用户名: 密码: 验证码:
融雪化冰水泥混凝土路面研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冬天或者冰寒地区的道路结冰、积雪严重影响国家的交通、经济、以及正常的户外活动和工作,同时成为交通事故率增长的主要因素之一。世界各国为解决冬天道路结冰、积雪这一难题,作了大量研究,探索出许多抑制、控制和消除冰雪的技术和方法,但这些方法大多存在效率低、费用高、易腐蚀环境和破坏道路设施、适用范围小、能量消耗大、循环可持续性较差等缺点,近年来人们越来越关注和追捧更有发展前途、环保节能、可持续性利用的太阳能融冰雪技术。在该领域,太阳能系统技术、道路融雪传热模型和计算、试验示范工程都被各国学者进行了一定程度的研究,但对融雪(冰)特殊路面结构和材料方面的研究几乎没有,针对不同方案的融雪路面力学性能研究(试验和数值模拟计算)更是知之甚少,故进行上述研究是推广太阳能技术(储存、转换、控制)应用到道路融雪领域的坚实基础和充分条件。
     本文针对上述问题,主要开展以下几个方面的研究:(1)融雪路面组成材料性能研究。对三种面层材料的导热性能及力学性能进行系统试验和优化研究,根据力学强度、导热性能推荐融雪化冰路面最佳材料类型和组成;(2)融雪路面结构模拟试验。建立多种路面结构方案,完成单管小梁、隔热层层间力学性能试验,提出并完成小足尺路面结构板的模拟试验,为优选融雪化冰路面结构方案提供依据;(3)融雪路面升温模拟和融冰效果试验。进行小足尺板在不融冰和融冰条件下的升温模拟试验,并根据不同方案的融冰水效果推荐不同环境温度下的最佳(小)管网总功率,为工程应用提供判断标准;(4)融雪路面层间力学分析。推导了符合融雪化冰特殊路面结构的力学理论,完善了四层弹性地基上薄板的理论解,计算并得出了多影响因素与层间应力的关系及应力变化规律;(5)对融雪特殊路面的力学响应进行数值计算和仿真分析。建立融雪化冰特殊路面结构有限元模型,结合现行规范,从温度、荷载、耦合三个方面完成计算和分析,以室内结构试验作为衡量依据,得出路面能承受的极限管网加热温度、极限荷载、极限管网方案;(6)融雪特殊路面结构方案比选和优化。运用灰色理论和数据包络分析法,对不同方案的路面结构进行决策分析和有效性评价,从而掌握方案的优劣程度和可行性。
     本文全面系统对融雪化冰特殊路面结构与材料进行试验(材料、结构、升温与融冰)、模拟计算(温度、荷载、耦合对路面结构的影响规律)研究,得出极限状态下的管网加热温度、荷载和管网方案,研究成果为融雪化冰路面方案的选取提供科学依据,为太阳能技术的应用和推广打下坚实基础。
Icy roads and accumulated snow in the winter or freezing areas seriously affected the country's transport, economic, and normal outdoor activities and work, at the same time they became the main factors of growth of the traffic accidents rate.In order to resolve the icy roads and accumulated snow, countries around the world made a lot of research to find out a number techniques and methods for suppression, control and elimination of snow and ice, but most of these methods have shortcomings, like low efficiency, high cost, corrosive environment and the destruction of road infrastructure, the small scope of application, a lot of energy consumption, recycling sustainability is very poor. In recent years, there is growing interest and pursuit for solar energy technology on melting snow and ice, which is more promising, environmental protection and energy conservation, sustainable use. In this area, solar energy systems technology, snow melt heat transfer model and calculation of road, experiment and demonstration projects are carried out by national scholars, but there are hardly any research on the snow melt (ice) special pavement structure and material, and mechanical property of the snow melt for different pavement (test and numerical simulation). So to carry out such research is a solid foundation and sufficient condition that is to promote solar energy technology (storage, conversion, control) applied to the field of road snow melting.
     For the above problems, this paper mainly to carry out the following studies:(1) Study on material properties of snow melt pavement. System testing and optimization study on thermal conductivity and mechanical properties of three kinds of pavement materials are carried out, the optimum material type and composition of the snow melt pavement is recommended based on mechanical strength and thermal conductivity; (2) Simulation tests on snow melt pavement structure. A variety of pavement structure are established, single-tube trabeculae test and interlayer mechanical property test of thermal insulation layer are completed, a small full-scale simulation test of pavement slab is proposed and completed, these tests provide the basis for the optimal structure of snow melt pavement; (3) Snowmelt pavement temperature rise simulation and ice-melting effect tests. Snowmelt pavement temperature rise simulation test on small full-scale slab is carried out under ice-melting conditions and not ice-melting conditions, (minimum) optimum total power of pipe network under different environmental temperatures are recommended according to different ice-melting effect of different programs, judging criteria is provided for engineering applications; (4) Snow melt pavement interlayer stress analysis. The mechanical theory of snow melting and deicing special pavement structure is derived, the theory solution of thin slab on four-layer elastic foundation is improved, relationship between a number of influencing factors and the interlaminar stress, and regularity for variation of stresses are calculated and obtained; (5) Numerical calculation and simulation analysis on snow melting and deicing special pavement. Finite element model of snow melting and deicing special pavement structure is established, combined with the existing specifications, calculation and analysis are completed from the temperature, load, coupling three aspects, according to indoor structural tests, ultimate pipe network heating temperature, ultimate load, and ultimate program of pipe network which pavement can withstand are obtained; (6) Comparison and optimization on program for snow melting and deicing special pavement structure. Using gray theory and data envelopment analysis, decision-making analysis and effectiveness evaluation for diferent pavement structures are completed, so as to master the degree of merits and feasibility of the program.
     Snow melting and deicing special pavement structures and materials were studied through tests (materials, structures, warming and melting ice) and simulation computation (the influence law on pavement structures of temperature, load, and coupled stress) in the thesis. The pipe network heating temperature, load and pipe network programs were found at limit state. Research results provide the scientific basis for the selection of snow melting and deicing pavement programs, and lay a solid foundation for the application and promotion of solar energy technology.
引文
[1]张启君.国外除雪设备发展情况概述[J].建设机械技术与管理,2008,(3):63-66.
    [2]傅沛兴.北京道路冬季融雪问题研究[J]市政技术,2001,29(4),54-59.
    [3]齐晓杰.道路与公路冰雪清除技术发展现状与探讨[J].林业机械与木工设备,2004,32(6):7-10.
    [4]刘凯,王选仓,王芳.中外高速公路融雪化冰技术和方法.交通企业管理,2009,8:72-73.
    [5]John H. Rosenfeld, Donald M. Ernst, James E. Lindemuth, and James L. Sanzi. An Overview of Long Duration Sodium Heat Pipe Tests[C]. The Space Technology and Applications International Forum (STAIF-2004) sponsored by the American Institute of Physics Albuquerque, New Mexico, February 8-12,2004,1-14.
    [6]Snow and Ice Control Operations Manual [Z]. Texas Department of Transportation, September 2005:1-102.
    [7]高一平.利用太阳能的路面融雪系统[J].国外公路,1997,17(4):53-55.
    [8]Bromley, E D. Solar Heating System for Airport Pavement Snow, Slush, and Ice Control [C]. Proceedings of the Symposium on Alternate Fuel Resources, Santa Maria, California,25-27 March 1976.
    [9]Rajib B. Mallick, Bao-Liang Chen, Sankha Bhowmick, Michael S. Hulen. Capturing Solar Energy form Asphalt Pavements [C]. Draft Paper Submitted to the International Society of ASPHALT Pavements, August 2008:1-12.
    [10]朱强,宋著坤,赵军.太阳能和地热能道路融雪化冰系统[J].太阳能,2004,(6):52-53.
    [11]王庆艳.太阳能-土壤蓄热融雪系统路基得热和融雪机理研究[D].大连理工硕士论文,2007.
    [12]杨卫波,施明恒.混合地源热泵系统(HGSHPS)的研究[J].建筑热能通风空调,2006,25(3):20-26.
    [13]Cenk Yavuzturk. Modeling of Vertical Ground Loop Heat Exchanges for Ground Source Heat Pump Systems [D]. Thesis Requirement for the Degree of Doctor, Oklahoma State University,1999.
    [14]Andrew D. Chiasson. Advances in Modeling of Ground-Source Heat Pump Systems [D]. Thesis Requirement for the Degree of Master, Science University of Windsor, Windsor, Ontario, Canada, 1999.
    [15]王勇,刘宪英,付祥钊.地源热泵及地下蓄能系统的实验研究[J].暖通空调,2003,33(5):21-23.
    [16]高青,于鸣,刘小兵.基于蓄能的道路热融雪化冰技术及其分析[J].公路,2007,(5):170-175.
    [17]高青,李明,于鸣,玄哲浩,马纯强,乔广.地下蓄能过程温度控制及其特性研究[J].长春工业大学学报(自然科学版),2007,28(增):172-176.
    [18]Yasuhiro Hamada, Makoto Nakamura, Hideki Kubota. Field Measurements and analyses for a hybrid system for snow storage/melting and air conditioning by using renerable energy [J].Applied Energy, 2007,84(2).
    [19]Gao Qing, Li Ming, Xuan Zhehao, Jeffrey D. Spitler. Practice and Task Developing Underground Thermal Energy Storage in China[C]. Proeeedings of the 10th International Conference on Thermal Energy Storage-Ecostock 2006, Pemona, New Jersey, USA, June 2006.
    [20]Koji Morita, Makoto Tago. Snow-Melting on Sidewalks with Ground-Coupled Heat Pumps in a Heavy Snowfall City [C]. Proceedings World Geothermal Congress 2005, Antalya, Turkey,24-29 April 2005:1-8.
    [21]Tonya L.Boyd, Geo-Heat Center. The Oregon Institute of Technology Geothermal Heatng System-Then and Now[R]. Geo-Heat Center (GHC) Bulletin, March 1999:10-14.
    [22]Onder Ozgener, Arif Hepbasli, Ibrahim Dincer, Marc A. Rosen. Modeling and Assessment of Ground-Source Heat Pump Systems Using Exergoeconomic Analysis for Building Applications [C]. Ninth International IBPSA Conference, Montreal Canada, August 15-18,2005:915-920.
    [23]John W. Lund. Reconstruction of a Pavement Geothermal Deicing System [R].Geo-Heat Center (GHC) Bulletin, March 1999:14-17.
    [24]Uchino, A.; Ohtake, H.; Kawai, H. Performance Evaluation of Heat Storage in Summer Season and Snow Melting in Winter Season by Snow Melting System Using a Ground Source Heat Pump[J]. Memoirs of the Hokkaido Institute of Technology no.34:149-154,2006.
    [25]刘益青,朱强.太阳能-土壤蓄热技术用于公路融冰的经济及环境效益分析[J]:建设科技,2005,(17):98-99.
    [26]朱强,赵军,刘益青.太阳能-土壤蓄热技术在公路融雪中的应用[J].建设科技,2005,(14):70-71.
    [27]王华军,赵军,陈志豪,曲航.太阳能—地热道路融雪系统路面传热特性的数值研究[J].太阳能学 报,2007,28(6):608-611.
    [28]Isobe, E Minada, J. Development of Long-term Under ground Thermal Energy Storage Road Way Snow-melting System [C]. New Challenges for Winter Road Service. Ⅺth International Winter Road Congress,2002
    [29]Zhao, Jun; Wang, Huajun; Chen, Zhihao; Qu, Hang. Seasonal Behavior of Pavement in Geothermal Snow-melting System with Solar Energy Storage [J]. Transactions of Tianjin University,12(5), October,2006,319-324.
    [30]Xiaobing LIU. Development and Experimental Validation of Simulation of Hydronic Snow Melting Systems for Bridges [D]. Thesis Requirement for the Degree of Doctor, Oklahoma State University, 2005.
    [31]Xiaobing Liu, Jeffrey D. Spitler. Simulation Based Investigation on the Design of Hydronic Snow Melting System. Proceedings of the Transportation Research Board 83rd Annual Meeting. Washington, D.C. January 11-15,2004:1-8.
    [32]Xiaobing Liu, Simon J. Rees, Jeffrey D. Spitler. Modeling snow melting on heated pavement surfaces[J]. Applied Thermal Engineering,2007, (27):1115-1124.
    [33]Xiaobing Liu, Simon J. Rees, Jeffrey D. Spitler. Simulation of a Geothermal Bridge Deck Anti-icing System and Experimental Validation[C]. The TRB 82nd Annual Meeting,2003:1-22.
    [34]Boutonnet M, Savard Y, Lerat P, et al. Thermal Aspect of Frost-Thaw Pavement Dimensioning-In Situ Measurement and Numerical Modeling[C].82nd Annual Meeting of the Transportation-Research-Board, January 12-16,2003, Washington, D.C. Geology and Properties of Earth Materials 2003-Soils, Geology, and Foundations,2003,(1821):3-12.
    [35]Sherif Yehia, Christopher Y. Tuan. Bridge Deck Deicing [C]. Transportation Conference Proceedings, 1998:51-57.
    [36]L. David Minsk. Heated Bridge Technology[R]. Office of Bridge Technology, Federal Highway Administration, U.S. Department of Transportation, July 1999:1-35.
    [37]HYOMIN LEE, ROBERT D. CODY, ANITA M. CODY, AND PAUL G. SPRY. Effects of Various Deicing Chemicals on Pavement Concrete Deterioration [J]. MID-CONTINENT TRANSPORTATION SYMPOSIUM PROCEEDINGS,151-155.
    [38]Prasada Rao Rangaraju. Mitigation of ASR in the Presence of Pavement Deicing Chemicals[C]. IN IPRF Project 01-G-002-04-8,60% On-Board Review Meeting (Interim Report), Room G212, Civil Engineering Building Purdue University West Lafayette, September 8,2005:1-21.
    [39]Novotny EV, Murphy D, Stefan HG. Increase of Urban Lake Salinity by Road Deicing Salt [J]. Science of the Total Environment,2008,406(1-2):131-144.
    [40]Cernohlavkova J, Hofman J, Bartos T, et al. Effects of Road Deicing Salts on Soil Microorganisms [J]. Plant Soil and Environment,2008,54 (11):479-485.
    [41]Karraker NE, Gibbs JP, Vonesh JR. Impacts of Road Deicing Salt on the Demography of Vernal Pool-Breeding Amphibians [J]. Ecological Applications,2008,18(3):724-734.
    [42]Hellsten PP, Salminen JM, Jorgensen KS, et al. Use of Potassium Formate in Road Winter Deicing can Reduce Groundwater Deterioration [J]. Environmental Science & Technology,2005,39(13): 5095-5100.
    [43]Rudolph Sooklall, Liping Fu, Max S. Perchanok. Effectiveness of Pre-wetting Strategy for Snow and Ice Control on Highways [C]. The Success in Road Salt Management,Session of the 2006 Annual Conference of the Transportation Association of Canada Charlottetown, Prince Edward Island,2006: 1-16.
    [44]Rozycka D, Myczka S, Kustra I. Synthesis of Magnesium and Calcium Acetates as Environmentally Friendly Substitute of Road Salt (NACL) Used for Deicing [J]. PRZEMYSL CHEMICZNY,1995, 74(9):337-340.
    [45]Foster. HD. Road-Deicing Salt and Cancer-the Need for Further Study [J]. Journal of the National Cancer Institute,1993,85(19):1603-1605.
    [46]骆虹,罗立斌,张晶.融雪剂对环境的影响及对策[J].中国环境监测,2004,20(1):55-57.
    [47]李连志.除冰盐对混凝土路面破坏机理及预防措施的研究[D].东北林业大学硕士论文,2007.
    [48]攀海滨.国外融雪材料在冬季除雪中的使用[J].筑路机械与施工机械化,2006,(11):5-7.
    [49]Karraker NE, Ruthig GR. Effect of Road Deicing Salt on the Susceptibility of Amphibian Embryos to Infection by Water Molds[J]. Environmental Research,2009,109(l):40-45.
    [50]Foster HD. Road-Deicing Salt and Cancer-the Need for Further Study [J]. Journal of the National Cancer Institute,1993,85(19):1603-1605.
    [51]Ostendorf DW, Hinlein ES, Ahlfeld DP, et al. Calibrated Models of Deicing Agent Solids, Pavement Texture, and Specific Conductivity of Highway Runoff [J]. Journal of Environmental Engineering-ASCE,2006,132(12):1562-1571.
    [52]Ostendorf DW, Rotaru C, Hinlein ES. Steady Groundwater Transport of Highway Deicing Agent Constituents from an Infiltration Basin [J]. Journal of Irrigation and Drainage Engineering-ASCE, 2008,134(5):630-637.
    [53]陈建滨,董红星.环保型道路融雪剂的研制[J].化学工程师,2004,(10):65-66.
    [54]刘丽平.化学融雪与大桥结构耐久性[J].中国市政工程,2008,(2):22-25.
    [55]Ostendorf DW, Hinlein ES, Rotaru C, et al. Contamination of Groundwater by Outdoor Highway
    Deicing Agent Storage [J]. Journal of Hydrlogy,2006,326(1-4):109-121.
    [56]Berube MA, Chouinard D, Pigeon M, et al. Effectiveness of Sealers in Counteracting Alkali-Silica Reaction in Highway Median Barriers Exposed to Wetting and Drying, Freezing and Thawing, and Deicing Salt [J]. Canadian Journal of Civil Engineering,2002,29(2):329-337.
    [57]Koryak M, Stafford LJ, Reilly RJ, et al. Highway Deicing Salt Runoff Events and Major Ion Concentrations along a Small Urban Stream [J]. Journal of Freshwater Ecology,2001,16(1): 125-134.
    [58]Shanley JB. Effects of Ion-Exchange on Stream Solute Fluxes in a Basin Receiving Highway Deicing Salts [J]. Journal of Environmental Quality,1994,23(5):977-986.
    [59]Y. Hassan; A. O. Abd El Halim; A. G. Razaqpur; W. Bekheet; and M. H. Farha. Effects of Runway Deicers on Pavement Materials and Mixes:Comparison with Road Salt [J]. JOURNAL OF TRANSPORTATION ENGINEERING/JULY/AUGUST 2002:385-391.
    [60]张炳臣,刘淑敏,贾庆怀,闫成春.道路冰雪融化多用车研制[J].山东交通科技,2004,(4):72-76.
    [61]邓洪超,马文星,荆宝德.道路冰雪清除技术及发展趋势[J].工程机械,2005,(12):4145.
    [62]冯雨芹,于继承,齐晓杰.高速公路清冰雪技术研究[J].筑路机械,2006,(7):71-73.
    [63]齐晓杰,郝晨声,毕凤阳,王革新.城市道路机械式清除冰雪机械研究与探讨[J].黑龙江工程学院学报,2002,16(2):23-26.
    [64]Taggart DG, Ibrahim O, Huston M. Application of Jetting Technology to Pavement Deicing [C].81st Annual Meeting of the Transportation-Research-Board, January,2002 Washington, D.C. Safety and Maintenance Service,2002, (1794):77-83.
    [65]谭忆秋.雪灾中的路面除冰技术[J].交通建设与管理,2008,(2):86-87.
    [66]周纯秀.冰雪地区橡胶颗粒沥青混合料应用技术的研究[D].哈尔滨工业大学博士论文,2006.
    [67]周纯秀,谭忆秋,辛星.废橡胶颗粒沥青混合料级配组成的优化[J].合成橡胶工业,2006,29(5):368-370.
    [68]辛星,谭忆秋,徐立廷,周纯秀.橡胶颗粒沥青混合料设计的影响因素分析[J].公路,2006,(11):161-164.
    [69]张洪伟.橡胶颗粒除冰雪沥青路面的研究[D].硕士学位论文.长安大学.2009.
    [70]周纯秀.冰雪地区橡胶颗粒沥青混合料应用技术的研究[D].博士学位论文.哈尔滨工业大学,2006.
    [71]曹卫东,周海生,伟.废橡胶颗粒改性沥青混合料的设计与性能[J].建筑材料学报,2005,8(5):562-566.
    [72]曹卫东,李茂政,薛立疆,吕伟民.废旧橡胶颗粒改性沥青混合料的试验研究与应用[J].筑路机械与施工机械化,2006,(9):15-17.
    [73]Tang ZQ, Qian JS, Li ZQ, et al. Influential Factors on Deicing Performance of Electrically Conductive Concrete Pavement [J]. Journal of WUHAN University of Technology-Materials Science Edition, 2006,21(2):123-127.
    [74]侯作富,李卓球,唐祖全.导电混凝土除冰化雪系统输入功率的有限元计算[J].华中科技大学学报(城市科学版),2002,19(1):82-85.
    [75]侯作富,李卓球,杨唐胜.碳纤维导电混凝土融雪化冰的智能控制研究[J].武汉理工大学学报(交通科学与工程版),2005,29(1):64-67.
    [76]侯作富,李卓球,胡胜良.外部环境对导电混凝土融雪化冰效果的影响[J].武汉理工大学学报(交通科学与工程版),2002,26(5):581-584.
    [77]侯作富,李卓球,胡胜良.融雪化冰用碳纤维导电混凝土的电阻率研究[J].长江大学学报(自科版),2005,2(3):264-267.
    [78]唐祖全,李卓球,钱觉时.碳纤维导电混凝土在路面除冰雪中的应用研究[J].建筑材料学报,2004,7(2):215-220.
    [79]Tang ZQ, Li ZQ, Hou ZF, et al. Influence of Electric Heating Power on Deicing Performance of Carbon Fiber Reinforced Conductive Concrete Pavement [C].7th International Symposium on Structural Engineering for Young Experts, August 28-31,2002 TianJin, China, Proceedings of the Seventh International Symposium on Structural Engineering for Young Experts,2002,1(2):978-982.
    [80]刘小明.导电沥青混凝土的机特性研究[D].武汉理工大学博士论文,2007.
    [81]Mizuma, H Ozawa, N. Road Heating System Utilizing Natural Energy, a Way it Should by [C]. New Challenges for Winter Road Service. XIth International Winter Road Congress,2002.
    [82]Ochifuji Kiyoshi, Nagano Katsunori, Nakamura Makoto, etc. Study on Snow Melting System Utilizing Natural Energy Sources. Part 3 Experiment on Collecting Solar Heat by Using Snow Melting Panels in Summer [C]. Kuki Chowa, Eisei Kogakkai Gakujutsu Koenkai Koen Ronbunshu, 1996:337-340.
    [83]武海琴.发热电缆用于路面融雪化冰的技术研究[D].北京工业大学硕士论文,2005.
    [84]李炎锋,武海琴,王贯明,朱滨,石勃伟.发热电缆用于路面融雪化冰的实验研究[J].北京工业大学学报,2006,32(3):217-212.
    [85]Koji Morital, Makoto Tago. Operational Characteristics of the Gaia Snow-Melting System in Ninohe, Iwate, Japan[R]. Geo-Heat Center (GHC) Bulletin, December 2000:5-11.
    [86]交通部行业标准.公路水泥混凝土路面设计规范(JTJ D40-2002)(S).北京:人民交通出版社,2002.
    [87]尚志远,王选仓,汪日灯.高抗折强度路面混凝土抗折弹性模量研究[J].公路,2008,(6):100-102.
    [88]潘万宝.水泥混凝土路面抗折强度机理研究[J].滁州职业技术学院学报,2005,4(2):32-33.
    [89]张春娈.浅析水泥混凝土路面抗折强度的影响因素[J].科学之友,2006,(4):41-42.
    [90]李添福,张潮生,陈玲辉.关于路面混凝土抗折强度影响因素的研讨[J].广东土木与建筑,2002,(1):45-47.
    [9l]尚云东,王玮.路面混凝土弯拉强度及弹性模量的试验研究[J].交通标准化,2006,(5):94-98.
    [92]袁青山.影响水泥混凝土路面抗折强度有关问题的试验分析[J].湖南交通科技,2002,28(2):8-9.
    [93]蒋应军,戴经粱,陈忠达.重载水泥混凝土路面疲劳方程和车辆轴载的换算[J].长安大学学报(自然科学版),2002,22(3):21-24.
    [94]王传秋,崔忠英.对水泥砼路面抗折强度影响因素的研讨[J].中国市政工程,2002,(2):1-3.
    [95]丁达伟.低温钢纤维混凝土梁抗折疲劳特性的试验研究[D].安徽理工大学硕士论文,2006.
    [96]郑智军,赵吉元.钢纤维混凝土路面的抗折强度与钢纤维掺量的关系[J].公路交通技术,2006,(1):24-25.
    [97]高建明,孙伟.钢纤维砼抗折疲劳寿命分布规律的研究[J].东南大学学报,1997,27(1):96-100.
    [98]谢建斌,何天淳,程赫明,张小辉.循环荷载下路面用钢纤维混凝土的弯曲疲劳研究[J].兰州理工大学学报,2004,30(2):104-109.
    [99]贡金鑫,黄承逵,赵国藩.钢纤维混凝土的抗折疲劳方程[J].土木工程学报,2001,34(4):72-77
    [100]李侃社,王琪.导热高分子材料研究进展[J].功能材料,2002,33(2):136-42.
    [101]储九荣,张晓辉,徐传骧.导热高分子材料的研究与应用[J].高分子材料科学与工程,2000,16(4):17-21.
    [102]李守巨,范永思,张德岗,刘迎曦.岩土材料导热系数与孔隙率关系的数值模拟分析[J].岩土力学,2007,28(增):244-248.
    [103]张辉,陈友昌.新疆沙漠砂有效导热系数的测定[J].东南大学学报(自然科学版),2002,32(2):237-240.
    [104]颜承越.几种轻质保温材料导热系数推算公式[J].硅酸盐建筑制品,1994,(4):36-37.
    [105]朴明姝.测量建筑材料导热系数的一种方法[J].辽宁师范大学学报(自然科学版),1997,20(1):75-76.
    [106]Eldo Earl Hildebrand. Prediction of Thaw Settlement and Surface Roughness for Highways in Permafrost Areas [D]. Thesis Requirement for the Degree of Doctor, University of Waterloo,1985.
    [107]张明义.多年冻土区气冷路基长期热稳定性研究[D].中国科学院研究生院博士论文,2007.
    [108]杨永平,魏庆朝,周顺华,张鲁新.热管技术及其在多年冻土工程中的应用研究[J].岩土工程学报,2005,(06).
    [109]王占福,孙良华,王力.混凝土结构中钢筋保护层厚度的作用及检验[J].黑龙江水专学报,2006,33(1):140-141.
    [110]蒋利学,陆伟杰.混凝土结构中钢筋保护层厚度的控制[J].工业建筑,2005,35(增):179-183.
    [111]朱薇琦.浅析混凝土结构中钢筋保护层厚度的检验方法[J].新疆有色金属,2007,(4):63-65.
    [112]彭武.谈混凝土结构中钢筋保护层的厚度控制[J].广东建材,2009,(6):79-81.
    [113]左志武,王选仓,毕玉峰.设防水层桥面铺装抗剪性能研究.公路,2009(7).
    [114]袁玉卿,周鑫,王选仓.旧水泥路面沥青加铺层层间剪应力分析[J].河南大学学报(自然科学版),2009,39(1):97-101.
    [115]苏凯,武建民,陈忠达,戴经梁,孙立军.山区公路沥青路面基面层滑移破坏研究[J].中国公路学报,2005,18(3).
    [116]陈超.沥青路面层间剪切强度研究[D].长沙理工大学硕士论文,2008.
    [117]苏凯,陈忠达,姬杨蓓蓓,许世展.山区公路层间滑移破坏机理分析及对策研究[J].公路交通科技,2005,22(7):l-5.
    [118]苏凯,武建民,姚红云,徐小坤.沥青路面层间滑移破坏分析[J].重庆交通学院学报,2005,24(3):35-39.
    [119]武建民,苏凯,宋田兴.沥青混凝土路面层间推移破坏的研究分析[J].公路,2004,(8):104-108.
    [120]张华.沥青混凝土路面层间剪切破坏及应对措施[J].中国水运,2009,9(3):199-200.
    [121]吴维,温彤,蒲思洪.层状复合板层间剪切强度的研究现状[J].机械制造,2009,47(1):34-37
    [122]梁耀文,周传成.连续配筋混凝土复合式路面层间推移破坏的研究分析[J].北方交通,2007,(9):14-17.
    [123]王乾,王选仓,詹珽.基于ANSYS的桥面铺装温度场与温度应力模拟分析.微计算机信息,2009(25).
    [124]季文华,慕万奎.水泥混凝土路面温度应力分析[J].黑龙江交通科技,2004,(3):12-14.
    [125]姚祖康.水泥混凝土路面的温度翘曲应力[J].同济大学学报,1981,(3):44-54.
    [126]谈至明,姚祖康,刘伯莹.水泥混凝土路面的温度应力分析[J].公路,2002,(8):19-23.
    [127]牛开民,田波.水泥混凝土路面等效疲劳温度应力系数[J].中国公路学报,2006,19(5):23-28.
    [128]顾文钧,俞建荣.水泥砼路面温度疲劳应力计算方法的改进[J].重庆交通学院学报,1997,16(2):37-42.
    [129]王选仓,侯荣国.长寿命路面结构设计.交通运输工程学报,2007(6)
    [130]蔡袁强,刘飞禹,徐长节,潘晓东.交通荷载下加筋道路弹黏塑性有限元分析[J].浙江大学学报(工学版),2006,40(10):1743-1748.
    [131]祝海燕;王选仓;刘寒冰等.沥青加铺水泥混凝土路面板角施荷受力分析[J].哈尔滨工业大学学报,2009,41(12).
    [132]高建红.沥青路面弹性层状体系的三维有限元仿真分析[J].交通科技,2006,(1):28-30.
    [133]王红伟.车载和温度应力下水泥混凝土路面板结构性病害三维有限元分析[D].吉林大学硕士论文,2008.
    [134]胡宗文.路面材料收缩变形试验研究及路面结构热—力耦合分析[D].长安大学硕士论文,2006.
    [135]赵晓晴,王选仓,侯荣国.长寿命路面应力吸收层有限元分析[J].中外公路,2009,29(1):64-68.
    [136]刘思峰,党耀国,方志耕.灰色系统理论及其应用[M].北京:科学出版社,2004.
    [137]杜栋,庞庆华.现代综合评价方法与案例精选[M].北京:清华大学出版社,2005.
    [138]A. Charnes, W. W. Cooper, E. Rhodes. Measuring the efficiency of decision making units [J].European Journal of Operational Research,1978, (2):429-444.
    [139]魏权龄,岳明.DEA概论与C2R模型——数据包络分析(一)[J].系统工程理论与实践,1989,(1):58-69.
    [140]A. Charnes, W. W. Cooper, B. Golary, L. M. Seiford and J.Stutz. Foundation of data envelopment analysis for pareto-koopmans efficient empirical production functions [J]. Journal of Econometrics (Netherlands),1985,30(1-2):91-107.
    [141]魏权龄,崔宇刚.评价相对有效性的几个重要DEA模型——数据包络分析(二)[J].系统工程理论与实践,1989,(2):55-68.
    [142]A. Charnes, W. W. Cooper, Q. L. Wei. A semi-infinite multicriteria programming approach to data envelopment analysis with infinitely many decision making units[R].The University of Texas at Austin, Center for Cybernetic Studies Report CCS 511, September 1986.
    [143]A. Charnes, W. W. Cooper, Q. L. Wei and Z. M. Huang. Cone ratio data envelopment analysis and multi-objective programming [R]. The University of Texas at Austin, Center for Cybernetic Studies Report CCS 559, December1986.
    [144]A. Charnes, W. W. Cooper, Q. L. Wei and M. Yue. Compositive data envelopment analysis and multi-objective programming [R]. The University of Texas at Austin, Center for Cybernetic Studies Report, June 1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700