用户名: 密码: 验证码:
压裂排液求产一体化关键技术及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压裂在油气资源的勘探开发上起着重要的作用。目前大庆油田外围探井多为低渗透油层(渗透率小于50×10-3μm2),具有单层厚度较小、层数较多的特点,通常一口井中含有二个或二个以上需要压裂的油层,现有的压裂工艺是:压完第一层后,上提管柱逐层对第二层、第三层进行压裂,然后起出压裂管柱,再下入测试求产管柱,这样不仅劳动强度大,施工周期长,测试压力资料不连续,而且上提管柱过程中,油管内喷出的压裂液污染地面,不利于地面环保,同时也会影响压裂液反排量的准确计量。为此,本文针对压裂施工中存在的这些难题,采用理论分析与现场试验相结合的方法,设计了一整套不动管柱两层压裂、排液求产、测井温一体化管柱。主要取得如下研究成果:
     (1)机械设计根据现场生产实际,结合机械设计原理研制出了一整套压裂、排液求产、测井温一体化管柱,并研究设计、加工试制了上封隔器、控制开关、下封隔器、密封接头、同心大通径压力计托筒等八种二十余件新型井下工具。使其实现了一趟管柱并且在不动管柱的情况下完成两层压裂、压后排液求产以及压后测井温等工艺,达到了缩短施工周期、降低储层的损害程度、减轻工人的劳动强度、实现绿色施工的目的。
     (2)理论研究及应用根据不同储层特点,优选了与油气层配伍的压裂液,添加剂及配方,确保油气田增产、增注的效果。应用岩石破碎力学原理,建立了射孔完井条件下岩石破裂压力理论模型,计算了大庆油田海拉尔、古龙等区块的地层破裂压力,确保在不动管柱两层压裂排液求产一体化施工中压开地层而又不致产生窜层,同时井下工具具有足够的承压能力,保证安全施工。
     为验证管柱设计的合理性,以压裂管柱为研究对象,充分考虑影响管柱屈曲行为的主要因素,建立了描述管柱屈曲行为的一般性方程。通过对该方程的分析,揭示了管柱几何尺寸、物理特性参数、载荷等因素对管柱在三维弯曲井眼中屈曲行为的影响规律。应用现代数学分析方法求解管柱屈曲方程,得到三个不同状态(正弦、螺旋弯曲及自锁)的解和临界屈曲载荷以及弯曲管柱与井壁接触的正压力,分析了弯曲管柱与井壁之间的库仑摩擦力对管柱在井下的屈曲行为及轴力分布的影响。在准确认识井下管柱屈曲行为的基础上,进行井下管柱载荷、应力和变形的分析与计算。在实际计算时,考虑了管柱上有封隔器等井下工具,为生产参数的合理选择提供了理论依据。
     从理论上研究了具有启动压力影响的低渗储层垂直裂缝油井的产能预测方法,计算时考虑了启动压力梯度对产能衰减规律的影响,绘制了油井在定流压下生产时产量随时间变化曲线和不同生产时间下的IPR曲线(不稳定IPR曲线),得出如下结论,一是表皮系数越大,裂缝井初期产量就越低,随生产时间增长,表皮效应的影响逐渐消失。二是启动压力梯度越大,储层流动所需的生产压差越大。启动压力梯度对压裂井的初期产能影响不大,在生产后期,启动压力越大产量下降越快。三是对于不同的生产时间,当启动压力梯度较小时,它对产量的影响也较小;但随着启动压力梯度的增大,其对产量的影响程度增强,产量下降幅度显著。实现了对低渗、特低渗透储集层压后产能的准确评价。
     (3)现场试验在大庆油田有限责任公司采油工程研究院分层开采实验室模拟井上进行了室内试验。通过地面打压,验证水力锚锚定可靠,封隔器座封到位,底部开关销钉剪切值准确。通过油套管正反打压,验证了封隔器的密封性以及封隔器的可反洗功能,达到了设计的目的,证明了方案设计的合理性。
     在大庆油田探井及开发评价井上,共进行了31口井的现场应用,工艺成功率100%。实现了一趟管柱并且在不动管柱的情况下完成两层压裂、压后排液求产以及压后测井温等工艺;减少了作业费用,减轻了作业人员的劳动强度,实现了安全环保施工,可在油田范围内(3000米以浅井)普遍推广。
Fracturing plays an important role in the exploratory development of oil-gas resources. At the moment almost every outer well of Daqing oil field are low permeability layer(permeability is lower than 50×10-3μm2), they have the feature that the thickness of individual layer is too small, and the number of the oil layer is large, there are usually two or more layers need to be fractured in one well. Available fracture technology is: after the first layer is fractured picking up the string and fracturing the second and third layer, then pulling out the frac-string and tripping in the testing and requiring production string. Using this method not only the work strength is large、the cycle time is long and the data of pressure testing is not continuously,but also in the process of picking up string the fracture fluid that blow out of the tubing can pollute the surface, this do no good to the environment, meanwhile we can’t metering the flowback volume exactly. For this reason, according to the these difficulty, using the combinated method of theoretical analysis and field experiment, we designed a battery immovable string which can fracture 2 layers at the same time、cleaning up the well and requiring production and testing the well temperature. Following is the outcome of this resrarch.
     (1) Mechanics design Designing a suit of fracturing、cleaning up and requiring production、well temperature testing string using mechanics design low,furthermore designing and producing upper-packer、control switch、lower packer、pack off adapter、concentric large bore manometer barrel etc. more than 20 kinds of down hole equipment. Achieving technology that finishing two-layer fracturing、cleaning up and requiring production in one time but not move the string. It can decrease the work time、the damage of formation, alleviating the work strength,acnieving the aim of green working.
     (2) Theoretical analysis and application According to the unique feature of different formation optimizing the fracture fluid、addition agent and dispensation that have no affect on the oil-gas formation,ensured that the effectiveness of stimulation and increase production in the oil field is good. Using theory of rock breaking mechanics can obtain the theoretical model of the formation breakdown pressure. The formation breakdown pressure of Hailaer、Gulong and other block of Daqing oil field are calculated. Ensured that in the workover of immovable String two-layer Fracturing、Cleaning up and Requiring Production can fracture the formation and not cause communication between zones, at the same time down hole tools have enough overpressure resistant capability, so the work will be safe.
     Using the frac-string as our research target, adopting modern mechanics mrthod, considering the affect of string’s buckle behavior as the main factor, establishing a general equation to describe the string’s buckle behavior. Through the analysis of the equation, we know that the affection rule of string geometry、physical characteristics parameter and load etc. to the buckle behavior in the triaxial bended borehole. Using the method of modern mathematics analysis, we can compute string buckle equation, so we can obtain the result of three different condition(sine、coiling and bending、self-locking)、interface buckled load and contacting normal pressure on the wellbore,analysising the affection of coulomb friction to the buckle behavior of string and axis force distribution in the hole. On the basis of recognizing wellbore string buckling behavior exactly, we can calculate and analysis the well bore string load、stress and aberration. When calculate practically, we considered the down hole equipment, such as packer etc. All these can offer theoretical reference to the reasonable option of producing parameter.
     Doing research about fluids rate forecast of low permeability formation vertical fracture well considering the affection of kick off pressure, when calculating, we must consider the affection of kick off pressure to the deliverability die-away law, describing the production changing curve following time under constant pressure and IPR curve under different time. Larger of the skin factor, lower the production of well early days, following time, the affection of skin effect will vanish. And the kick off pressure is larger,the producing pressure difference will be larger too. Kick off pressure have small affection to the early days production of fractured well, but on the later stage,the larger of kick off pressure, the lower of production; But with the increasing of kick off pressure, it can affect the production greatly, production drawdown is very marked. Achieving the accurate evaluation of low permeability and extra low permeability formation’s deliverability.
     (3)Field experiment and application We carried on an experiment on the well simulator in the lab of layer mining evaluating petroleum engineering collage daqing oil field Ltd. The justifiability and sealing property of string system is verified;the setting and sealing property of upper and lower packer is verified; The reliability of down hole control switch and accuracy of pin shearing value is verified too. We also verified the reliability of fishing tool and the backwashing performance of upper packer using pressure increased experiment.
     On the exploration and development evaluation well of Daqing oilfield, this technology is applied on 31 wells, the success ratio is 100%.
引文
1姚飞,王晓泉.水力裂缝起裂延伸和闭合的机理分析[J].钻采工艺, 2000, 23(2): 21-24.
    2 A R, Jennings Jr. A Systematic Approach to Improved Success with Hydraulic Fracturing Applications [C]. SPE101837. SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 2006. USA: Society of Petroleum Engineers, 2006: 1-6.
    3何艳青,王鸿勋.用数值模拟方法预测压裂井的生产动态[J].石油大学学报(自然科学版), 1990, 14(5): 16-25.
    4赵金洲,郭建春.水力压裂效果动态预测[J].石油钻采工艺, 1995, 17(6): 55-61.
    5 Yunhong Ding, et al. A Case Study of Massive Hydraulic Fracturing in an Ultra-deep Gas Well [C]. SPE88613. SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, 2004. USA: Society of Petroleum Engineers, 2004: 1-7.
    6刘友权,杜国滨,吴敏.有机硼交联胍胶压裂液体系在低渗浅层储藏加砂压裂施工中的应用[J].石油与天然气化工, 2001, 30(2): 85-86.
    7 S Centurion, et al. Successful Application of a Novel Fracturing Fluid in the Chicontepec Basin, Mexico [C]. SPE103879. First International Oil Conference and Exhibition in Mexico, Cancun, Mexico, 2006. USA: Society of Petroleum Engineers, 2006: 1-5.
    8马青庄,刘大玉.压裂过程中支撑剂的应用效果[J].国外油田工程, 1999: 22-23.
    9 Britt, M B Smith, et al. Water-Fracs: We Do Need Proppant after All [C]. SPE102227. SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 2006. USA: Society of Petroleum Engineers, 2006: 1-3.
    10李宗田,刘应红.采油工艺技术新进展及发展趋势[J].断块油气田, 2000, 7(1): 6-9.
    11王群嶷,冯立.大庆低渗透油田薄差油层勘探开发整体压裂优化设计应用与实践[J].中国石油勘探, 2005, 10 (6): 56-60.
    12 Lee W J, Hopkins C W. Characterization of Tight Reservoirs [C]. SPE29091. SPE Annual Technical Conference and Exhibition, Texas, USA, 1983. USA: Society of Petroleum Engineers, 1983: 83-88.
    13 Britt L K. Optimized Oil Well Fracturing of Moderate-Permeability Reservoirs [C]. SPE14371, SPE Asia Pacific Oil & Gas Conference and Exhibition, Adelaide, Australia, 1979. USA: Societyof Petroleum Engineers, 1979: 126-130.
    14王秀臣,姚海晶,兰乘宇,等.浅谈压裂改造系统工程在大庆杏北油田的应用[J].石油钻采工艺, 1997, 19(6): 93-95.
    15曾顺鹏,唐洪俊.灰关联分析法在油气藏整体压裂评价中的应用[J].天然气工业, 1997, 17(1): 81-83.
    16刘友家,曾顺鹏,杨秀文.神经网络专家系统在区块整体油层改造评价中的应用[J].钻采工艺, 2003, 22(5): 22-25.
    17蒋廷学,王宝峰,单文文,等.整体压裂优化方案设计的理论模式[J].石油学报, 2001, 22(5): 58-62.
    18 Hrachovy M J. Prediction the production performance of hydraulically fractured oil well [C]. SPE26044, SPE Russian Oil and Gas Technical Conference and Exhibition, Moscow, Russia, 1993. USA: Society of Petroleum Engineers, 1993: 234-238.
    19隋微波,张士诚.低渗复杂断块整体压裂裂缝参数优化设计[J].石油勘探与开发, 2007, 34(1): 98-103.
    20赵惊蛰,李书恒,屈雪峰,等.特低渗透油藏开发压裂技术[J].石油勘探与开发, 2002, 29(5): 93-95.
    21陈旭升,陈春明,王秀臣.油田开发压裂施工参数的优化[J].哈尔滨理工大学学报, 2002, 7(3): 93-95.
    22 H Wu, Pollard D D. Effect of Strain Rate on a Set of Fractures [J]. Rock Mech Min Sci & Geomech. 1993, 30(7): 869-872.
    23 Zoback, M D, et al. Well Bore Breakouts and In Situ Stress [J]. Geophys Res, 2004, 30(7): 90-92.
    24陈祥,邱荣华,陈代林,等.安棚地区特低孔渗油气藏压裂技术优化及应用[J].江汉石油学院学报, 2001, 23(4): 38-39.
    25黄新文,朱学谦,周琦,等.前梨园洼陷深层低渗透油藏井网优化技术[J].石油勘探与开发, 2003, 30(2): 76-78.
    26吕俊丰,刘鹏,林庆祥,等.地应力分析解释技术在压裂中的应用[J].大庆石油地质与开发, 2005, 24(2): 64-66.
    27张景和.地应力、裂缝测试技术在石油勘探开发中的应用[M].北京:石油工业出版社, 2001: 38-39.
    28高合明,刘建东,沈露禾.地应力在油气藏开发中的综合应用[M].北京:石油工业出版社, 2004: 327.
    29彭成勇,楼一珊,朱亮,等.用ANSYS方法模拟横向地应力[J].河南石油, 2006, 20(2): 68-72.
    30 Aigul Vakhitova. Analysis of Hydrofracturing Efficiency [C]. SPE102064. SPE Russian Oil and Gas Technical Conference and Exhibition, Moscow, Russia, 2006. USA: Society of Petroleum Engineers, 2006: 1-4.
    31李阳,姚飞,翁定为,等.重复压裂技术的发展及展望[J].江汉石油学院学报, 2005, 27(5): 789-791.
    32 S Z Rouhani. Void Measurement by the (R-N) Reaction with Impedance Gauge Technique [J]. Energia Nuclear, 1962, 13 (1): 12-33.
    33 G P Nassos. Local Resistivity Probe for Study of Point Properties of Gas-Liquid Flow [J]. Can. J. of Chem. Eng, 1980, 45(5): 271-274.
    34 Olson, K E. A Case Study of Hydraulically Refrac-tured Wells in the Devonian Formation Crane County Texas [C]. SPE22834, Successful Application of a Novel Fracturing Fluid in the Chicontepec Basin, Mexico, 1991. USA: Society of Petroleum Engineers, 1991: 1-4.
    35 Hunter, J C. A Case History of Refracs in the Oak Hill Field [C]. SPE14655, SPE/ICoTA Coiled Tubing Conference & Exhibition, Woodlands, Texas, USA, 1986. USA: Society of Petroleum Engineers, 1986: 1-5.
    36 Branch, G A, Drennan, et al. Refracture Sti-mulation in the Norge Marchand Unit: A Case Study [C]. SPE21642, Successful Application of a Novel Fracturing Fluid in the Chicontepec Basin, Mexico, 1991. USA: Society of Petroleum Engineers, 1991: 1-3.
    37 Reese J L, Britt L K. Selecting Economic Re-fracturing Candidates [C]. SPE28490, SPE Eastern Regional Meeting, Canton, Ohio, USA, 1994. USA: Society of Petroleum Engineers, 1994: 1-4.
    38 Elbel J L, Mack M G. Refracturing: observations and theories [C]. SPE25461, SPE Annual Technical Conference and Exhibition, Texas, USA, 1993. USA: Society of Petroleum Engineers, 1993: 1-5.
    39 Hu Yongquan. Refracturing improving oil productivity in Chinese oilfield [J]. Oil & Gas Journal, 2003, 101(2): 25-27.
    40 Fleming M E. Successful refracturing in the North Westbrook Unit [C]. SPE24011, SPE Annual Technical Conference and Exhibition, Texas, USA, 1993. USA: Society of Petroleum Engineers, 1993: 1-6.
    41 Gordon Pospisil. Results of a large-scale refracture stimulation program, Kuparuk River Unit, Alaska [C]. SPE24857, SPE Annual Technical Conference and Exhibition, Texas, USA, 1993. USA: Society of Petroleum Engineers, 1993: 1-8.
    42 Heji K A. High-rate refracturing: optimization and performance in a CO2 flood [C]. SPE24346, SPE Annual Technical Conference and Exhibition, Texas, USA, 1993. USA: Society of Petroleum Engineers, 1993: 1-6.
    43杨金林,许海东,白振强.重复压裂现状及分析[J].重庆科技学院学报, 2006, 9(1): 10-13.
    44张士诚,张劲.重复压裂技术的研究与应用[J].世界石油工业, 1995, 2(7): 36-38.
    45汪永利,姚飞.重复压裂技术研究与应用[J].油气采收率技术, 1997, 4(3) : 7-8.
    46叶芳春,李红.重复压裂技术综述[J].钻采工艺, 1997, 20(6): 27-33.
    47雷群,宋振云,吴增智.安塞油田重复压裂技术探讨[J].钻采工艺, 1999, 22(5): 26-28.
    48胡永全,赵金洲,蒲万芬,等.堵老裂缝压新裂缝重复压裂技术[J].西南石油学院学报, 2000, 22(3): 61-64.
    49雷群,张书平,常彦荣.油井重复压裂工艺技术研究[J].钻采工艺, 2000, 23(1): 24-27.
    50胡永全,林辉,赵金洲等.重复压裂技术研究[J].天然气工业, 2004, 24(3): 72-75.
    51 L Jin, et al. Large-Scale Hydraulic Fracturing in a Frontier Area in China [C]. SPE77680. SPE Annual Technical Conference and Exhibition, San Antonio, Texas, 2002. USA: Society of Petroleum Engineers, 2002: 1-5.
    52刘洪,张光华,钟水清,等.水力压裂关键技术分析与研究[J].钻采工艺, 2007, 30(2): 49-52.
    53谢桂学.端部脱砂压裂技术初探[J].油气采收率, 1996, 3(1): 18-19.
    54 M B Smith, et al. Tip Screenout Fracturing: A Technique for Soft, Unstable Formations [C]. SPE13273, SPE Gas Technology Symposium, Calgary, Alberta, Canada, 1988. USA: Society of Petroleum Engineers, 1988: 1-3.
    55 J. P. Martins, et al. Tip Screen-Out Fracturing Applied to the Ravenspurn South Gas Field Development [C]. SPE19766, SPE Asia Pacific Oil & Gas Conference and Exhibition, Adelaide, Australia, 1989. USA: Society of Petroleum Engineers, 1989: 1-5.
    56 M. P. Cleary, et al. Critical Issues in Hydraulic Fracturing of High - Permeability Reservoirs [C]. SPE27618, SPE Eastern Regional Meeting, Canton, Ohio, USA, 1994. USA: Society of Petroleum Engineers, 1994: 1-4.
    57 R G Dusterhoft, et al. Fracturing high - permeability re-servoirs increases productivity [J]. Oil & Gas Journal, 2004, 24(2): 12-15.
    58 A K Mathur, et al. Hydraulic Fracturing Stimulation of Highly Permeability Formations: The Effect of Critical Fracture Parameters on Oilwell Production and Pressure [C]. SPE30652, SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, 1996. USA: Society of Petroleum Engineers, 1996: 1-3.
    59 Y Fan, et al. Fluid Leakoff and Net Pressure Behavior of Frac&Pack in High - Permeability Viscous Oil Reservoirs Oil Reservoirs of the Duri Field.Indonesia [C]. SPE58766, SPE Gas Technology Symposium, Calgary, Alberta, Canada, 1999. USA: Society of Petroleum Engineers, 1999: 1-3.
    60 Martins J P. Tip screen-out fracturing applied to the ravenspurn south gas field development [C]. SPE19766, SPE Asia Pacific Oil & Gas Conference and Exhibition, Adelaide, Australia, 1989. USA: Society of Petroleum Engineers, 1989: 1-5.
    61 Michael Li Smith. High-permeability fracturing;"caricr" fluid loss or not [C]. SPE86550, SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, 2004. USA: Society of Petroleum Engineers, 2004: 1-3.
    62 Valko f P, Economides M J. Fluid leak off delineation to high-permeability fracturing [C]. SPE56135, SPE Europec/EAGE Annual Conference and Exhibition, Vienna, Austria, 1998. USA: Society of Petroleum Engineers, 1998: 1-3.
    63 Van Den, Hock P J. Simple and accurate description of non-linear fluid leak-off in high-permeability fracturing [C]. SPE63239, SPE Annual Technical Conference and Exhibition, Dallas, Texas, 2000. USA: Society of Petroleum Engineers, 2000: 1-4.
    64王腾飞,胡永全,赵金州.端部脱砂压裂技术新模型[J].石油钻探技术, 2005, 33(2): 55-57.
    65陈小新,魏英杰,陈波,等.斜井压裂成功的典型做法[J].钻采工艺, 2003, 26(1): 99-100.
    66郎学军,李凤霞,刘洪升,等.斜井压裂工艺技术及其应用[J].油田化学, 2004, 20(1): 19-22.
    67 G A Carvajal, et al. Field Experiences in Evaluation and Productivity Improvement UsingSelective Hydraulic Fracturing in Deep Directional Wells. Orocual Field, Venezuela [C]. SPE69582. SPE Latin American and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 2001. USA: Society of Petroleum Engineers, 2001: 1-8.
    68 Joshi S D. Horizontal well technology [M]. Horizontal and Multilateral Wells, Merida, Yucatan, Mexico, 1991. Mexico, Pennwell Publishing Corporation, 1991: 3-10.
    69 Butler R. The potential for horizontal wells for petroleum production [J]. JCPT, 1989, 28(3): 39-47.
    70 V F Rodrigues, P D Fernandes, et al. First Applications of a Multiple Fracturing Method in Noncemented Horizontal Offshore Wells [C]. SPE94583, SPE Annual Technical Conference and Exhibition, Dallas, Texas, 2005. USA: Society of Petroleum Engineers, 2005: 1-6.
    71 Vo D T, Marsh E L, Sienkiewicz L J, et al. Gulf ofMexico horizontal well improves attic-oil recovery inactive waterdrive reservoir [J]. Reservoir Engineering, 1997, 12(3): 63-68.
    72 Bodnar D A, Clifford P J, Isby JS, et al. First horizontalwater injectors in PrudhoeBay Field, Alaska [J]. Reservoir Engineering, 1997, 12(2): 104-108.
    73 Solim an M Y, Hunt J Land E1 Rabaa W. Fracturing aspects of horizontal wells [J]. JPT, 1990, 42(12): 966-971.
    74 Machiel Butter, et al. The Potential of Multiple Fractured Horizontal Wells in Layered Reservoirs [C]. SPE102633. SPE Russian Oil and Gas Technical Conference and Exhibition, Moscow, Russia, 2006. USA: Society of Petroleum Engineers, 2006: 1-9.
    75 Vladimir Roudakov and Craig Rohwer. Successful Hydraulic Fracturing Techniques in Horizontal Wells for Sandstone Formations in the Permian Basin [C]. SPE102370. SPE Russian Oil and Gas Technical Conference and Exhibition, Moscow, Russia, 2006. USA: Society of Petroleum Engineers, 2006: 1-5.
    76 M Y Soliman, et al. Fracture Treatment Optimization for Horizontal Well Completion [C]. SPE102616. SPE Russian Oil and Gas Technical Conference and Exhibition, Moscow, Russia, 2006. USA: Society of Petroleum Engineers, 2006: 1-7.
    77刘振宇,刘洋,贺丽艳,等.人工压裂水平井研究综述[J].大庆石油学院学报, 2002, 26(4): 96-99.
    78卢拥军,陈彦东,王振铎.超深井压裂液体系研究与应用[J].钻井液与完井液, 1999, 16(3):9-13.
    79何志勇,程运甫,冯敬红.大港油田深探井压裂改造技术[J].钻采工艺, 2003, 26(6): 34-38.
    80 Yunhong Ding, et al. A Case Study of Massive Hydraulic Fracturing in an Ultra-deep Gas Well [C]. SPE88613. SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, 2004. USA: Society of Petroleum Engineers, 2004: 1-7.
    81丁云宏,丛连铸,卢拥军,等. CO2泡沫压裂液的研究与应用[J].石油勘探与开发, 2002, 29(4): 103-105.
    82 Wamock W E, Harris P C, King D S. Successful Field Applications of CO2 Foam Fracturing Fluids in the Aek-la-Tex Region[C]. SPE11932, SPE Annual Technical Conference and Exhibition, Denver, Colorado, 1988. USA: Society of Petroleum Engineers, 1988: 34-37.
    83 King S R. Liquid CO2 for Stimulation of Low– Permeability Reservoirs[C]. SPE11616, SPE Annual Technical Conference and Exhibition, Denver, Colorado, 1988. USA: Society of Petroleum Engineers, 1988: 29-34.
    84郑新权,靳志霞. CO2泡沫压裂优化设计技术及应用[J].石油钻采工艺, 2003, 25(4): 53-56.
    85赵恩远,王家齐,王世贵.大庆油田非常规井压裂技术的研究与发展[J].低渗透油气田, 1999, 4(4): 65-69.
    86薛凤云,王运涛,张维平.小井眼采油工艺技术井深界限研究[J].石油机械, 1999, 21(6): 63-67.
    87李艳丽. Y221-80型小井眼压裂封隔器的研制[J].石油机械, 2005, 33(7): 53-54.
    88 W. Zhongguo, et al. Study and Application of Small-Diameter Separate-Layer Hydraulic Fracturing Techniques for Casing-Damaged Wells [C]. SPE98280. International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, 2006. USA: Society of Petroleum Engineers, 2006: 1-5.
    89 Mathew S. Viscoelastic surfactant fracturing fluids applications in low permeability reservoirs [C]. SPE60322, SPE Annual Technical Conference and Exhibition, Dallas, Texas, 2000. USA: Society of Petroleum Engineers, 2000: 1-5.
    90 Rimmer B. Fracture geometry optimization designs utilizing new polymer-free fracturing fluid and log derived stress profile/rock properties [C]. SPE58761, SPE Gas Technology Symposium, Calgary, Alberta, Canada, 1999. USA: Society of Petroleum Engineers, 1999: 1-6.
    91 Samuel M. Polymer-free fluid for hydraulic fracturing [C]. SPE38622, SPE Production and Operations Symposium, Oklahoma City, Oklahoma, 1997. USA: Society of Petroleum Engineers, 1997: 1-4.
    92 Pitoni E. Polymer-free fracturing fluid revives shut-in well [J]. World Oil, 2003, 224(9): 55-58.
    93 Furlow W. New downhole fracturing fluid works without polymers [J]. Offhore, 2005, 59(6): 66.
    94陈馥,王安培,李凤霞,等.国外清洁压裂液的研究进展[J].西南石油学院学报, 2002, 24(5): 66-67.
    95宋友贵,纪朝凤,李怀文,等.压裂-充填综合防砂技术的研究与应用[J].西南石油学院学报, 1999, 27(2): 45-47.
    96朱晓荣.建南气田裂缝性碳酸盐岩储层增产措施技术难点及解决办法[J].江汉石油学院学报, 2004, 26(s): 75-76.
    97张亚蒲,杨正明,鲜保安.煤层气增产技术[J].特种油气藏, 2006, 13(1): 95-98.
    98赵福麟.压裂液[J].华东石油学院学报, 1986, 10(3): 70-86.
    99 Jennings A R. Fracturing fluids-then and now [J]. JPT, 1996, 48(7): 604-610.
    100宁廷伟.胜利油田开发和应用的水基压裂液及其添加剂[J].油田化学, 1995, 12(1): 84-87.
    101 Smith K W, Persinski L J. Hydrocarbon gels useful in formation frac-turing [C]. SEP817819, SPE Annual Technical Conference and Exhibition, Dallas, Texas, 2005. USA: Society of Petroleum Engineers, 2005: 1-5.
    102 Syrinek A R, Huddleleston D A. Hydrocarbon gallant [P]. US Pat 7781845.
    103 Maberry L J, Mcconnell S B, Hinkel J J. New complexation chemistry provides improved continuous mix gelled oil [C]. SPE37227, SPE Gas Technology Symposium, Calgary, Alberta, Canada, 1994. USA: Society of Petroleum Engineers, 1994: 1-4.
    104 Maberry L J, McConnell S B, Tanner K V, et al. Chemistry and field application of an improved continuous-mix gelled oil [J]. Production &. Facilities, 1998, 13(4): 236-242.
    105 Smith K W, Persinski. Hydrocarbon gels in formation fracturing [C]. SEP817918, SPE Annual Technical Conference and Exhibition, Dallas, Texas, 2005. USA: Society of Petroleum Engineers, 2005: 1-3.
    106李圣涛,陈馥,李圣勇,等. O/W型交联乳化压裂液配方研究[J].钻井液与完井液, 2005, 22(2): 38-40.
    107 King G E. Low fluid loss foams [P]. US Pat 4217231.
    108赵福麟,王洁雯,孙英.粘度的协同效应[J].华东石油学院学报, 1987, 11(2): 36-46.
    109龙政军.压裂液添加剂对压裂液性能及效果的影响分析-稠化剂和交联剂的影响[J].石油与天然气化工, 2000, 29(6): 314-316.
    110赵福麟.锆冻胶水基压裂液[P]. CN pat 85105344A.
    111赵福麟.钛冻胶水基压裂液[P]. CN pat 85105346D.
    112 Nimerik K H. Borate crosslinked fracturing fluid and method [P]. US Pat 5681796.
    113 Moorhouse R, Cottrell I W. Carboxyalkyl substituted polygalac-tomannan fracturing fluids [P]. US Pat 5697444.
    114 Rae P, Di Lullo G. Fracturing fluid and breaker systems-A review of the state-of-the-art [C]. SPE37359, SPE European Formation Damage Conference, The Hague, Netherlands, 1994. USA: Society of Petroleum Engineers, 1994:1-5.
    115宁廷伟.胜利油田开发和应用的粘土稳定剂[J].油田化学, 1999, 16(1): 77-80.
    116 Ely J W. Methods of water flooding and fracturing using clean non-damaging fracturing fluids [P]. US Pat 4265311.
    117 Githens C J, Harrison W G.. Method for using soap as a soluble fluidloss additive in the hydraulic fracturing treatment of oil and gas wdlls [P]. US Pat 5301751.
    118 Gabrysch A. Use of sized salts as bridging agent for oilbased fluids [C]. Hydraulic Fracturing, Bruges, Belgium, 1998. Belgium, The International Petroleum Technology Conference, 1998: 1-4.
    119孟琳.原油破乳剂的应用与发展趋势[J].油气田地面工程, 2005, 24(4): 18-19.
    120罗跃,张小平,王志龙,等.水基降阻剂JHJ的实验研究[J].江汉石油学院学报, 1999, 21(1): 57-59.
    121 Robinson, et al. Minimizing Damage to a Propped Fracture by Controlled Flowback Procedure [J]. JPT, 1988, 40(6): 753-760.
    122 Ely, et al. New Techniques and Quality Control Find Success in Enhancing Productivity and Minimizing Proppant Flowback [C]. SPE20708, 1990: 1-6.
    123 Barree and Mukherjee. Fracture Flowback Procedures [C]. SPE29600, 1995: 1-5.
    124 Evinger, H H, Muskat M. Calculation of Theoretical Productivity Factors [J]. Trans. AIME. 1942,(146): 127-139.
    125 Vogel, J W. Inflow Performance Relationships for Solution Gas Drive Wells [J]. JPT, 1968, (21): 83-92.
    126 Standing, M B. Concerning the Calculation of Inflow Performance of Wells Producing From Solution Gas Drive Reservoirs [J]. JPT, 1971, 24(2): 1141-1152.
    127 Fetkovich, M J. The Isochronal Testing of Oil wells [C]. SPE4529, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 1973. USA: Society of Petroleum Engineers, 1973: 1-3.
    128 Yousaf M J. Inflow Performance Relationship for Depletion Type Reservoirs [D]. M. S. Thesis. 2006: 59-62.
    129 Jones, Lloyd, Blount E M. Use of Short Term Multiple Rate Flow Tests to Predict Performance of Wells Having Turbulence [C]. SPE6133, SPE Middle East Oil Show, Bahrain, 1976. USA: Society of Petroleum Engineers, 1976: 1-4.
    130 Nind, T E. Principles of Oil Well Production [M]. New York: Mc Graw-Hill Book Co, 1981:51-59.
    131 Couto, L E. General Inflow Performance Relationship for Solution-Gas Reservoir Wells [J]. JPT, 1982, 34(4): 285-292.
    132 Klins M A. Inflow Performance Relationships for Damaged or Improved Wells Producing Under Solution-Gas Drive [C]. SPE19852, International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, 1990. USA: Society of Petroleum Engineers, 1990: 1-4.
    133 Wiggins M L. Analytical Development of Vogel Type Inflow Performance Relationships [C]. SPE23580, SPE Eastern Regional Meeting, Morgantown, West Virginia, 1992. USA: Society of Petroleum Engineers, 1992: 1-5.
    134布朗K E,孙学龙译.升举法采油工艺.卷四[M].北京:石油工业出版社, 1987: 5-59.
    135陈元千.无因次IPR曲线通式的推导及线性求解方法[J].石油学报, 1986, 18(2): 21-24.
    136贾振歧.关于沃格尔流动方程及其系数关系的推证[J].大庆石油学院学报, 1986, 15(1): 12-15.
    137贾振歧.预测油井动态的IPR曲线方法[R].大庆石油管理局科技发展部, 1987: 82-91.
    138周广厚.广义IPR曲线的修正及实例验证[J].大庆石油地质与开发, 1991, 16(3): 26-29.
    139时炀,郭冀义,蒋凯军.单相流及具有溶解气影响的油井不稳定IPR理论曲线[J].油气井测试, 1997, 6(4): 22-25.
    140黄炳光,李顺初,周荣辉. IPR曲线在水平井动态分析中的应用[J].石油勘探与开发, 1995, 22(5): 56-61.
    141曾亚勤,刘书炳,王亚平.安塞油田流入动态研究[J].低渗透油气田, 1999, 4(2): 13-15.
    142宋付权,刘慈群.低渗透多孔介质中新型渗流模型[J].新疆石油地质, 2001, 2(1): 56-58.
    143郑祥克,陶永建. IPR方法确定启动压力的探索[J].油气井测试, 2002, 11(6): 1-5.
    144史云清,郑祥克,何顺利. IPR曲线解析方法在产能评价中的应用[J].石油大学学报(自然科学版), 2002, 26(2): 41-46.
    145宋付权.变形介质低渗透油藏的产能分析[J].特种油气藏, 2002, 9(4): 33-35.
    146何顺利,郑祥克.致密储集层近井区堵塞带的产能方程[J].石油勘探与开发, 2003, 30(5): 97-100.
    147李晓平,李允.气井产能分析新方法[J].天然气工业, 2004, 24(2): 76-78.
    148樊友宏,李跃刚.河流相储层产能评价方法研究[J].天然气工业, 2005, 25(4): 100-102.
    149徐严波,齐桃,杨凤波,等.压裂后水平井产能预测新模型[J].石油学报, 2006, 27(1): 89-91.
    150雷征东,李相方,郑红军.基于不稳定渗流压裂水平气井产能研究[J].天然气工业, 2006, 26(4): 102-104.
    151周天育.压裂气井稳定产能的简易计算方法[J].油气田地面工程, 2007, 26(5): 16.
    152曾凡辉,郭建春,徐严波,等.压裂水平井产能影响因素[J].石油勘探与开发, 2007, 34(4): 474-482.
    153吉旭慧.压裂水平井产能影响因素研究[J].内蒙古石油化工, 2007, 16(4): 99-100.
    154凌贤长,蔡德所.岩体力学[M].哈尔滨:哈尔滨工业大学出版社, 2002: 35-48.
    155 Plumb R A, Cox J W. Stress directions in Eastern North America determined to 4.5km from borehole elongation measurements [J]. J Geophys Res, 2003, 108(4): 211-215.
    156 Gough D I, Bell. Stress orientations in from oil-well fractures in Alberta and Texas [J]. Canadian Journal of Earth Sciences, 1979, 16(5): 45.
    157 Zback M D, et al. Well Bore Breakouts and In-situ Stress [J]. J Geophys Res, 1985, 90(3): 90.
    158杨更社.水压致裂法三维地应力测量的理论探讨[J].西安矿业学院学报, 1998, 4(1): 37-43.
    159刘允芳,刘元坤.水压致裂法三维地应力测量若干问题的探讨[J].地震研究, 1999, 22(3):265-271.
    160蔡美蜂.地应力测量原理和技术[M].北京:科学技术出版社, 1995: 3-5.
    161刘允芳.水压致裂法地应力测量的校核和修正[J].岩石力学与工程学报, 1998, 17(3): 297-304.
    162潘立宙.地应力测量的原理和应用[M].北京:地质出版社, 1991: 72-91.
    163 M J埃克若米德斯, K G.若尔蒂,等.油藏增产措施(增订本)[M].北京:石油工业出版社, 1991: 56-74.
    164钻井手册(甲方)编写组.钻井手册(甲方)[M].北京:石油工业出版社, 1990: 89-101.
    165李敬元,李子丰.井眼轨道预测的实现[J].天然气工业, 2005, 25(5): 62-64.
    166李子丰,李敬元,马兴瑞,等.油气井杆管柱动力学基本方程及应用[J].石油学报, 1999, 20(3): 87-90.
    167李子丰.油气井杆管柱的稳定性与纵横弯曲[J].西部探矿工程, 1997, 9(2): 23-27.
    168李子丰,蒋恕,阳鑫军.油气井杆管柱力学研究现状和发展方向[J].石油机械, 2002, 30(12): 30-33.
    169李子丰.油气井杆管柱力学[M].北京:石油工业出版社, 1996: 72-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700