[J].地质论评.2000,46(3):324-327.
    刘再华.Groves C,袁道先,等.水-岩-气相互作用引起的水化学动态变化研究[J].水文地质工程地质.2003,4:13-18.
    刘再华,Dreybrodt W,王海静.一种由全球水循环产生的可能重要的CO2汇[J].科学通报.2007,52(20):2418-2422.
    刘忠方,田立德,姚檀栋,等.中国大气降水中δ180的空间分布[J].2009,54(6):804-811.
    卢耀如,杰显义,张上林,等.中国岩溶(喀斯特)发育规律及其若干水文地质工程地质条件[J].地质学报.1973,1:121-136.
    罗鉴银,傅瓦利.岩溶地区开挖隧道对水资源的影响——以渝合高速公路隧道为例[J].西南农业大学学报(自热科学版).2006,28(1):154-160.
    马致远,范基姣.陕西渭北东部岩溶地下水中硫酸盐的形成[J].煤田地质与勘探.2005,33(3):45-38.
    马致远,牛光亮,刘方,等.陕西渭北东部岩溶地下水强径流带的环境同位素证据及其可更新性调查[J].地质通报.2006,25(6):756-761.
    玛·斯维婷,包浩生.从世界展望中国喀斯特研究[J].中国岩溶.1990,9(2):342-351.
    欧超人.川岩地区构造断裂带对喀斯特溶洞和洼地的控制特征[J].桂林冶金地质学院学学报.1982,4:36-42.
    蒲俊兵,袁道先,蒋勇军等.重庆市地下河的空间分布及水资源[J].水文地质工程地质,2009,36(2):34-39.
    祁延年.广西中部及东北部地区喀斯特地貌[A].全国喀斯特研究会议论文选集[C].北京:科学出版社.1962,p69-81.
    任美锷,刘振中主编.岩溶学概论[M].北京:商务印书馆.1983,p331.
    申宏岗,曹建华,潘根兴.岩溶生态系统中土壤微生物量氮含量及其变化规律[J].生态环境.2007.16(6):1728-1732.
    沈照理,朱宛华,钟佐燊编.水文地球化学基础[M].北京:地质出版社.1999.p189.
    水文地质72级联队(成都地质学院).观音峡,温塘峡两背斜青木关地区的暗河水及其开发利用[J].1975.Z1:68-78.
    覃小群,蒋忠诚,李庆松,等.广西岩溶区地下河分布特征与开发利用[J].水文地质工程地质.2007,6.10-18.
    汤洁,徐晓斌,巴金,等.1992-2006年中国降水酸度的变化趋势[J].科学通报,2010,55(8):705-712.
    汤新燕,黄俊华,王友贞,等.重庆凉风垭剖面二叠-三叠系界线层碳同位素变化特征[J].地质科技情报.2007,26(4):42-46.
    汪智军,杨平恒,旷颖仑,等.基于15N同位素示踪技术的地下河硝态氮来源时空变化特征分析.环境科学.2009,30(12):3548-3555.
    王翱宇,蒲俊兵,沈立成,等.重庆雪玉洞CO2浓度变化的自然与人为因素探讨[J].热带地理.2010,30(3):272-277.
    王飞燕.岩溶形态及其类型[J].南京大学学报.1982,1.
    王恒纯主编.同位素水文地质学[M].地质出版社.1991,p 191.
    王明章,王伟,周忠赋.峰丛洼地区地下地表联合成库地下水开发模式——贵州普定马官水洞地下河开发利用[J].贵州地质.2005.22(4):279-283.
    王涛,王增银.桂林地区岩溶水87Sr/86Sr特征[J].地球学报.2005.26(B09):299-302.
    王艳强,朱波,王玉宽,等.重庆市石漠化敏感性评价[J].西南农业学报.2005,18(1):70-73.
    王焰新,高旭波.人类活动影响下的娘子关岩溶水系统地球化学演化[J].中国岩溶.2009.28(2):103-114.
    王增银,刘娟,王涛,等.锶元素地球化学在水文地质研究中的应用进展[J].地质科技情报.2003a.22(4):91-95.
    王增银,刘娟,崔银祥,等.延河泉岩溶水系统Sr/Mg、Sr/Ca分布特征及其应用[J].水文地质工程地质.2003b.2:15-19.
    温家宝.坚决打好抗旱救灾这场硬仗[N].人民日报.2010-3-26(2).
    肖化云,刘丛强,李思亮.贵阳地区夏季雨水硫和氮同位素地球化学特征[J].地球化学.2003,32(3):248-254.
    谢天祥.广西地下河发育的几个特征[J],中国地质.1984,2:22-26
    杨立铮.我国南方某些地区地下河的结构特征及其形成和演化[J].成都理工大学学报(自然科学).1982,2:54-61.
    杨立铮.中国南方地下河分布特征[J].中国岩溶,1985,1(1):92—-100.
    杨梅,蒲俊兵,张俊鹏,等.重庆典型岩溶区地下河表层沉积物OCPs初步研究[J].环境工程学报.2009,3(7):1340-1344.
    杨明德.论贵州岩溶水赋存的地貌规律性[J].中国岩溶.1982,2:81-91.
    杨平恒,罗鉴银,袁道先,等.降雨条件下岩溶槽谷泉水的水文地球化学特征[J].水利学报.2009a.40(1):67-74.
    杨平恒,旷颖伦,袁文昊,等.降雨条件下典型岩溶流域地下水中的物质迁移[J].环境科学.2009b.30(11):3249-3255.
    杨平恒.重庆青木关地下河系统的水文地球化学特征及悬浮颗粒物运移规律[D].[博士学位论文].重庆:西南大学.2010.p1-124.
    杨群兴.广东黎水地下河开发利用研究[J].水文地质工程地质.2006,3:45-52.
    姚长宏,杨桂芳,蒋忠诚,等.贵州水城盆地人类活动及其地质环境效应[J].城市环境与城市生态.2002.15(1):1-3.
    叶萍,周爱国,刘存富,等.河北平原地下水水-岩作用新证据——锶同位素示踪演变特征[J].水文地质工程地质.2007,4:41-43.
    叶萍,金勤胜,周爱国.河北平原地下水锶同位素形成机理[J].地球学报.2008,33(1):137-144.
    尹观,倪师军.地下水氘过量参数的演化[J].矿物岩石地球化学通报.2001,20(4):409-411.
    尹观,倪师军编.同位素地球化学[M].北京:地质出版社.2009.p258-262.
    袁丙华,毛郁.西南岩溶石山地区地下水资源[J].水文地质工程地质.2001,5:46-47.
    袁丙华著.中国西南岩溶石山地区地下水资源及生态环境地质研究[M].成都:电子科技大学出版,2007,p54-55.
    袁道先.论岩溶水的不均匀性[A].岩溶地区水文地质及工程地质工作经验汇编[C].北京:地质出版社,1978,1-19.
    袁道先著.岩溶学词典[M].北京:地质出版社,1988,34.
    袁道先,蔡桂鸿.岩溶环境学[M].重庆:重庆出版社,1988,p332.
    袁道先著.中国岩溶学[M].北京:地质出版社,1994,p207.
    袁道先.对南方岩溶石山地区地下水资源生态环境地质调查的一些意见[J].中国岩溶,2000,19(2):103-108.
    袁道先.地球系统的碳循环与资源环境效应[J].第四纪研究.2001,21(3):223-232.
    袁道先等著.中国岩溶动力系统[M].北京:地质出版社.2002,p275.
    袁道先.岩溶地区的地质环境及水文生态问题[J].南方国土资源.2003a,22-25.
    袁道先,刘再华等著.碳循环与岩溶地质环境[M].北京:科学出版社.2003b,p240.
    袁道先.以地球系统科学理论推动水文地质学发展[J].水文地质工程地质.2003c,1:1-2.
    袁道先,章程.岩溶动力学的理论与实践[J].地球学报.2008,29(3):355-365.
    袁道先.以地球系统科学理论推动水文地质学发展[J].水文地质工程地质.2003,1:1-2.
    袁文昊.土壤微生物活动下的氮磷变化及对地下河水质的影响——以重庆青木关岩溶槽谷区为例[D].[硕士学位论文].重庆:西南大学.2009.
    张贵,周翠琼,康晓波.云南开远南洞地下河水质演变特征[J].中国岩溶.2008,27(4):366-370.
    张建龙,王玲.重庆岩溶区的气候时空变化特征分析及趋势预测[J].热带气象学报.2008,24(3):239-248.
    张江华,梁永平,王维泰,等.硫同位素技术在北方岩溶水资源调查中的应用实例[J].中国岩溶.2009,28(3):235-241.
    张苗云,王世杰,马国强,等.大气环境的硫同位素组成及示踪研究[J].中国科学D辑:地球科学.2011,41(2):216-224。
    张强.岩溶区地下水脆弱性风险性评价——以重庆市青木关岩溶槽谷为例[D].[硕士学位论文].重庆:西南大学.2009.
    张英骏,缪钟灵,毛健全,等.应用岩溶学及洞穴学[M].贵州:贵州人民出版社.1983,p287.
    章程,曹建华.不同植被条件下表层岩溶泉动态变化特征对比研究——以广西马山县弄拉兰店堂泉和东旺泉为例[J].中国岩溶.2003,22(1):1-5.
    章程,袁道先,曹建华,等.典型表层岩溶泉短时间尺度动态变化规律研究[J].地球学报.2004,25(4):467-471.
    章程,袁道先.典型岩溶地下河流域水质变化与土地利用的关系-以贵州普定后寨地下河流域为例[J].水土保持研究.2004,18(5):134-137.
    章程,蒋勇军,袁道先,等.利用SWMM模型模拟岩溶峰丛洼地系统降雨径流过程——以桂林丫吉试验场为例[J].水文地质工程地质,2007a,3:10-14.
    章程,蒋勇军,Michele L.,等.岩溶地下水脆弱性评价“二元法”及其在重庆金佛山的应用[J].中国岩溶.2007b,26(4):334-340.
    赵金凤,夏克勤,石豫川,等.重庆歌乐山隧址区地下水同位素组成特征及意义[J].中国地质灾害与防治学报.2004,15(2):94-97.
    赵其国.民以食为天,食以净为本[J].土壤.2005,37(1):1-7.
    郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社.2000,p316.
    周爱国,甘义群,刘存富,等.河北平原地下水锶同位素特征[J].地球学报.2005,26(B09):279-283.
    朱学稳.川东岩溶及岩溶水特征[R].四川水文地质专集.成都:四川人民出版社.1981,p84-116.
    朱永琴,彭先孚.重庆市岩溶地下水的开发与利用[J].中国岩溶,2000,19(2):147-151.
    1Singular discovery of a subterranean river[J].Joumal of the Franklin Institute,1838,25(5):353.
    1本节根据《重庆地理》(陈升琪,2003,重庆出版社)和《重庆市1:50万地貌图说明书》资料整理
    1本节资料参考《重庆市1:50万构造纲要图说明书》
    1引自《重庆市1:50万构造纲要图说明书》
    1根据重庆市范围1:20水文地质图,利用ArcGIS软件数字化后统计。
    1据中国科学院地质研究所岩溶研究组编著的《中国岩溶研究》一书中数据统计,1979。
    2本节部分资料引自重庆市范围内的1:20万区域水文地质普查报告。
    1参考1:20万南川幅水文地质普查报告,p75。
    1参考1:20万黔江幅水文地质普查报告,p81。
    1修改自1:20万黔江幅水文地质普查报告,p82。
    1修改自1:20万涪陵幅水文地质普查报告,p77。
    2参考1:20万黔江幅水文地质普查报告,p83.
    1修改自1:20万涪陵幅水文地质普查报告,p74。
    2修改自1:20万黔江幅水文地质普查报告,p98。
    1修改自1:20万巫溪幅水文地质普查报告,p47。
    1修改自1:20万涪陵幅水文地质普查报告,p77。
    2修改自1:20万涪陵幅水文地质普查报告,p77。
    1修改自1:20万奉节幅水文地质普查报告,p111。
    1修改自1:20万涪陵幅水文地质普查报告,p78。
    2修改自1:20万涪陵幅水文地质普查报告,p78。
    1修改自1:20万涪陵幅水文地质普查报告,p76。
    1修改自1:20万黔江幅水文地质普查报告,p85。
    2修改自1:20万黔江幅水文地质普查报告,p107。
    1修改自1:20万涪陵幅水文地质普查报告,p79。
    2修改自1:20万酉阳幅水文地质普查报告,p83。
    1修改自1:20万巫溪幅水文地质普查报告,p47。
    1修改自1:20万巫溪幅水文地质普查报告,p52。
    2修改自1:20万巫溪幅水文地质普查报告,p55。
    1修改自广西壮族自治区水文队编《岩溶地区供水水文地质工作方法》.地质出版社.1979.p22.
    2本节部分资料和图参考重庆市范围内1:20万区域水文地质普查报告。
    1修改自1:20万酉阳幅水文地质普查报告,p80。
    1修改自1:20万奉节幅水文地质普查报告.p124。
    1修改自1:20万南川幅水文地质普查报告.p68。
    1修改自1:20万黔江幅水文地质普查报告.p96。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700