用户名: 密码: 验证码:
柴油机喷嘴结构对喷雾特性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机作为热效率最高的动力机械,其在未来很长一段时间内将继续保持交通运输领域主要动力的地位,但其发展受到了不断强化的燃油经济性和有害排放限值法规的挑战。柴油机的燃油喷射及雾化混合对于燃烧乃至柴油机的性能具有决定性的影响。因此,长期以来,对燃油喷雾机理的探索一直为国内外研究者所重视,并针对这一主题进行了大量研究。但燃油喷射雾化由于问题本身的复杂性,至今许多机理尚未被全面揭示,如喷嘴结构对喷雾特性的影响。本文针对这个问题,系统地分析和总结了柴油机喷嘴内部空穴流动及喷雾流场相关的试验和数值模拟理论,并采用比例放大透明喷嘴内空穴湍流高速摄影、基于同步辐射X射线的喷嘴结构精确测试、喷雾流场的PDPA和PIV测试等可视化试验和三维CFD数值模拟研究相结合的方法,开展了喷嘴结构对其内部空穴流动特性及喷雾特性影响的研究。主要结论如下:
     (1)喷嘴内部空穴现象的发生与雷诺数没有直接的联系,而只与空穴数有关;随着喷孔直径的减小,空穴初生临界压力增加,小口径乃至原型喷嘴,其喷嘴内部较难出现空穴现象;柴油机喷嘴喷孔长径比和倾角以及针阀升程、压力室形状等几何结构因素都会影响其内部空穴流动特性;喷射燃料的物理特性对柴油机喷嘴空穴流动有重要影响,生物柴油比柴油更难出现空穴现象,生物柴油为获得良好雾化质量的喷射压力要高于柴油。
     (2)基于多相流和气泡动力学理论,建立了喷嘴内空穴流动的三维数值计算模型,并结合比例放大透明喷嘴空穴流动可视化试验数据验证了该模型可以较为准确地模拟柴油机喷油嘴内空穴流动现象。对不同结构参数的喷嘴内部空穴流动特性进行了全面深入的数值模拟分析,分析了燃油喷射压力、喷射背压、喷孔直径、喷孔长度、喷孔入口圆角半径、喷孔倾斜角等几何特征参数、喷嘴不同压力室结构及针阀偏心等因素对喷嘴内部空穴流动的影响,发现喷孔入口保持锐边的喷嘴的喷雾特性要优于圆角喷孔入口的喷嘴,喷油压力的提高能很大程度上改善喷雾特性以及改进型喷嘴流动的综合特性好于VCO型和STD型喷嘴的结论。
     (3)采用同步辐射X射线技术可以非破坏性地获取柴油机喷油器喷孔内部准确的三维几何结构,对某油嘴的实验发现,其各喷孔圆周方向分布基本均匀,进出口界面面积基本相等,喷孔界面未出现收缩和膨胀,存在的加工误差较小,但各个喷孔的长度并不相等,上下圆角半径也存在着较大区别;基于PDPA技术的喷雾高速摄影研究发现,豆油甲酯/O#柴油混合燃油的喷雾锥角存在“驼峰”变化现象,轴向速度是影响喷雾特性的关键因素,直接对液相贯穿距变化产生显著影响,也是影响径向速度的决定因素,二者变化趋势大致相同,轴向速度越大,相应的径向速度越大,表现出的喷雾锥角就越大;基于PIV技术的喷雾特性实验发现,燃油的喷射压力的提升有助于油滴与周围环境进行动量交换,在一定范围内燃油压力越高,油束动量越大,喷雾场内动量交换越广泛。
     (4)建立了基于ELSA法的喷雾耦合模拟方法,在喷孔出口近场燃油稠密区采用Euler法计算,而远场喷雾则采用Lagrangian法计算,并耦合喷嘴内空穴流动的影响,得到更加准确的模拟结果。
As the highest thermal efficiency of power machinery, diesel engines will maintain the essential position of the driving force in the field of transportation for a long time in the future. But due to the rising cost of fossil fuels and hazardous emissions, its developments have been limited and challenged. In diesel engines, fuel injection, the shape of spray and quality of atomization strongly affect the combustion and the performance of engine. Therefore, the research for fuel spray mechanism attracted more attention of domestic and foreign researchers. But due to complexity of spray, a lot of mechanism has not been fully revealed so far, such as the effect of injector geometry. The test and numerical simulation of cavitation flow in the nozzle hole and the spray flow field have been analyzed and summarized fully and systematically. Combining methods of scaled high-speed photography about the cavitation turbulence in the transparent nozzle, accurate test of injector geometry by synchrotron radiation X-ray, PDPA and PIV test of spray flow and three dimensional CFD numerical simulation to carry out researches about the effect of injector geometry on the performance of the cavitation flow and spray. The main conclusions are as flows:
     (1) There is no direct link between the occurrence of cavitation flow and the Reynold number, but the cavitation number. With the reduction of the nozzle diameter, the hole primary critical pressure increases, it is difficult to occur cavitation in small-caliber or prototype nozzle. The tip orifice aspect ratio and inclination and needle lift pressure chamber will affect the performance of the cavitation flow. The physical characteristics of the fuel has an important influence on the cavitation flow in the nozzle hole, biodiesel appears much harder than diesel to occur cavitation. So to obtain good spray quality, biodiesel needs higher injection pressure.
     (2) Based on the theory of Multiphase flow and bubble dynamics, three-dimensional numerical model of the cavitation flow in the nozzle hole was builded, and combined with the date of visualization test in scaling transparent nozzle holes to simulate the cavitation flow accurately. In this study, the effects of nozzle geometry on the internal nozzle flow were investigated by numerical simulation. And found that the sharp edge of the inlet has superior spray performance than fillet one. Improvement of fuel injection pressure can greatly improve performance of the spray and the nozzle flow.
     (3) Synchrotron radiation X-ray technology can access accurate three-dimensional geometry non-destructively. Experiments found that the circumferential direction of each nozzle hole has substantially uniform distribution, import and export interfacial area is basically the same, and contraction or expansion does not appear on the spray hole interface and mismachining tolerance is small, but not equal to the length of each nozzle hole and there is a big difference between the upper and lower corner radius. Based on the PDPA technology of spray high-speed photography study found that spray cone angle "hump" of soybean oil methyl ester/0#diesel hybrid fuel has change phenomenon. The axial velocity is a key factor affecting the spray performance and also the determinants of the radial velocity, higher axial velocity leads to higher radial velocity and bigger spray cone angle. Based on PIV technology, it is found that the enhancement of the injection pressure contributes to the momentum exchange between oil droplets and the surrounding environment.
     This paper puts forward a ELSA (Euler-Lagrangian Spray and Atomization) spray simulation methods, Euler method is used in the orifice outlet near-field fuel dense area, and the far-field spray uses Lagrangian method, and coupling the cavitation flow in nozzle hole to get a more accurate simulation results.
引文
[1]周龙保.内燃机学(第三版)[M].北京:机械工业出版社,2011.
    [2]苏万华,赵华,王建昕等.均质压燃低温燃烧发动机理论与技术[M].北京:科学出版社,2010.
    [3]Hiroyasu H. Experimental and theoretical studies on the structure of fuel sprays in diesel engines[A]. In:Hratch G. Semerjian. Proceeding of ICLASS-91[C]. Gaithersburg:National Institute of Standards and Technology,1991:197-204.
    [4]Dec J. A conceptual model of DI diesel combustion based on laser-sheet imaging. SAE Paper: 970873,1997.
    [5]Aleiferis P G, van Romunde Z R. An analysis of spray development with iso-octane, n-pentane, gasoline, ethanol and n-butanol from a multi-hole injector under hot fuel conditions[J]. FUEL,2013,105:143-168.
    [6]CHEN P C, WANG W C, ROBERTS W L, et al. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system[J]. Fuel, 2013,103:850-861.
    [7]玉木伸茂等.喷油嘴喷孔空穴现象对液体喷束雾化的影响[J].国外内燃机.1998,338(8):23-43.
    [8]Payri F, Bermudez V, Payri R, et al. The influence of cavitation on the internal flow and the spray characteristics in diesel injection nozzles[J]. Fuel,2004,83(4):419-431.
    [9]Payri F, Arregle J, Lopez J, and Hermens S. Hermens. Effect of cavitation on the nozzle outlet flow, spray and flame formation in a diesel engine[J],SAE Paper 2006-01-1391,2006.
    [10]Som S, Aggarwal S K. Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines[J]. Combustion and Flame,2010,157(6): 1179-1193.
    [11]Desantes J M, Payri R, Salvador F J, et al. Influence of cavitation phenomenon on primary break-up and spray behavior at stationary conditions[J]. Fuel,2010,89(10):3033-3041.
    [12]Yoon S H, Park S H, Suh H K, et al. Effect of Biodiesel-Ethanol Blended Fuel Spray Characteristics on the Reduction of Exhaust Emissions in a Common-Rail Diesel Engine[J]. Journal of Energy Resources Technology,2010,132(4):042201.
    [13]张林夫,夏维洪.空穴与空蚀[M].南京:河海大学出版社,1989.
    [14]Knapp R T, Daily J W, Hammitt F G. Cavitation[M]. New York:McGraw-Hill,1970.
    [15]Goney K H. Investiagtions of internal nozzle multiphase flow and its effects on diesel sprays[D]. The University of Wisconsin-Madison,1999.
    [16]Schmidt D P. Cavitation in diesel fuel injector nozzles[D]. UNIVERSITY OF WISCONSIN, 1997.
    [17]Bunnel R A. Unsteady, viscous, cavitating simulation of injector internal flows[D]. Purdue University,1999.
    [18]Yuan W, Sauer J, Schnerr G H. Modeling and computation of unsteady cavitation flows in injection nozzles[J]. M6canique & industries,2001,2(5):383-394.
    [19]Kubo M, Araki T, Kimura S. Internal flow analysis of nozzles for DI diesel engines using a cavitation model[J]. JSAE Review,2003,24(3):255-261.
    [20]Mimouni S, Boucker M, Lavieville J, et al. Modelling and computation of cavitation and boiling bubbly flows with the NEPTUNE_CFD code[J]. Nuclear Engineering and Design, 2008,238(3):680-692.
    [21]Mulemane A, Subramaniyam S, Lu P, Han J et al. Comparing Cavitation in Diesel Injectors Based on Differen Modeling Approaces. SAE paper 2004-01-0027,2004.
    [22]Xie W F, Liu T G, Khoo B C. Application of a one-fluid model for large scale homogeneous unsteady cavitation:The modified Schmidt model[J]. Computers & fluids,2006,35(10): 1177-1192.
    [23]魏明锐,文华,刘会猛等.柴油机孔式喷油嘴内空穴流动的模拟分析[J].内燃机学报,2006,24(6):526-530.
    [24]何志霞,李德桃,王谦等.垂直多孔喷油嘴内部空穴两相流动的三维数值模拟分析[J].机械工程学报,2005,41(3):92-97.
    [25]何志霞,袁建平,李德桃等.柴油机喷油嘴喷孔内气液两相湍流场三维数值模拟[J].内燃机工程,2005,26(6):18-21.
    [26]王谦,罗新浩,刘春生等.高压共轨喷油器内部瞬态流动三维数值模拟研究[A].见:中国内燃机学会年中国内燃机学会.第四届青年学术年会论文集[C].哈尔滨:哈尔滨工程大学出版社,2006:112-115.
    [27]汀翔,苏万华.柴油高压喷油嘴内部空穴湍流特性的数值分析[A].见:中国工程热物理学会.2007年中国工程热物理学会燃烧学学术会议论文集(下册)[C].天津:天津大学出版社:2007:706-713.
    [28]杨瑞龙,张宗杰.喷油嘴内部气穴流动的瞬态CFD模拟[A].见:黄荣华,饶如麟.APC2005年学术年会论文集[C].武汉:华中科技大学,2005:512-515.IN
    [29]冯圆,帅石金,王志等.柴油机伞喷喷油嘴内部流动的数值模拟[J].车用发动机,2007,(3):40-43.
    [30]魏明锐,刘永长,文华等.喷孔流动模型及其对高压喷雾计算的影响[J].内燃机学报,2003,21(4):229-233.
    [31]成晓北,黄荣华,王志等.柴油机喷油器喷孔空泡雾化的研究[J].内燃机工程,2002,23(2):60-64.
    [32]岳明,徐行,杨茂林.离心式喷油嘴内气液两相流动的数值模拟[J].工程热物理学报,2003,24(5):888-890.
    [33]袁江涛,欧阳光耀,刘镇.柴油机喷油嘴流动的CFD分析[J].柴油机,2005,27(2):21-23.
    [34]徐波,张宗杰,戚茂国等.柴油机多孔式喷油嘴中燃油三维流动分析[J].现代车用动力,2005,(1):17-21.
    [35]Schneider, B.M. Experimental investigation of the spray structure in transient diesel fuel sprays in inert environments under evaporating and non-evaporating conditions [D]. Swiss Federal Institute of Technology (ETH),2003.
    [36]Hiroyasu, H, Kadota, T, Arai M. Fuel spray characterization in diesel engines, Combustion modeling in reciprocating engines[A]. In:J.N. Mattavi and C.A. Amann. Proceedings of a symposium held at the GM research laboratory[C]. New York:Plenum Press,1980.
    [37]Naber, J D, Siebers D L. Effects of gas density and vaporization on penetration and dispersion of diesel sprays. SAE Paper 960034,1996.
    [38]Arregle J, Pastor J V, Ruiz S. The influence of injection parameters on diesel sprays characteristics. SAE Paper 1999-01-0200,1999.
    [39]Siebers, D L. Liquid-phase fuel penetration in diesel sprays. SAE Paper 980809,1998.
    [40]Siebers D L. Scaling liquid-phase fuel penetration in diesel sprays based on mixing-limited vaporiza-tion. SAE Paper 1999-01-0528,1999.
    [41]Espey C, Dec J E. The effect of TDC temperature and density on the liquid-phase fuel penetration in a D.I. diesel engine. SAE Paper 952456,1995.
    [42]Chehroudi B, Chen S H, Bracco E V. On the intact core of full-cone sprays. SAE Paper 850126,1985.
    [43]Fath A, Fettes C, Leipertz A. Investigation of the diesel spray breakup close to nozzle at different injection conditions.4th international Symposium COMODIA 98, Kyoto, Japan, 1998.
    [44]Yue Y, Powell C F, Poola R, et al. Quantitative measurements of diesel fuel spray characteristics in the near-nozzle region using X-ray absorption[J]. Atomization and Sprays, 2001,11(4):471-490.
    [45]高剑,蒋德明.柴油机喷雾特性的测试方法[J].柴油机,2002,(6):4-7.
    [46]Cutter, P. Diesel spray characteristics, spray/wall interaction and heat transfer [D]. University of London, Imperial College,1997.
    [47]Lee C S, Park S W. An experimental and numerical study on fuel atomization characteristics of high-pressure diesel injection sprays[J]. Fuel,2002,81(18):2417-2423.
    [48]成晓北,黄荣华,朱梅林.柴油机燃油喷射雾化的PIV测量试验研究[J].燃烧科学与技术,2003,9(31):224-229.
    [49]Sellens R W, Brzustowski T A. A simplified prediction of droplet velocity distributions in a spray[J]. Combustion and flame,1986,65(3):273-279.
    [50]成晓北,黄荣华,朱梅林.信息熵在喷雾液滴尺寸分布计算中的应用[J].华中科技大学学报,2002,38(7):0-32.
    [51]史绍熙.一种测量柴油机喷雾SMD分布的新方法-荧光/散射光图像处理法[J].内燃机学报,1996,12(3):221-228.
    [52]Santavicca D A, Bracco F V, Coghe A, et al. LDV measurements of drop velocity in diesel-type sprays[J]. AIAA journal,1984,22(9):1263-1270.
    [53]Koo J Y, Martin J Y. Comparisons of measured drop sizes and velocities in a transient fuel spray with stability criteria and computed PDF. SAE Paper 910179,1991.
    [54]史春涛.柴油机高压喷雾雾场LDV测速及数值模拟[D].天津:天津大学,1995.
    [55]张仁惠,乔信起,黄震.柴油机喷雾速度场的激光相位多普勒测试[J].现代车用动力,2002,(1):30-32.
    [56J许振忠,彭志军,龚允怡.柴油机高压喷雾碰壁前后粒子速度的LDA试验研究[J].内燃机学报,2001,19(4):349-355.
    [57]Glanpletro E, Cossall. LDV characterization of air entrainment in transient diesel sprays. SAE Paper 910178,1991.
    [58]Rhim D R, Farrell P V. Characteristics of air flow surrounding non-vaporating transient diesel sprays. SAE Paper 2000-01-2789,2000.
    [59]Cao Z M, Nishino K, Mizuno S, et al. PIV measurement of internal structure of diesel fuel spray[J]. Experiments in fluids,2000,29(1):S211-S219.
    [60]Scheid E, Pischinger F, Knoche K. Spray combustion chamber with optical access, ignition zone visualization and first Raman measurements of local air-fuel ratio. SAE Paper 861121, 1986.
    [61]Espey C, Dec J E, Litzinger T A, et al. Planar laser Rayleigh scattering for quantitative vapor-fuel imaging in a diesel jet[J]. Combustion and Flame,1997,109(1):65-86.
    [62]Kim T, Beckman M S, Farrell P V. Evaporating spray concentration measurements from small and medium bore diesel injectors. SAE Paper 2002-01-0219,2002.
    [63]汪洋.激光诱导荧光法研究柴油机新概念燃烧中的喷雾混合过程[J].燃烧科学与技术,2002,8(4):338-341.
    [64]Versaevel P, Motte P. A new 3D model for vaporizing diesel sprays based on mixing-limited vaporization. SAE Paper 2000-01-0949,2000.
    [65]Ranz W E. Some experiments on orifice sprays[J]. The Canadian Journal of Chemical Engineering,1958,36(4):175-181.
    [66]Reitz R D, Bracco F V. Mechanism of atomization of a liquid jet[J]. Physics of Fluids,1982, 25(10):1730-1742.
    [67]Wu K J, Su C C, Steinberger R L, et al. Measurements of the spray angle of atomizing jets[J]. Journal of fluids engineering,1983,105(4):406-410.
    [68]Arai M, Tabata M, Hiroyasu H, et al. Disintegrating process and spray characterization of fuel jet injected by a diesel nozzle[J]. SAE transactions,1984,93(2):2.358-2.371.
    [69]Ruiz F G. Experimental and theretical analysis of high speed atomization, and Its Application to Diesel Fuel Injection[D]. Pittsburgh, Pennsylvania:Carnegie Mellon University,1987.
    [70]Ohrn T R, Senser D W, Lefebvre A H. Geometric effects on spray cone angle for plain-orifice atomizers[J]. Atomization and sprays,1991,1(3):253-268.
    [71]Karasawa T, Tanaka M, Abe K, et al. Effect of nozzle configuration on the atomization of a steady spray[J]. Atomization and Sprays,1992,2(4):411-426.
    [72]Ruff G A, Wu P K, Bernal L P, et al. Continuous-and dispersed-phase structure of dense nonevaporating pressure-atomized sprays[J]. Journal of Propulsion and Power,1992,8(2): 280-289.
    [73]Bergwerk W. Flow pattern in diesel nozzle spray holes[J]. Proceedings of the Institution of Mechanical Engineers,1959,173(1):655-660.
    [74]Hiroyasu H, Arai M and Shimizu M. Break-up length of a liquid jet and internal flow in an nozzle[A]. In:Hratch G. Semerjian. Proceeding of ICLASS-91[C]. Gaithersburg:National Institute of Standards and Technology,1991:275-282.
    [75]Arai M. Break-up mechanisms of a high sped liquid jet and control methods for a spray behavior[A]. In:International Symposium on Advanced Spray Combustion[C]. Hiroshima: 1994:6-8.
    [76]Bode J. Zum Kavitationseinfluβ auf den Zerfall von Flussigkeitsfreistrahlen [D], Uni- versitat Gottingen,1991.
    [77]Soteriou C. Andrews R and Smith M. Direct injection diesel sprays and the effect of cavitation and hydraulic flip on atomization. SAE Paper 950080,1995.
    [78]Brennen C E. Cavitation and bubble dynamics[M]. New York:Oxford University Press,1995.
    [79]Harvey E N, McElroy W D, Whiteley A H. On cavity formation in water[J]. Journal of Applied Physics,1947,18(2):162-172.
    [80]高秋生.对液体空化机理的进一步探讨[J].河海大学学报(自然科学版),1999,27(5):63-67.
    [81]Rayleigh L. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917,34(200):94-98.
    [82]Plesset M S. The dynamics of cavitation bubbles[J]. J. appl. Mech,1949,16(3):227-282.
    [83]倪汉根.气核-空穴-空蚀[M].成都:成都科技人学出版社,1993.
    [84]杨庆,张建民,戴光消等.空化形成机理和比尺效应[J].水力发电,2004,20(3):54-63.
    [85]黄景泉.空化起始条件的确定[J].应用数学和力学,1989,10(2):155-159.
    [86]夏维洪.初生,空化的模型数据应用到原型上的问题[J].水利水运科学研究,1993(4):371-379.
    [87]倪汉根.初生空化数比尺效应的修正[J].水利学报,1999,9(9):28-32.
    [88]Keller A P. New Scaling Laws for Hydrodynamic Cavitation Inception[A]. In:The Second Int Symp on Cavitation[C]. Tokyo:1994
    [89]McCormick Jr B W. On cavitation produced by a vortex trailing from a lifting surface[J]. Journal of Basic Engineering,1962,84:369.
    [90]Arcoumanis C, Badami M and Gavaises M. Cavitation in real-size multi-hole diesel injector nozzles. SAE Paper 2000-01-1249,2000.
    [91]Bergwerk W. Flow pattern in diesel nozzle spray holes[J]. Proceedings of the Institution of Mechanical Engineers,1959,173(1):655-660.
    [92]Laoonual Y, Yule A J and Walmsley S J. Internal Fluid Flow and Spray Visualizaiton for a Large-Scale VCO Orifice Injector Nozzle[A]. In:ILASS-Europe[C]. Zurich:2001.
    [93]Schmidt D P, Rutland C J, Corradini M L. A numerical study of cavitating flow through various nozzle shapes. SAE Paper 971597,1997.
    [94]Park S H, Suh H K, Lee C S. Effect of cavitating flow on the flow and fuel atomization characteristics of biodiesel and diesel fuels[J]. Energy & Fuels,2007,22(1):605-613.
    [95]Suh H K, Lee C S. Effect of cavitation in nozzle orifice on the diesel fuel atomization characteristics[J]. International journal of heat and fluid flow,2008,29(4):1001-1009.
    [96]Payri F, Arregle J, Lopez J, Effect of cavitation on the nozzle outlet flow, spray and flame formation in a diesel engine. SAE Paper 2006-01-1391,2006.
    [97]Payri R, Garcia J M, Salvador F J, et al. Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics[J]. Fuel,2005, 84(5):551-561.
    [98]Payri R, Margot X, Salvador F J. A numerical study of the influence of diesel nozzle geometry on the inner cavitating flow. SAE Paper 2002-01-0215,2002.
    [99]Benajes J, Payri R and Plazas A H. Experiments for the Different Values of K-Factor[J]. J. Fluids Engineering,2004,126:63.
    [100]Winklhofer E, Kull E, and Morozov A. Comprehensive Hydraulic and Flow Field Documentation in Model Throttle Experiments under Cavitation Conditions[A]. In: Proceedings of the ILASS-Europe Conference[C]. Zurich:2001:574-579
    [101]Blessing M, Konig G, Kruger C, and Schwarz V. Analysis of Flow and Cavitation Phenomena in Diesel Injection Nozzles and its Effects on Spray and Mixture Formation. SAE Paper 2003-01-1358,2003.
    [102]Zhang J, Du Q, Yang Y. Influence of diesel nozzle geometry on cavitation using eulerian multi-fluid method[J]. Transactions of Tianjin University,2010,16(1):33-39.
    [103]Nouri J M, Yan Y, Arcoumanis C, Internal flow and cavitation in a multi-hole injector for gasoline direct injection engines. SAE Paper 2007-01-1405,2007.
    [104]Roth H, Gavaises M, Arcoumanis C. Cavitation initiation,its development and link with flow turbulence in diesel injector nozzles. SAE Paper 2002-01-0214,2002.
    [105]何志霞,袁建平,李德桃等.柴油机喷嘴喷孔内气液两相湍流场三维数值模拟[J].内燃机工程,2005,26(6):18-21.
    [106]He Z, Zhong W, Wang Q, et al. Effect of nozzle geometrical and dynamic factors on cavitating and turbulent flow in a diesel multi-hole injector nozzle[J]. International Journal of Thermal Sciences,2013,70:132-143.
    [107]何志霞,袁建平,李德桃等.柴油机喷嘴结构优化的数值模拟分析[J].内燃机学报,2006,24(1):35-41.
    [108]Roth H, Gavaises M, Arcoumanis C, Effect of multi-injection strategy on cavitation development in diesel injector nozzle holes. SAE Paper 2005-02-1237,2005.
    [109]Jia M, Hou D, Li J, A micro-variable circular orifice fuel injector for HCCI conventional engine combustion part i numerical simulation of cavitation. SAE Paper 2007-01-0249,2007.
    [110]Wang, X, Su W. Influence of injection pressure fluctuations on cavitation inside a nozzle hole at diesel engine conditions. SAE Paper 2008-01-0935,2008.
    [111]Chong H C, LH. Gorwth of gas bubble in a visous fluid. Physics of Fluids,1986,29(11): 3530-3536.
    [112]黄继汤.液体粘性对空泡生存过程的影响[J].北京建筑工程学院学报,1994,10(2):124-131.
    [113]Zhixia He, Wenjun Zhong, Qian Wang, et al. Effect of Nozzle Geometrical and Dynamic Factors on Cavitating and Turbulent Flow in a Multihole Injector Nozzle[J]. International Journal of Thermal Sciences,2013,70:132-143.
    [114]Reitz R D, Bracco F V. Mechanism of atomization of a liquid jet[J]. Physics of Fluids,1982, 25:1730-1742.
    [115]Lefebvre A H. Atomization and sprays[M]. CRC PressI Llc,1989.
    [116]O'Rourke P J, Bracco F V. Modelling of drop interactions in thick sprays and a comparison with experiments[J]. Proceedings of the Institution of Mechanical Engineers,1980,149(9): 101-116.
    [117]Zhixia He, Wenjun Zhong, Qian Wang, Zhaochen Jiang, Yanan Fu. An investigation of transient nature of the cavitating flow in injector nozzles, Applied Thermal Engineering, Applied Thermal Engineering, Volume 54, Issue 1,2013, Pages 56-64
    [118]Strtt, J W., Rayleigh L. On the instability of jets[J]. Proceedings of the London mathematical society,1878,10:4-13.
    [119]Taylor, G I. The Shape and Acceleration of a Drop in a High Speed Air Stream[A]. In:Batcher G K. The scientific papers of Sir Geoffrey Ingram Taylor[C]. Cambridge:Cambridge University Press,1963:457-464.
    [120]Yang H Q. Asymmetric instability of a liquid jet[J]. Physics of Fluids A:Fluid Dynamics, 1992,4(4):681.
    [121]Li X. Mechanism of atomization of a liquid jet[J]. Atomization and sprays,1995,5(1):89-105.
    [122]史绍熙,郗大光.液体射流的非轴对称破碎[J].燃烧科学与技术,1996,2(3):189-199.
    [123]DeJuhasz, K.J. Dispersion of sprays in solid-injection oil engines. Trans. ASME,1931,53: 65-67.
    [124]Lee D W, Spencer R C. Photo micrographic studies of fuel sprays[R]. NACA Rept,1933: 215-239.
    [125]Grant R P, Middleman S. Newtonian jet stability[J]. AIChE Journal,1966,12(4):669-678.
    [126]Phinney R E. The breakup of a turbulent liquid jet in a gaseous atmosphere[J]. Journal of Fluid Mechanics,1973,60(4):689-701.
    [127]Ruff, G.A., Sagar, A.D., Faeth, G.M. Structure of the near injector region of non-evaporating pressure-atomized sprays[J]. AIAA Journal,1989,27(7):901-908.
    [128]Tseng L K, Ruff G A, Faeth G M. Effects of gas density on the structure of liquid jets in still gases[J]. AIAA Journal,1992,30(6):1537-1544.
    [129]Wu, P.K., Miranda, R.F., Faeth, G.M. Effects of initial flow conditions on primary breakup of Nonturbulent and turbulent liquid jets[J]. AIAA Journal,1995,5(2):175-196.
    [130]Huh K Y, Gosman A D. A phenomenological model of diesel spray atomization[A]. In: International Conference on Multiphase Flows[C]. Tsukuba:1991.
    [131]Bergwerk W. Flow pattern in diesel nozzle spray holes[J]. Proceedings of the Institution of Mechanical Engineers,1959,173(1):655-660.
    [132]Hiroyasu H, Arai M. Structure of fuel sprays in diesel engines. SAE Paper 900475,1990.
    [133]Park B S, Lee S Y. An experimental investigation of the flash atomization mechanism [J]. Atomization and Sprays,4(2):159-179.
    [134]Petersen B R, Ghandhi J B. Transient High-Pressure Hydrogen Jet Measurement. SAE Paper: 2006-01-0652,2006.
    [135]高原,李理光,炅志军等.高背压大可视化场的喷雾试验定容弹及其控制系统开发[J].内 燃机工程,2009,30(4):57-62.
    [136]张旭升,李理光,邓俊等.生物柴油喷雾特性的试验研究[J].内燃机学报,2007,25(2):172-176.
    [137]Matsumoto A, Moore W, Lai M, Zheng Y. et al. Spray characterization of Ethanol Gasoline Blends and Comparison to a CFD Model for a Gasoline Direct Injector. SAE Paper: 2010-01-0601,2010.
    [138]Fraidl G K, Piok W F, Wirth M. Gasoline Direct Injection:Trends and Future Strategies for Injection and Combustion Systems. SAE Paper:960465,1996
    [139]Styron J P, Kelly P L, Lee C F, et al. Multicomponent Liquid and Vapor Fuel Distribution Measurements in the Cylinder of a Port-Injected, Spark-Ignition Engine. SAE Paper: 2000-01-0243,2000
    [140]Kramer H, Munch K U, Leipertz A. Investigation of Fuel Evaporation Inside the Intake of a SI Engine Using Laser Induced Exciplex Fluorescence with a NEW Seed. SAE Paper:961930, 1996.
    [141]Martin H D, Paul A W, Richard W A. Effects of Fuel Composition on Mixture Formation in a Firing Direct-Injection Spark-Ignition (DISI) Engine:An Experimental Study using Mie-Scattering and planar Laser-Induced Fluorescence (PLIF) Techniques. SAE Paper: 2000-01-1904,2000
    [142]Ipp W, Wagner V, Kramer H, Wensing M, et al. Spray Formation of High Pressure Swirl Gasoline Injectors Investigated by Two-Dimensional Mie and LIEF Techniques. SAE Paper: 1999-01-0498,1999
    [143]Brad A V, Simone H. Effects of Fuel Volatility and Operating Conditions on Fuel Sprays in DISI Engines (1) Imaging Investigation. SAE Paper:2000-01-0535,2000
    [144]Rothamer D A, Ghandhi J B. Determination of Flame-Front Equivalence Ratio During Stratified Combustion. SAE Paper:2003-01-0069,2003
    [145]Li T, Nishida K, Zhang Y, et al. Effect of split injection on stratified charge formation of direct injection spark ignition engines[J]. International Journal of Engine Research,2007,8(2): 205-219.
    [146]Kuwahara K, Yamamoto S, Iwachidou K. Two-stage Combustion for Quick Catalyst Warm-up in Gasoline Direct Injection Engine[A]. In:JSME. Proceedings 4th COMODIA 98[C]. Kyoto:1998:293-298
    [147]Li T, Yamakawa M, Takaki D, Nishida K, et al. Characterization of Mixture Formation Processes in D.I. Gasoline Sprays by the Laser Absorption Scattering (LAS) Technique-Effect of Injection Conditions. SAE Paper:2003-01-1811,2003.
    [148]Yamakawa M, Isshiki T, Yoshizaki T, et al. Measurement of Ambient Air Motion of D.I. Gasoline Spray by LIF-PIV[J]. JSME International Journal,46(1):499-504.
    [149]Tomino O, Tsuneaki I. Database Constructions by LDA and PIV to Verify the Numerical Simulation of Gas Flows in the Cylinder of a Motored Engine. SAE Paper:2009-28-0010, 2009.
    [150]Louis M M, Gilles B. Study of Air Entrainment of Multi-hole Diesel Injection by Particle Image Velocimetry-Effect of Neighboring Jets Interaction and Transient Behavior After End of Injection. SAE Paper:2010-01-0342,2010.
    [151]Dingel O, Seide, T, and Steuker H. In-cylinder Flow Field Measurement with Doppler Global Velocimetry in Combination with Droplet Distribution Visualization by Mie Scattering. SAE Paper:2009-01-0652,2009.
    [152]Adomeit P, Weinowski R, Ewald J, Brunn A, et al.. A New Approach for Optimization of Mixture Formation on Gasoline DI Engines. SAE Paper:2010-01-0591,2010.
    [153]Kolokotronis D, Hardalupas Y, Tayler A M, et al. Experimental Investigation of Cavitation in Gasoline Injectors. SAE Paper:2010-01-1500,2010.
    [154]Lindken R, Merzkirch W. A novel PIV technique for measurements in multiphase flows and its application to two-phase bubbly flows[J]. Experiments in fluids,2002,33(6):814-825.
    [155]Joshua B, Giles B, Harold S, et al. Measurements of Cycle to Cycle Variability of the Inlet Flow of Fuel Injectors Using LDA. SAE Paper:2006-01-3314,2006.
    [156]Detao L, Qian W, Xiaglan X, and Ping L. LDA Measurement and 3-D Modeling of Air Motion in Swirl Chamber of Diesel Engines. SAE Paper:2002-01-0008,2002.
    [157]Auriemma M, Corcione F E, Diana S, et al. Investigation of the intake tumble flow in a prototype GDI engine using a steady-state test rig. SAE Paper:2001-24-0022,2001.
    [158]Ishima T, Obokata T, Nomura T and Takahashi Y. Analysis on In-Cylinder Flow by Means of LDA, PIV and Numerical Simulation under Steady State Flow Condition. SAE Paper: 2008-01-1063,2008.
    [159]陈海蛾,宫艳峰,李伟等.缸内直喷汽油机的喷雾模拟[A].CDAJ用户论文集[c],2009.
    [160]Ismailov M M, Obokata T, Kobayashi K, et al. LDA/PDA measurements of instantaneous characteristics in high pressure fuel injection and swirl spray[J]. Experiments in fluids,1999, 27(1):1-11.
    [161]王健,林荣文,刘德新,等.四气门汽油机缸内滚流运动的LDA实验研究[J].燃烧科学与技术,2004,10(4):350-353.
    [162]Chiu W S, Shahed S M, Lyn W T. A Transient Spray Mixing Model of Diesel Combustion. SAE Paper 760128,1976.
    [163]Hiroyasu H, Kadota T, Arai M. Development and use of a spray combustion modeling to predict diesel engine efficiency and pollutant emissions:Part 1 combustion modeling[J]. Bulletin of JSME,1983,26(214):569-575.
    [164]Dent J C, Mehta P S. Phenomenological Combustion Model for a Quiescent Chamber Diesel Engine. SAE Paper 811235,1981.
    [165]Abramovich G N. The Theory of Turbulent Jets[M]. Cambridge, Mass:MIT Press,1963.
    [166]Kuo K K. Principles of combustion[M]. New York:Wiley-Inter science publication,1986.
    [167]Faeth G M. Evaporation and combustion of sprays[J]. Progress in Energy and Combustion Science,1983,9(1):1-76.
    [168]Nurick W H. Orifice cavitation and its effect on spray mixing[J]. Journal of Fluids Engineering,1976,98:681-687.
    [169]何志霞,李德桃,胡林峰等.喷油嘴喷孔内部空穴两相流动数值模拟分析[J].内燃机学报,2004,22(5):433-438.
    [170]Tatschl R, C K Sarre and E Berg. IC-engine spray modeling-status and outlook. In: International Multidimensional Engine Modeling User's Group Meeting at the SAE Congress 2002[C].
    [171]王忠,许广举,毛功平等.生物柴油燃料特性参数对NOx排放影响的分析[J].内燃机工程,2010(002):68-71.
    [172]Kolokotronis D, Hardalupas Y, Tayler A M, et al. Experimental Investigation of Cavitation in Gasoline Injectors. SAE Paper:2010-01-1500,2010.
    [173]http://www.sandia.gov/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700