用户名: 密码: 验证码:
超声悬浮/气浮的混合悬浮及其行波驱动机理及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科技与产业的迅猛增长,新型的技术也不断完善,同时一些精密部件的运输也对现有运输平台提出了新的要求。由于传统的接触式传送平台必然要有因接触而产生摩擦生热等物理现象。同时接触式的传送平台还会伴随产生相应机械振动及散失能量的问题。本论文利用气浮可提供一定的支撑力和超声波可产生驱动行波提供驱动力的特性,提出了采用超声悬浮/气浮的混合悬浮的方式来完成对物体的运输。
     由于气动悬浮的支承结构和圆盘与空气介质有着很好的匹配阻抗特性,本文对圆盘夹心式压电换能器进行了分析,通过利用固体弹性振动理论以及圆盘纵-弯设计压电换能器的设计理论,计算出了圆盘压电换能器的各个部件和结构的尺寸。之后运用ANSYS和COMSOL这两个仿真软件对圆盘振子和圆盘压电换能器进行结构仿真分析,从而得出圆盘压电振子声压分布状况,确定圆盘尺寸数据。以上对圆盘夹心式压电换能器的解析为本文混合悬浮的悬浮特性研究打下了理论和实验基础。最后从超声悬浮与气浮悬浮相结合的混合悬浮的特性研究和实验中得出:在气动悬浮工作的同时,加入了超声悬浮系统,一是保证原有的气动悬浮支承的振动幅值,即维持气动悬浮系统中的被悬浮物件高度,二是提高了悬浮平台自身的承载力。而且这种混合式悬浮的承载力要大于超声悬浮和气动悬浮这两者单独工作时的承载力的和。
     本文应用了激振—吸振法能产生行波的原理,利用欧拉-伯努利梁理论和振动平板前后端的压电换能器谐振时的等效电路,确定了发射式压电换能器和接收式压电换能器二者之间距离与位置,对接收端的压电换能器的匹配阻抗进行了分析,最后利用ANSYS软件对振动平板两端的换能器上的支撑力和整个混合悬浮运输系统进行模态分析,通过改变其工作频率,从而使混合悬浮运输系统产生激励信号,激发出高效的振动行波来驱动被悬浮物体前进。最后本文构建了混合悬浮运输系统平台,并且做了相关的实验测试,得出了混合悬浮可以实现较大负载物体的非接触式运输。进而得出混合式悬浮运输的相关特性。
     通过对混合悬浮特性的研究,本文发现并首次提出在混合悬浮系统中,超声波悬浮可以改善气动悬浮单独工作时的气旋现象和气锤振动,较单一气浮装置单独工作时有着更高的悬浮刚度和能减小气浮装置自身存在的微小低频振动等特点。本文也对这一部分进行了讨论和分析。并以此申请国家发明专利(专利号:201110414297.2)。
With the rapid growth of technology and industry, some of the new technology is alsoconstantly being improved, but also on the existing precision delivery platform put forwardnew requirements. Because of traditional contact delivery platform is bound to causefriction, heat and other physical phenomena. Bring rigid structure will be accompanied bymechanical vibration, energy consumption and other issues. In this thesis, there is a strongcapacity pneumatic suspension and ultrasonic wave is capable of driving the twocharacteristics, the paper introduces ultrasonic suspension/flotation mixed suspension waysto accomplish the object of transport.
     From the air bearing structure and the disc and the air has a good performance ofthese two starting impedance matching, this paper uses a piezoelectric transducer is apiezoelectric transducer disc. By using a solid elastic vibration theory and thevertical-bending mode piezoelectric transducer disk curved design theory. Thepiezoelectric disc is given of the structure of the transducer size.
     Thereafter, the two ANSYS and COMSOL simulation software disc and disc vibratorpiezoelectric transducer for structural optimization design to arrive disc vibration modepiezoelectric vibrator and sandwich-type disc piezoelectric transducer distribution of soundpressure to finalize the disc itself, accurate data, and trial of the experimental prototype.More on disc sandwich piezoelectric transducer resolve this mixed suspension suspensioncharacteristics laid a theoretical and experimental basis. Finally suspended from theultrasonic flotation suspension combined with a hybrid suspension experiment: thepneumatic suspension work, joined the ultrasound suspension system, first ensure that theoriginal pneumatic suspension supporting the vibration amplitude of maintaining pneumaticsuspension system is suspended height of an object, the second is to improve the bearingcapacity of the suspended platform itself; Moreover, this hybrid is greater than the capacityof ultrasound suspended suspension and pneumatic suspension, both working alone andbearing capacity.
     The paper also uses a vibrating-vibration absorption method, as wave formationmethod. Eular-Bernouli using beam theory and the resonance of the transducer equivalent circuit, the piezoelectric transducer distance and position of the selection, and the receivetransducer impedance matching two problems are analyzed,
     ANSYS software using the transducer on a supporting force of the vibrating plate andthe whole mixed suspension transportation system modal analysis, by adjusting thefrequency so that the mixed suspension transport system can inspire a highly efficientvibration wave. The article also constructed mixed suspension transportation system, andmade relevant experimental tests. The conclusion that the hybrid can achieve greater weightof objects suspended non-contact transport. And then come to a hybrid suspension transportrelated characteristics.
     Through the mixed suspension characteristics, this paper also found in the mixedsuspension systems, pneumatic suspension ultrasonic levitation can improve working alonecyclonic phenomena and hammer vibration than a single flotation device when workingalone has a higher suspension stiffness and can be cut little tiny flotation device itself hasthe characteristics of low-frequency vibration, so this part of the paper also discussed andanalyzed. And thus declared a national invention patent (patent number:201110414297.2)
引文
[1]杨叔子,吴波.先进制造技术及其发展趋势[J].机械工程学报,2003,36(10):73-78.
    [2]杨叔子,吴波,李斌.再论先进制造技术及其发展趋势[J].机械工程学报,2006,42(l):1-5.
    [3]赵淳生.超声电机技术与应用[M].北京:科学出版社,2007.
    [4]赵淳生.超声马达的发展、应用与未来[J].电气时代,2001,3:8-10.
    [5]赵淳生.21世纪超声电机技术展望[J].振动测试与诊断,2000,20(1):7-12.
    [6] Y.Hashimoto,Y.Koike,and S.Ueha. Transporting objects without contact usingflexural traveling waves [J]. Journal of the Acoustical Society of America,1998,103(6):3230-3233.
    [7] Ueha S, Tomikawa Y. Ultrasonic motors theory and applications[J]. Oxford SciencePublication,1993.
    [8] L. Hennet, V. Cristiglio, J. Kozaily, et al. Aerodynamic levitation and laser heating:Application at synchrotron and neutron sources [J]. The European Physical Journal,2011,196(1):151-165.
    [9]胡俊輝.非接触驅動高速超音波モ-タに関する研究[D].東京:東京工業大學博士論文,1997.
    [10] Xin Li, Kenji Kawashima, Toshiharu Kagawa. Analysis of vortex levitation[J].Experimental Thermal and Fluid Science,2008,32(8):1448-1454.
    [11] J.P.Khatait,W.Lin, W.J.Lin. Design and development of orifice-type aerostatic thrustbearing [J]. SIMTech technical reports,2005,6(1):7-12.
    [12] W. J. Xie, C. D. Cao, Y. J. lu, et al. Levitation of Iridium and Liquid Mercury byUltrasound[J]. Physical Review Letters,2002,89(10):1-4.
    [13] Vincent V, Pierre L, Alain D. Non-contact Handling in microassembly: AcousticalLevitation [J]. Precision Engineering,2005,29(4):491-505.
    [14] Chang le Shen, Wen jun Xie, Zhen yu Hong, Bing bo Wei. The development andapplication of acoustic suspension technology[J]. Modern physics,2010,22(3):10-13.
    [15] Su Zhao, J rg Wallaschek. A standing wave acoustic levitation system for largeplanar objects[J]. Archive of Applied Mechanics,2011,81(2):123-139.
    [16] Z.Y.Hong,W.J.Xie, B.Wei. Acoustic levitation with self-adaptive flexiblereflectors[C]. Review of Scientific Instruments,2011,82(7):074904-074904-5.
    [17] Ryuto Yano, Manabu Aoyagi, Hideki Tamura. Positioning of an object in near-fieldacoustic levitation and its application[R]. Proceedings of Symposium on UltrasonicElectronics.2010,31:531-532.
    [18] T.A.Stolarski, C.I.Woolliscroft. Use of near-field acoustic levitation in experimentalsliding contact [J]. Journal of Applied Mechanics,2007,74(4):816-820.
    [19] Cheol-Ho Kim, Jeong-Guon Ih. On the horizontal wobbling of an object levitated bynear-field acoustic levitation [J]. Ultrasonics,2007,46(4):331-335.
    [20] S. Ueha, Y. Hashimoto, Y. Koike. Ultrasonic Actuators Using Near Field AcousticLevitation[R]. IEEE Ultrasonics Symposium,1998,1:661-666.
    [21]杜金名,卢泽生,孙雅洲.空气静压轴承各种节流形式的比较[J].航空精密制造技术,2003,39(6):4-8.
    [22] Mekid Samir. High Preeision linear slide Part I: design and construction[J].International Journal of Machine Tools&Manufacture,2000,40(3):1039-1050.
    [23]朱煜,尹文生,段广洪.光刻机超精密工件台研究[J].电子工业专用设备,2004,109(2):25-27.
    [24]杨一博,尹文生,朱煜等.粗精动超精密运动平台系统建模与分析研究[J].中国机械工程,2008,19(23):2773-2776.
    [25]季叶,赵淳生.非接触超声电机的发展[C].青岛:微电机技术创新与成果应用技术交流会论文集.2004.09:131-135.
    [26] Jun hui Hu, Kentaro Nakamura, Sadauki Ueha. Characteristics of a noncontactultrasonic motor using acoustic levitation[R]. IEEE Ultrasonics symposium,1996,1:373-376.
    [27]刘景全,吴博达,杨志刚,程光明,鲁勇.一种新型的圆筒非接触超声马达[J].声学学报,2001,26(2):113-116.
    [28]张福学主编.现代压电学(上、中、下)[M].科学出版社,2001年.
    [29]杨斌,刘景全,周广华,陈迪,方华斌,蔡炳初.圆盘型非接触超声马达定子的振动模拟与测试[J].功能材料与器件学报,2005,11(3):352-356.
    [30]解文军,曹崇德,魏炳波.声悬浮的实验研究和数值模拟分析[J].物理学报,1999年,V48N2:250~256.
    [31] U.Varanasi,et al.Chemistry and Physics of Liquids[J].1977年,19(1977):179.
    [32]朱哲民.声学悬浮技术及应用[J].应用声学.1986年,5(2):1~6.
    [33]应崇福主编.《超声学》[M].科学出版社,1990年.
    [34] Takeshi Ide, James Friend, Kentaro Nakamura, Sadayuki Ueha. A non-contact linearbearing and actuator via ultrasonic levitation[J]. Sensors and Actuators A: Physical,2007,135(2):740-747.
    [35] Shuyu LIN. Study on natural vibration and resonance frequency of rectangularradiators in flexural vibration[J]. Journal of shan xi normal university (NaturalScience Edition),2000,28(3):40-46.
    [36]孙运涛,陈超.基于近声场的超声悬浮试验[J].振动、测试与诊断,2011,31(5):578-581.
    [37] Daisuke Koyama, Kentaro Nakamura. Noncontact Ultrasonic Transportation ofSmall Objects over Long Distances in Air Using a bending Vibrator and aReflector[J]. IEEE Ultrasonics,Ferroelectrics and Frequency Control,2010,57(5):1152-1159.
    [38] Yu Ito, Daisuke Koyama, Kentaro Nakamura. High-speed noncontact ultrasonictransport of small objects using acoustic traveling wave field[J]. Acoustical Scienceand Technology,2010,31(6):420-422.
    [39] J. W. POWELL.空气静压轴承设计[M].北京:国防工业大学,1978.
    [40] Yu Ito, Daisuke Koyama, Kentaro Nakamura. High-speed noncontact ultrasonictransport of small objects using acoustic traveling wave field[J]. Acoustical Scienceand Technology,2010,31(6):420-422
    [41]陈桂生.超声换能器设计[M].北京:海洋出版社,1984.
    [42]林书玉,张光斌.气介式功率超声复合换能器的声辐射特性研究[J].声学技术,2001,20(1):13-17.
    [43] Jin LI, Yushu LIN. Radiated sound field of rectangle plunger[J]. Journal of shan xinormal university (Natural Science Edition),2003,31(1):39-42.
    [44] Mohamed E.Eleshaky. CFD investigation of pressure depressions in aerostaticcircular thrust bearings[J]. Tribology International,2009,42(7):1108-1117
    [45] Shuyu LIN. Study on natural vibration and resonance frequency of rectangularradiators in flexural vibration[J]. Journal of shan xi normal university (NaturalScience Edition),2000,28(3):40-46.
    [46]赵四海,朱红秀,王正良,周公韬.压电晶体型电液开关阀[J].中国矿业大学学报,1997年,V26N4:99~101.
    [47]廖振鹏.工程波动理论导论(第二版).科学出版社,2006.
    [48] W. E. Langlois. Isothermal squeeze films[J]. Q. Appl. Math,1962, XX (2):131–150.
    [49]朱煜,尹文生,段广洪.光刻机超精密工件台研究[J].电子工业专用设备,2004,109(2):25-27.
    [50] E. O. J. Salbu. Compressible squeeze films and squeeze bearings[J]. J. Basic Eng,1964,86:355–366.
    [51] T.G.Wang.IEEE Ultrasonic Symposium[C].1983,1124.
    [52] Adi. Minikes, Izhak. Bucher. Levitation force induced by pressure radiation in gassqueeze films[J]. Acoustical Society of America,2004,116(1):217-226.
    [53]杨志刚,程光明,吴博达.压电超声行波马达的运动形成理论研究[J],压电与声光,1996,18(1):32-35.
    [54] Takeshi Ide, James Friend, Kentaro Nakamura, Sadayuki Ueha. A non-contact linearbearing and actuator via ultrasonic levitation[J]. Sensors and Actuators A: Physical,2007,135(2):740-747.
    [55] Thomas Skare and Jan-Eeic stahl.wear.154(1992):177~193.
    [56] E.G.Lierke,J.Acoust.Soc. Am,60(1976),s21.
    [57]陈宇东.结构振动分析[M].长春:吉林大学出版社,2007.
    [58] E.Matsuo,Y.Koike,K.Nakamura,S.Ueha and Y.Hashimoto.Holding characteristics ofplanar objects suspended by near-field acoustic levitation[J].Ultrasonics,2000,38:60~63.
    [59] Ueha Sadayuki. Phenomena, theory and applications of near-field acoustic levitation[J]. Revista de Acústica,2002,33, N3-y4:21-25.
    [60] Jun hui Hu, Kentaro Nakamura, Sadauki Ueha. Characteristics of a noncontactultrasonic motor using acoustic levitation[R]. IEEE Ultrasonics symposium,1996,1:373-376.
    [61] Boa-Teh Chu, Robert E.Apfel. Acoustic radiation pressure produced by a beam ofsound[J]. Journal of the Acoustical Society of America,1982,72(6):673-1687.
    [62]黄明军,周铁英,巫庆华.超声振动对摩擦力的影响[J].声学学报.2000年,v25.n2:115~119.
    [63]李尚平,徐永利,苏建华.驱动用压电陶瓷材料的发展与展望[J].压电与声光,1999,21(6):483-487.
    [64]王琪山.螺栓紧固型纵振换能器设计考虑[J].应用声学.1998年,V17N4:27~32.
    [65]冯诺.超声手册[M].南京:南京大学出版社,1999.
    [66] Kuo T. C, Minsun O. Y. Open-circuit test of a PZT vibrator and its applications[J].Ultrasonics,2003,41(1):15–23.
    [67]林书玉.超声换能器的原理与设计[M].北京:科学出版社,2004.
    [68] Z.Y.Hong,W.J.Xie, B.Wei. Acoustic levitation with self-adaptive flexiblereflectors[C]. Review of Scientific Instruments,2011,82(7):074904-074904-5.
    [69]张云电.夹心式压电换能器及其应用[M].北京:科学出版社,2006.
    [70] T.A.Stolarski, C.I.Woolliscroft. Use of near-field acoustic levitation in experimentalsliding contact [J]. Journal of Applied Mechanics,2007,74(4):816-820.
    [71]季叶,赵淳生.非接触超声电机的发展[C].青岛:微电机技术创新与成果.应用技术交流会论文集.2004.09:131-135.
    [72] Robert, C. McMaster. Ultrasonic Transducer: U.S,3,368,085[P].1968.
    [73]林修正.蓝杰文振动子结合共振腔之动态行为探讨[D].台湾:国立清华大学硕士论文,2004.
    [74]周铁英,董蜀湘,刘小萍.超声振子箝位压电直线微动马达研究.声学学报,1993:18(1);29~33.
    [75]张光斌,林书玉.气介式弯曲振动换能器的辐射声压及其指向特性.陕西师范大学学报(自然科学版),1999,27(3):45-49.
    [76] Kuo T. C, Minsun O. Y. Open-circuit test of a PZT vibrator and its applications[J].Ultrasonics,2003,41(1):15–23.
    [77] J. W. POWELL.空气静压轴承设计[M].北京:国防工业大学,1978.
    [78] Vincent V, Pierre L, Alain D. Non-contact Handling in microassembly: AcousticalLevitation [J]. Precision Engineering,2005,29(4):491-505.
    [79]孙旭光.基于超声波近场声悬浮的靶丸类微球驱动研究[D].长春:吉林大学硕士论文,2012.
    [80] Xin Li, Kenji Kawashima, Toshiharu Kagawa. Analysis of vortex levitation[J].Experimental Thermal and Fluid Science,2008,32(8):1448-1454.
    [81] Adi Minikes, Izhak Bucher. Non-contacting lateral transportation using gas squeezefilm generated by flexural traveling waves—Numerical analysis[J]. AcousticalSociety of America,2003,113(5):2464-247.
    [82] W. J. Xie, C. D. Cao, Y. J. lu, et al. Levitation of Iridium and Liquid Mercury byUltrasound[J]. Physical Review Letters,2002,89(10):1-4.
    [83]孙运涛,陈超.基于近声场的超声悬浮试验[J].振动、测试与诊断,2011,31(5):578-581.
    [84] Cheol-Ho Kim, Jeong-Guon Ih. On the horizontal wobbling of an object levitated bynear-field acoustic levitation [J]. Ultrasonics,2007,46(4):331-335
    [85] J.P.Khatait,W.Lin, W.J.Lin. Design and development of orifice-type aerostatic thrustbearing [J]. SIMTech technical reports,2005,6(1):7-12.
    [86]叶燚玺.超精密运动平台中气浮支承振动特性的研究[D].武汉:华中科技大学博士论文,2010.
    [87] L. Hennet, V. Cristiglio, J. Kozaily, et al. Aerodynamic levitation and laser heating:Application at synchrotron and neutron sources [J]. The European Physical Journal,2011,196(1):151-165.
    [88] Na Kong, Dong S. H, Alper Erturk. Resistive impedance matching circuit forpiezoelectric Energy harvesting[J]. Journal of intelligent material systems andstructures,2010,21(13):1293-1302.
    [89] Mohamed E.Eleshaky. CFD investigation of pressure depressions in aerostaticcircular thrust bearings[J]. Tribology International,2009,42(7):1108-1117.
    [90]林修正.蓝杰文振动子结合共振腔之动态行为探讨[D].台湾:国立清华大学硕士论文,2004.
    [91] Paul Muralt.Ultrasonic Micromotors Based on PZT Thin Films.Journal ofElectroceramics,1999;3(2):143~150.
    [92] Su Zhao, J rg Wallaschek. A standing wave acoustic levitation system for largeplanar objects[J]. Archive of Applied Mechanics,2011,81(2):123-139
    [93] Kuo T. C, Minsun O. Y. Open-circuit test of a PZT vibrator and its applications[J].Ultrasonics,2003,41(1):15–23.
    [94] V.P.Jaecklin. Optical Microshutters and Torsional Micromirrors for Light ModulatorArrays. IEEE, MEMS,1993:124~127.
    [95] Chang le Shen, Wen jun Xie, Zhen yu Hong, Bing bo Wei. The development andapplication of acoustic suspension technology[J]. Modern physics,2010,22(3):10-13.
    [96] A.Cox,E.Garcia,M.Goldfarb.Actuator Development for a Flapping MicroroboticMicroaerial Vehicle.Microrobotics and Micromanipulation.Proceedings of SPIE,1998;Vol.3519:102~108.
    [97] Na Kong, Dong S. H, Alper Erturk. Resistive impedance matching circuit forpiezoelectric Energy harvesting[J]. Journal of intelligent material systems andstructures,2010,21(13):1293-1302.
    [98]史仪凯.超声电动机的发展现状及应用前景.机械科学与技术,1998;17(4):626~629.
    [99]曲建俊,姜开利,张凯,周铁英.超声驱动的超声波振动减摩作用研究[J].声学学报,2001年,V26N6:497~502.
    [100]夏长亮,史婷娜,陈永校.环型超声波电动机定子振动的固有频率.微特电机,1995:4;6~9.
    [101] akehiro Takano,Yoshiro Tomikawa,and Chiharu Kusakabe.Same Phase Drive-TypeUltrasonic Motors Using Two Degenerate Bending Vibration Modes of a Disk.IEEETransactions on UFFC,1992;39(2):180~186.
    [102] Adi Minikes, Izhak Bucher. Non-contacting lateral transportation using gas squeezefilm generated by flexural traveling waves—Numerical analysis[J]. AcousticalSociety of America,2003,113(5):2464-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700