用户名: 密码: 验证码:
气体水合物成核与生长的分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发达国家的工业化进程大大加速了传统化石能源的消耗。目前,以化石能源消费为主的世界各国都面临着能源减少的挑战。而天然气水合物具有分布广、储量大、能量密度高、绿色清洁等特点,被一致认为是21世纪极具潜力的新型替代能源。由于其作为新能源的潜在应用,对水合物的研究已在全球范围内受到了高度重视。我国已经在南海北部的神狐海域和祁连山南缘的永久冻土带中发现并成功取获了天然气水合物实物样品,水合物作为新能源在我国未来能源战略中的地位将越来越重要。然而,和美国、日本等发达国家相比,我国在水合物方面的研究尚处于起步阶段,在基础研究层面上还存在很大的空白。目前,实验科学在水合物的形成、分解、热力学性质等方面已有相当大的突破,但由于实验方法和手段等的限制,仍无法在微观上给出详细的解释。随着计算机科技的迅速发展,计算机模拟方法已经成为在分子尺度上理解微观机理的强大工具。
     本论文通过分子动力学模拟方法,从分子尺度上研究了气体水合物的成核与生长过程。具体包括二氧化碳水合物在固体表面的生成机理、客体分子性质对水合物生长机理的影响、以及二氧化碳置换甲烷水合物的置换机理。
     在自然环境中,水合物的生成往往都发生在固体表面,因而理解水合物在固体表面的生成机理对于一些工程应用,例如以水合物的方式封存C02温室气体,是至关重要的。本论文分别模拟了两相环境和三相环境中CO2水合物在固体表面的成核与生长机理,并探讨了固体表面性质对机理的影响。主要研究结论汇总如下。(1)模拟研究发现在亲水性较强的固体表面上,成核是一个三步机理。(2)成核机理随固体表面亲水性的减弱而逐步演化,最终退化成两步机理。成核机理的改变主要是因为固体表面的亲水性对水分子局部结构和C02分布的影响。随着亲水性的减弱,成核的诱导时间减少,表明水合物的成核过程更易于在弱亲水表面下发生。固体表面的结晶度可以影响水合物的无定形程度。(3)在三相环境中,水合物的成核发生在三相接触线附近,然后沿接触线生长并向CO2相偏移。
     除了自然界广泛存在的天然气水合物之外,很多无机和有机小分子都可以充当客体分子形成水合物。不同的客体分子形成水合物的机理也是有差异的。客体分子性质对水合物形成机理的影响同样是值得关注和研究的一个方面。本论文模拟了(ε,σ)回空间中各种Lennard—Jones客体分子对水合物生长的影响。模拟研究发现水合物的生长过程总是开始于客体分子在水合物环表面的吸附,同时伴随有客体分子迁移率的降低。势阱深度ε调控着水合物核的生长路径和速率,而分子直径σ调控着水合物的动力学优先结构。(ε,σ)平面的动力学相图说明动力学优先结构基本上和热力学稳定的水合物结构相一致。
     此外,利用CO2置换天然气水合物中的CH4在工程实践中既具有能源开采价值,又具有环境保护意义,因而是气体水合物研究领域极具前景的一个研究热点。本论文模拟了CO2置换水合物中的CH4分子的置换机理和动力学性质。模拟研究发现,熔化的CH4水合物带有大量的残余环,是造成“记忆效应”的主要原因。水合物残余环可以促进C02水合物的成核过程,另一方面客体分子的化学势也会影响置换过程。在动力学方面,随着置换过程的进行,置换形成的CO2水合物层为进一步置换提供了传质能垒,减缓了置换速率。总体上,置换过程协同受控于客体分子的化学势、“记忆效应”以及质量传递。
     总体而言,气体水合物的成核与生长过程是一个非常复杂的物理化学过程。本论文的研究工作仅对这一过程在分子尺度上的微观机理进行了一定程度的探讨。然而,考虑到成核与生长的复杂性,分子模拟研究绝不仅限于以上课题。相反,计算机模拟技术的应用给该领域带来了新的机遇,同时也开辟了新的研究方向,从而开创新的进展。
The consumption of traditional fossil energies is greatly accelerated by the industrialization process in developed countries. So far, all the countries dominated by the consumption of fossil energies in the world are facing with the challenge of the gradual depletion of energy resource. Natural gas hydrates, with its characteristics of wide distribution, high reserves, high energy density, and cleaning, are unanimously considered as a new potential alternative energy resource in21th century. Due to its potential applications as a new energy resource, studies on hydrates have been globally performed. In China, the samples of natural gas hydrates have been found and exploited successfully in Shenhu sea-area in northern South China Sea and in the permafrost in the southern zone of Qilian Mountains. As a new energy resource, the strategic position of hydrates will become increasingly important in the future in China. However, compared with the developed countries such as America and Japan, the study of gas hydrate in China is still in the initial stage, and there exists still an obvious gap in the fundamental research fields. At present, considerable progress has been achieved in the experimental studies in the formation, decomposition, and the thermodynamic properties of hydrate. But it is still difficult to give an explanation in details in microscopic level, because of the limitation of experimental methods. With the rapid development of computer technologies, computer simulation method has become a powerful tool for understanding the microscopic mechanisms at molecular scale.
     In this dissertation, molecular dynamics simulation method is applied to study the nucleation and growth process of gas hydrates at molecular level, including the formation mechanism of carbon dioxide hydrates on solid surfaces, the effect of the properties of guest molecules on the mechanism of hydrate growth, and the replacement mechanism of methane hydrates with carbon dioxide.
     In nature the formation of hydrates often occurs on the solid surface. Therefore, the understanding of the formation mechanism of hydrate on solid surface is of vital importance for some engineering applications, such as the sequestration of CO2greenhouse gas in hydrates. In this dissertation, the nucleation and growth mechanism of CO2hydrates on solid surface in two-phase and three-phase systems were investigated, and the effect of the solid surface properties on the mechanism was explored. The main conclusions of the studies are summarized as follows,(ⅰ) Simulation studies show that hydrate nucleation is a three-step process on the solid surface with a strong hydrophilicity.(ⅱ) The nucleation mechanism was found to vary gradually with the decrease of the hydrophilicity of the solid surfaces, and eventually changes into a two-step mechanism. The change of nucleation mechanism is mainly because of the effect of the hydrophilicity of the solid surface on the local structure of water molecules and the distribution of CO2. As the surface hydrophilicity is weakened, the induction time for hydrate nucleation decreases, indicating that hydrate nucleation takes place more easily on a weak hydrophilic surface. The crystallinity of the solid surface can affect the amorphous degree of hydrates.(ⅲ) In three-phase system, the nucleation of hydrates occurs near the three-phase contact line, and growth along the contact line but developed towards the CO2phase.
     Except for the natural gas hydrates widely existed in nature, plenty of other small inorganic and organic molecules can also act as guest molecules to form hydrates. The formation mechanism for different guest molecules is also different. Thereby the effect of the properties of guest molecules on the formation mechanism of hydrates is also a respect worthy of study. In this dissertation, the effect of various guest molecules in the (ε,σ) space of the Lennard-Jones potential model on hydrate growth were investigated. Simulation studies show that the hydrate growth process always proceeds with the adsorption of guest molecules on the face of hydrate rings, which reduced the mobility of guest molecules. The well depth of potential ε regulates the pathway and the rate of the growth of hydrate nucleus, whereas the molecular size σ controls the dynamically preferable structure of hydrates. The dynamic-phase diagram on (ε, σ) plane shows that the dynamically preferable structure is basically consistent with the thermodynamically stable hydrate structure.
     In addition, the replacement of CH4in natural gas hydrate by using CO2is not only of the importance of energy exploitation in chemical engineering, but also the significance in environmental protection. So, it becomes a hot issue on the research field of gas hydrates. In this dissertation, replacement mechanism and kinetic properties of the replacement process of CH4hydrate with CO2were investigated. Simulation studies show that there are plenty of residual rings within the melted CH4hydrate, which is mainly responsible for the "memory effect". Hydrate residual rings can promote the nucleation of CO2hydrate, and on the other hand, the chemical potential of guest molecules can affect the replacement process. In the kinetic aspect, with the replacement process proceeds, the CO2hydrate layer formed during the replacement provides a barrier on mass transfer for the further replacement process, and hence slows down the replacement rate. Generally, the replacement process is controlled cooperatively by the chemical potential of guest molecules,"memory effect", and mass transfer barrier.
     In summary, the nucleation and growth of gas hydrates are complex physical and chemical processes. The studies in this dissertation focus only on the microscopic mechanisms of this process at the molecular scale. However, in consideration of the complexity of the nucleation and growth processes, the studies with molecular simulations by no means limited to above issues. Instead, application of computer simulation techniques in this field opens new opportunities and research directions, and thus may lead to new advances.
引文
[1]中国科学院能源领域战略研究组.中国至2050年能源科技发展路线图[M].北京:科学出版社,2009
    [2]陈光进,孙长宇,马庆兰.气体水合物科学与技术[M].北京:化学工业出版社,2007
    [3]国家自然科学基金委员会,中国科学院.未来10年中国学科发展战略·能源科学[M].北京:科学出版社,2011
    [4]“十五”国家高技术发展计划能源技术领域专家委员会.能源发展战略研究[M].北京:化学工业出版社,2004
    [5]Sloan ED, Koh CA. Clathrate Hydrates of Natural Gases[M].3rd ed. New York:CRC Press, Boca Raton, FL,2008
    [6]Buffett BA. Clathrate hydrates[J]. Annu. Rev. Earth Planet. Sci.,2000,28:477-507
    [7]Jeffrey GA. In:Atwood JL, Davies JED, MacNicol DD, et al. Comprehensive Supramolecular Chemistry[C]. Oxford, New York:Pergamon,1996
    [8]Vatamanu J, Kusalik PG. Unusual crystalline and polycrystalline structures in methane hydrates[J]. J.Am. Chem. Soc.,2006,128(49):15588-15589
    [9]Yang L, Tulk CA, Klug DD, et al. Synthesis and characterization of a new structure of gas hydrate[J]. Proc. Natl. Acad. Sci. U.S.A.,2009,106(15):6060-6064
    [10]Lunine JI, Stevenson DJ. Thermodynamics of clathrates at low and high pressures with application to the outer Solar System[J]. Astrophys. J. Suppl. S.,1985,58:493-531
    [11]Osegovic JP, Max MD. Compound clathrate hydrate on Titan's surface[J]. J. Geophys. Res. Planets,2005,110:E08004
    [12]Max MD, Johnson A, Dillon WP. Economic Geology of Natural Gas Hydrate[M]. Berlin, Dordrecht:Springer,2006.341-341
    [13]Tanaka H, Nakatsuka T, Koga K. On the thermodynamic stability of clathrate hydrates IV:double occupancy of cages[J]. J. Chem. Phys.,2004,121(11):5488-5493
    [14]Papadimitriou NI, Tsimpanogiannis IN, Stubos AK, et al. Unexpected behavior of helium as guest gas in sll binary gydrates[J]. J. Phys. Chem. Lett.,2010,1(6):1014-1017
    [15]Kvenvolden KA. Methane hydrate-a major reservoir of carbon in the shallow geosphere[J]. Chem. Geol.,1988,71:41-51
    [16]Makogon YF. Natural gas hydrates:the state of study in the USSR and perspectives for its use[A]. In:3rd Chemical Congress of North America[C]. Toronto, Canada:1988
    [17]LEA. Implementing agreement energy conservation through energy storage-strategy plan 2006-2010[EB/OL]. http://www.iea-eces.org/eces/organisation.html,2005
    [18]陆佑楣.我国水电开发与可持续发展[J].水力发电,2005,31(2):2-4
    [19]Davidson DW, El-Defrawy MK, Fuglem MO, et al. Natural gas hydrates in northern Canada[A]. In:3rd International Conference on Permafrost[C]. Ottawa:National Research Council of Canada, 1978,938-943
    [20]Thomas S, Dawe RA. Review of ways to transport natural gas energy from countries which do not need the gas for domestic use[J]. Energy,2003,28:1461-1477
    [21]Taylor M. Fire and ice:gas hydrate transportation-a possibility for the caribbean region[A]. In: 8th Latin American and Caribbean Petroleum Engineering Conference[C]. Port of Spain, Trinidad: SPE81022,2003
    [22]Shirota H, Aya I, Namie S, et al. Measurement of methane hydrate dissociation for application to natural gas storage and transportation[A]. In:4th International Conference on Gas Hydrates[C]. Yokohama, Japan:2002,972-977
    [23]Kohkar AA, Gudmundsson JS, Sloan ED. Gas storage in structure H hydrates[J]. Fluid Phase Equilib.,1998,150-151:383-392
    [24]Sun ZG, Ma RS, Wang RZ, et al. Experimental studying of additives effects on gas storage in hydrate[J]. Energy Fuels,2003,17(5):1180-1185
    [25]Sun ZG, Wang R, Ma R, et al. Natural gas storage in hydrates with the presence of promotersfJ]. Energy Convers. Manage.,2003,44:2733-2742
    [26]Gnanendran N, Amin R. The effect of hydrotopes on gas hydrate formation[J]. J. Petrol. Sci. Eng., 2003,40:37-46
    [27]Intergovernmental Panel on Climate Change (IPCC) 4th assessment report-climate change 2007: synthesis report[EB/OL]. http://www.ipcc.ch/ipccreports/ar4-syr.htm,2007
    [28]Bryant E. Climate Process and Change[M]. Cambridge, UK:Cambridge University Press,1997. 118-118
    [29]Desideri U, Paolucci A. Performance modelling of a carbon dioxide removal system for power plants[J]. Energy Convers. Manage.,1999,40:1899-1915
    [30]Chakma A. CO2 capture processes-opportunities for improved energy efficiencies[J]. Energy Convers. Manage.,1997,38:S51-56
    [31]Gray ML, Soong Y, Champagne KJ, et al. CO2 capture by amine-enriched fly ash carbon sorbents[J]. Sep. Purif. Technol.,2004,35:31-36
    [32]Hendriks CA, Blok K. Underground storage of carbon dioxide[J]. Energy Convers. Manage.,1993, 34:949-957
    [33]Bachu S. Sequestration of CO2 in geological media in response to climate change:road map for site selection using the transform of the geological space into the CO2 phase space[J]. Energy Convers. Manage.,2002,43:87-102
    [34]Brewer PG, Riederich G, Peltzer ET, et al. Direct experiments on the ocean disposal of fossil fuel CO2[J]. Science,1999,284:943-945
    [35]Kojima R, Yamane K, Aya I. Dual nature of CO2 solubility in hydrate forming region[A]. In:4th International Conference on Gas Hydrates[C]. Yokohama, Japan:2002,286-289
    [36]Bachu S, Adams JJ. Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Convers. Manage.,2003, 44:3151-3175
    [37]Liro CR, Adams EE, Herzog HJ. Modeling the release of CO2 in the deep ocean[J]. Energy Convers. Manage.,1992,33:667-674
    [38]Lee S, Liang L, Riestenberg D, et al. CO2 hydrate composite for ocean carbon sequestration[J]. Environ. Sci. Technol.,2003,37(16):3701-3708
    [39]Harrison WJ, Wendlandt RF, Sloan ED. Geochemical interactions resulting from carbon dioxide disposal on the seafloor[J]. Appl. Geochem.,1995,10:461-475
    [40]Aya I, Yamane K, Nariai H. Solubility of CO2 and density of CO2 hydrate at 30 MPa[J]. Energy, 1997,22:263-271
    [41]Uchida T, Takagi A, Mae S, et al. Dissolution mechanisms of CO2 molecules in water containing CO2 hydrates[J]. Energy Convers. Manage.,1997,38:S307-312
    [42]Yang SO, Yang IM, Lee CS. Measurement and prediction of phase equilibria for water+CO2 in hydrate forming conditions[J]. Fluid Phase Equilib.,2000,175:75-89
    [43]Holder GD, Cugini AV, Warzinski RP. Modeling clathrate hydrate formation during carbon dioxide injection into the ocean[J]. Environ. Sci. Technol.,1995,29(1):276-278
    [44]Englezos P. Computation of the incipient equilibrium carbon dioxide hydrate formation conditions in aqueous electrolyte solutions[J]. Ind. Eng. Chem. Res.,1992,31(9):2232-2237
    [45]Circone S, Stern LA, Kirby SH, et al. CO2 hydrate:synthesis, composition, structure, dissociation behavior, and a comparison to structure Ⅰ CH4 hydrate[J]. J. Phys. Chem. B,2003,107(23): 5529-5539
    [46]Kang SP, Lee H. Recovery of CO2 from flue gas using gas hydrate:thermodynamic verification through phase equilibrium measurements[J]. Environ. Sci. Technol.,2000,34(20):4397-4400
    [47]Brewer PG. Gas hydrates and global climate change[J]. Ann. N.Y. Acad. Sci.,2000,912:195-199
    [48]Privalov PL. Cold denaturation of proteins[J]. Crit. Rev. Biochem. Mol. Biol.,1990,25:281-305
    [49]Piedmonte DM, Summers C, McAuley A, et al. Sorbitol crystallization can lead to protein aggregation in frozen protein formulations[J]. Pharm. Res.,2007,24:136-146
    [50]Singh SK, Kolhe P, Mehta AP, et al. Frozen state storage instability of a monoclonal antibody: aggregation as a consequence of trehalose crystallization and protein unfolding[J]. Pharm. Res., 2011,28:873-885
    [51]Thompson LU, Fennema O. CCl3F hydrate:ability to inhibit oxidation of L-ascorbic acid in peas[J]. J. Food Sci.,1970,35:640-641
    [52]Thompson LU, Fennema O. Inhibition of L-ascorbic acid oxidation by type Ⅱ gas hydrates[J]. J. Agric. Food Chem.,1971,19(2):232-235
    [53]Rao M, Nguyen H, John VT. Enzyme activity in reversed micelles as modified by hydrate formation[J]. Biotechnol. Progr.,1990,6(6):465-471
    [54]IBPT Corporation[EB/OL]. http://ibpt.cryostasis.com/,2010.12.22
    [55]Phillips RJ, Nguyen H, John VT. Protein recovery from reversed micellar solutions through contact with a pressurized gas phase[J], Biotechnol. Progr.,1991,7:43-48
    [56]Booker RD, Koh CA, Sloan ED, et al. Xenon hydrate dissociation measurements with model protein systems[J]. J. Phys. Chem. B,2011,115(34):10270-10276
    [57]郭平,刘士鑫,杜建芬.天然气水合物气藏开发[M].北京:石油工业出版社,2006
    [58]新华网.中国成为世界上第4个成功钻获“可燃冰”国家[EB/OL].http://news.xinhuanet.com/tech/2007-06/05/content_6201257.htm,2007.06.05
    [59]天然气水合物[EB/OL]. http://baike.baidu.com/view/83115.htm?fr=alaO, 2009.09.21
    [60]Shen YR, Ostroverkhov V. Sum-frequency vibrational spectroscopy on water interfaces:Polar orientation of water molecules at interfaces[J]. Chem. Rev.,2006,106(4):1140-1154
    [61]Koh CA, Wisbey RP, Wu XP, et al. Water ordering around methane during hydrate formation[J]. J. Chem. Phys.,2000,113(15):6390-6397
    [62]Lehmkuhler F, Paulus M, Sternemann C, et al. The carbon dioxide-water interface at conditions of gas hydrate formation[J]. J. Am. Chem. Soc.,2009,131(2):585-589
    [63]English NJ, Macelroy JMD. Structural and dynamical properties of methane clathrate hydrates[J]. J. Comput. Chem.,2003,24(13):1569-1581
    [64]Chialvo AA, Mohammed H, Cummings PT. Molecular dynamics study of the structure and thermophysical properties of model sI clathrate hydrates[J]. J. Phys. Chem. B,2002,106(2): 442-451
    [65]Moon C, Taylor PC, Rodger PM. Molecular dynamics study of gas hydrate formation[J]. J. Am. Chem. Soc.,2003,125(16):4706-4707
    [66]Hawtin RW, Quigley D, Rodger PM. Gas hydrate nucleation and cage formation at a water/methane interface[J]. Phys. Chem. Chem. Phys.,2008,10:4853-4864
    [67]Zhang JF, Hawtin RW, Yang Y, et al. Molecular dynamics study of methane hydrate formation at a water/methane interface[J]. J. Phys. Chem. B,2008,112(34):10608-10618
    [68]Walsh MR, Koh CA, Sloan ED, et al. Microsecond simulations of spontaneous methane hydrate nucleation and growth[J]. Science,2009,326:1095-1098
    [69]Vatamanu J, Kusalik PG. Observation of two-step nucleation in methane hydrates[J]. Phys. Chem. Chem. Phys.,2010,12:15065-15072
    [70]English NJ, Johnson JK, Tylor CE. Molecular-dynamics simulations of methane hydrate dissociation[J]. J. Chem. Phys.,2005,123(24):244503-244514
    [71]Myshakin E, Jiang H, Warzinski R, et al. Molecular dynamics simulations of methane hydrate decomposition[J]. J. Phys. Chem. A,2009,113(10):1913-1921
    [72]Guo G, Zhang Y, Li M, et al. Can the dodecahedral water cluster naturally form in methane aqueous solutions? A molecular dynamics study on the hydrate nucleation mechanisms[J]. J. Chem. Phys.,2008,128(19):194504-194511
    [73]Koga T, Wong J, Endoh MK, et al. Hydrate formation at the methane/water interface on the molecular scale[J]. Langmuir,2010,26(7):4627-4630
    [74]Bagherzadeh SA, Englezos P, Alavi S, et al. A. molecular modeling of the dissociation of methane hydrate in contact with a silica surface[J]. J. Phys. Chem. B,2012,116(10):3188-3197
    [75]Jiang H, Jordan KD, Taylor CE. Molecular dynamics simulations of methane hydrate using polarizable force fields[J]. J. Phys. Chem. B,2007,111(23):6486-6492
    [76]Alavi S, Ripmeester JA, Klug DD. Molecular-dynamics simulations of binary structure II hydrogen and tetrahydrofurane clathrates[J]. J. Chem. Phys.,2006,124(1):014704(1-6)
    [77]Tse JS, Klein M, McDonald IR. Computer simulation studies of the structure I clathrate hydrates of methane, tetrafluoromethane, cyclopropane, and ethylene oxide[J]. J. Chem. Phys.,1984, 81(12):6146-6153
    [78]Sizov W, Piotroskaya EM. Computer simulation of methane hydrate cage occupancy [J]. J. Phys. Chem. B,2007,111(11):2886-2890
    [79]Rosenbaum EJ, English NJ, Johnson JK, et al. Thermal conductivity of methane hydrate from experiment and molecular simulation[J]. J. Phys. Chem. B,2007,111(46):13194-13205
    [80]Jiang H, Jordan KD. Comparison of the properties of xenon, methane, and carbon dioxide hydrates from equilibrium and nonequilibrium molecular dynamics simulations[J]. J. Phys. Chem. C,2010, 114(12):5555-5564
    [81]Ripmeester JA, Ratcliffe CI, Klug DD, et al. Molecular perspectives on structure and dynamics in cathrate hydrates[J]. Ann.N.Y. Acad. Sci.,1994,715:161-176
    [82]Forrisdahl OK, Kvamme B, Haymet ADJ. Methane clathrate hydrates:melting, supercooling and phase separation from molecular dynamics computer simulations[J]. Mol. Phys.,1996,89(3): 819-834
    [83]Rodger PM, Forester TR, Smith W. Simulations of the methane hydrate/methane gas interface near hydrate forming conditions[J]. Fluid Phase Equilib.,1996,116:326-332
    [84]Nada H. Growth mechanism of a gas clathrate hydrate from a dilute aqueous gas solution:a molecular dynamics simulation of a three-phase system[J]. J. Phys. Chem. B,2006,110(33): 16526-16534
    [85]Vatamanu J, Kusalik PG. Molecular insights into the heterogeneous crystal growth of sI methane hydrate[J]. J. Phys. Chem. B,2006,110(32):15896-15904
    [86]Alavi S, Ripmeester JA, Klug DD. Molecular dynamics study of the stability of methane structure H clathrate hydrates[J]. J. Chem. Phys.,2007,126(12):124708-124713
    [87]Vatamanu J, Kusalik PG. Heterogeneous crystal growth of methane hydrate on its sⅡ [001] crystallographic face[J]. J. Phys. Chem. B,2008,112(8):2399-2404
    [88]Guo GJ, Zhang YG, Zhao YJ. Lifetimes of cagelike water clusters immersed in bulk liquid water: A molecular dynamics study on gas hydrate nucleation mechanisms[J]. J. Chem. Phys.,2004, 121(3):1542-1547
    [89]Guo G, Zhang Y, Liu H. Effect of methane adsorption on the lifetime of a dodecahedral water cluster immersed in liquid water:a molecular dynamics study on the hydrate nucleation mechanisms[J]. J. Phys. Chem. C,2007,111(6):2595-2606
    [90]Radhakrishnan R, Trout BL. A new approach for studying nucleation phenomena using molecular simulations:Application to CO2 hydrate clathrates[J]. J. Chem. Phys.,2002,117(4):1786-1796
    [91]Morgan JJ, Blackwell VR, Johnson DE, et al. Hydrate formation from gaseous CO2 and water[J]. J. Environ. Sci. Technol.,1999,33(9):1448-1452
    [92]Warzinski RP, Holder GD. Gas clathrate hydrates[J]. Energy Fuels,1998,12(2):189-190
    [93]Ohgaki K, Sangawa H, Matsubara T, et al. Methane exploitation by carbon dioxide from gas hydrates-phase equilibria for CO2-CH4 mixed hydrate system[J]. J. Chem. Eng. Jpn.,1996,29: 478-483
    [94]Yezdimer EM, Cummings PT, Chialvo AA. Determination of the Gibbs free energy of gas replacement in sI clathrate hydrates by molecular simulation[J]. J. Phys. Chem. A,2002,106(34): 7982-7987
    [95]Geng CY, Wen H, Zhou H. Molecular simulation of the potential of methane reoccupation during the replacement of methane hydrate by CO2[J]. J. Phys. Chem. A,2009,113(18):5463-5469
    [96]Jacobson LC, Hujo W, Molinero V. Nucleation pathways of clathrate hydrates:effect of guest size and solubility [J]. J. Phys. Chem. B,2010,114(43):13796-13807
    [97]Matsumoto M, Tanaka H. On the structure selectivity of clathrate hydrates[J]. J. Phys. Chem. B, 2011,115(25):8257-8265
    [98]Schmahl WW, Swainson IP, Dove MT, et al. Landau free energy and order parameter behaviour of the α/β phase transition in cristobalite[J]. Z. Kristallogr.,1992,201:125-145
    [99]Dyadin YA, Larionov EG, Manakov AY, et al. Clathrate hydrates of hydrogen and neon[J]. Mendeleev Commun.,1999,9:209-210
    [100]Mao WL, Mao HK, Goncharov AF, et al. Hydrogen clusters in clathrate hydrate[J]. Science,2002, 297:2247-2249
    [101]Mao WL, Mao HK. Hydrogen storage in molecular compounds[J]. Proc. Natl. Acad. Sci. U.S.A., 2004,101(3):708-710
    [102]Liang S, Kusalik PG. Crystal growth simulations of H2S hydrate[J]. J. Phys. Chem. B,2010, 114(29):9563-9571
    [103]Liang S, Kusalik PG. Exploring nucleation of H2S hydrates[J]. Chem. Sci.,2011,2:1286-1292
    [104]Florusse LJ, Peters CJ, Schoonman J, et al. Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate[J]. Science,2004,306:469-471
    [105]Park Y, Kim DY, Lee JW, et al. Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates[J]. Proc. Natl. Acad. Sci. U.S.A.,2006,103(34):12690-12694
    [106]Moon C, Hawtin RW, Rodger PM. Nucleation and control of clathrate hydrates:insights from simulation[J]. Faraday Discuss.,2007,136:367-382
    [107]Lee H, Seo Y, Se YT, et al. Recovering methane from solid methane hydrate with carbon dioxide[J]. Angew. Chem. Int. Ed.,2003,42(41):5048-5051
    [108]Uchida T, Takeya S, Ebinuma T. In:5th International Conference on Greenhouse Gas Control Technology[C]. Collingword:2001,523
    [109]Sloan ED, Subramanian S, Matthews PN, et al. Quantifying hydrate formation and kinetic inhibition[J]. Ind. Eng. Chem. Res.,1998,37(8):3124-3132
    [110]Makogon YF. Hydrates of Natural Gas[M]. Moscow, Nedra, Izadatelstro:1974
    [111]Lederhos JP, Long JP, Sum A, et al. Effective kinetic inhibitors for natural gas hydrates[J]. Chem. Eng. Sci.,1996,51:1221-1229
    [112]Ohmura R, Ogawa M, Yasuka K, et al. Statistical study of clathrate-hydrate nucleation in a water/hydrochlorofluorocarbon system:search for the nature of the "memory effect"[J]. J. Phys. Chem. B,2003,107(22):5289-5293
    [113]Buchanan P, Soper AK, Westacott RE, et al. Search for memory effects in methane hydrate: structure of water before hydrate formation and after hydrate decomposition[J]. J. Chem. Phys., 2005,123(16):164507-164513
    [114]Rodger PM. Methane hydrate melting and memory[J]. Ann. N.Y. Acad. Sci.,2000,912:474-482
    [115]Seo YT, Lee H. Hydrate phase equilibria of the carbon dioxide, methane, and water system[J]. J. Chem. Eng. Data,2001,46(2):381-384
    [116]Jorgensen WL, Madura JD, Swenson CJ. Optimized intermolecular potential functions for liquid hydrocarbons[J]. J. Am. Chem. Soc.,1984,106(22):6638-6646
    [117]Goodbody SJ, Watanabe K, MacGowan D, et al. Molecular simulation of methane and butane in silicalite[J]. J. Chem. Soc. Faraday Trans.,1991,87(13):1951-1958
    [118]Jorgensen WL, Maxwell DS, TiradoRives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. J. Am. Chem. Soc.,1996, 118(45):11225-11236
    [119]Harris JG, Yung KH. Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model[J]. J. Phys. Chem.,1995,99(31):12021-12024
    [120]Potoff JJ, Siepmann IJ. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen[J]. AIChE J.,2001,47(7):1676-1682
    [121]Toukan K, Rahman A. Molecular-dynamics study of atomic motions in water[J]. Phys. Rev. B, 1985,31(5):2643-2648
    [122]Berendsen HJC, Postma JPM, von Gunsteren WF, et al. In:Pullman B, Reidel D. Intermolecular Forces[C].1981,331-331
    [123]Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials[J]. J. Phys. Chem.,1987,91(24):6269-6271
    [124]Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water[J]. J. Chem. Phys.,1983,79(2):926-935
    [125]Rick SW, Stuart SJ, Berne BJ. Dynamical fluctuating charge force fields:application to liquid water[J]. J. Chem. Phys.,1994,101(7):6141-6156
    [126]Horn HW, Swope WC, Pitera JW, et al. Development of an improved four-site water model for biomolecular simulations:TTP4P-Ew[J]. J. Chem. Phys.,2004,120(20):9665-9678
    [127]Abascal JLF, Sanz E, Garcia Fernandez R, et al. A potential model for the study of ices and amorphous water:TIP4P/Ice[J]. J. Chem. Phys.,2005,122(23):234511-234519
    [128]Abascal JLF, Vega C. A general purpose model for the condensed phases of water:TIP4P/2005[J]. J. Chem. Phys.,2005,123(23):234505-234516
    [129]Mahoney MW, Jorgensen WL. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions[J]. J. Chem. Phys.,2000,112(20): 8910-8922
    [130]Rick SW. A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums[J]. J. Chem. Phys.,2004,120(13):6085-6093
    [131]Liang S, Rozmanov D, Kusalik PG. Crystal growth simulations of methane hydrates in the presence of silica surfaces[J]. Phys. Chem. Chem. Phys.,2011,13:19856-19864
    [132]Brodka A, Zerda TW. Properties of liquid acetone in silica pores:molecular dynamics simulation[J]. J. Chem. Phys.,1996,104(16):6319-6326
    [133]Allen MP, Tilddesley DJ. Computer Simulation of Liquids[M]. Oxford:Oxford University Press, 2004
    [134]Metropolis N, Rosenbluth AW, Rosenbluth MN, et al. Equation of state calculations by fast computing machines[J]. J. Chem. Phys.,1953,21(6):1087-1092
    [135]Raable D. Overview of the lattice Boltmann method for nano-and microscale fluid dynamcs in materials science and engineering[J]. Modelling Simul. Mater. Sci. Eng.,2004,12:R13-46
    [136]Fisch U, Hasslacher B, Pomeau Y. Lattice-gas automata for the Navier-Stokes equations[J], Phys. Rev. Lett.,1986,56(14):1505-1508
    [137]Oran ES, Oh CK, Cybyk BZ. Direct simulation Monte Carlo:recent advances and applications[J]. Annu. Rev. Fluid Mech.,1998,30:403-441
    [138]Malevanets A, Kapral R. Mesoscopic multi-particle collision model for fluid flow and molecular dynamics[J]. Lecture Notes in Physics,2004,640:116-149
    [139]Malevanets A, Kapral R. Mesoscopic model for solvent dynamics[J]. J. Chem. Phys.,1999, 110(17):8605-8613
    [140]Verlet L. Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules[J]. Phys. Rev.,1967,159(1):98-103
    [141]Verlet L. Computer "experiments" on classical fluids. II. Equilibrium correlation functionsfJ]. Phys. Rev.,1968,165(1):201-214
    [142]Hockney RW. The potential calculation and some applications[J]. Meth. Comput. Phys.,1970,9: 136-211
    [143]van Gunsteren WF, Berendsen HJC. Algorithms for macromolecular dynamics and constraint dynamics[J]. Mol. Phys.,1977,34(5):1311-1327
    [144]Swope WC, Andersen HC, Berens PH, et al. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules:Application to small water clusters[J]. J. Chem. Phys.,1982,76(1):637-649
    [145]Schlick T. Molecular Modeling and Simulation:an Interdisciplinary Guide[M]. New York: Springer-Verlag,2002
    [146]Gear CW. Numerical Initial Value Problems in Ordinary Differential Equations[M]. New Jersey: Prentice-Hall,1971
    [147]Beeman D. Some multistep methods for use in molecular dynamics calculations[J]. J. Comput. Phys.,1976,20(2):130-139
    [148]Woodcock LV. Isothermal molecular dynamics calculations for liquid salts[J]. Chem. Phys. Lett., 1971,10(3):257-261
    [149]Berendsen HJC, Postma JPM, van Gunsteren WF. Molecular dynamics with coupling to an external bath[J]. J. Chem. Phys.,1984,81(8):3684-3690
    [150]Andersen HC. Molecular dynamics simulations at constant pressure and/or temperature[J]. J. Chem. Phys.,1980,72(4):2384-2393
    [151]Nose S. A molecular dynamics method for simulations in the canonical ensemble[J]. Mol. Phys., 1984,52(2):255-268
    [152]Nose S. A unified formulation of the constant temperature molecular dynamics methods[J]. J. Chem. Phys.,1984,81(1):511-519
    [153]Evans DJ, Holian BL. The Nose-Hoover thermostat[J]. J. Chem. Phys.,1985,83(8):4069-4074
    [154]Hoover WG Nose-Hoover Nonequilibrium Dynamics and Statistical Mechanics, Symposium on Progress and Future Prospects in Molecular Dynamics in Memory of Prof. S. Nose[M], Yokohama, Japan:2006.6-8
    [155]Hoover WG Canonical dynamics:equilibrium phase-space distributions[J]. Phys. Rev. A,1985, 31(3):1695-1697
    [156]Parrinello M, Rahman A. Crystal structure and pair potentials:a molecular-dynamics study[J]. Phys. Rev. Lett.,1980,45(14):1196-1199
    [157]Parrinello M, Rahman A. Polymorphic transitions in single crystals:A new molecular dynamics method[J]. J. Appl. Phys.,1981,52(12):7182-7190
    [158]Lee MW, Collett TS. Elastic properties of gas hydrate-bearing sediments[J]. Geophysics,2001, 66(3):763-771
    [159]Cha SB, Ouar H, Wildemann TR, et al. A third-surface efect on hydrate formation[J]. J. Phys. Chem.,1988,92(23):6492-6494
    [160]Riestenberg D, West O, Lee S, et al. Sediment surface effects on methane hydrate formation and dissociation[J]. Mar. Geol.,2003,198:181-190
    [161]Yan L, Chen G, Pang W, et al. Experimental and modeling study on hydrate formation in wet activated carbon[J]. J. Phys. Chem. B,2005,109(12):6025-6030
    [162]Brewer PG, Orr FM Jr., Friederich G, et al. Gas hydrate formation in the deep sea:in situ experiments with controlled release of methane, natural gas, and carbon dioxide[J]. Energy Fuels, 1998,12(1):183-188
    [163]Haszeldine RS. Carbon capture and storage:how green can black be?[J]. Science,2009,325: 1647-1652
    [164]Hughes D. Experimental study of the Joule-Thomson effect in carbon dioxide[J]. Carbon Capture J.,2008,2:2
    [165]Baez LA, Clancy P. Computer simulation of the crystal growth and dissolution of natural gas hydrates[J]. Ann.N.Y. Acad. Sci.,1994,715:177-186
    [166]Plimpton SJ. Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995,117(1):1-19
    [167]Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical integration of the Cartesian equations of motion of a system with constraints:molecular dynamics of n-Alkanes[J]. J. Comput. Phys.,1977, 23(3):327-341
    [168]Lopes PEM, Murashov V, Taz M, et al. Development of an empirical force field for silica. Application to the quartz-water interface[J]. J. Phys. Chem. B,2006,110(6):2782-2792
    [169]Duan ZH, Zhang ZG Equation of state of the H2O, CO2, and H2O-CO2 systems up to 10 GPa and 2573.15 K:molecular dynamics simulations with ab initio potential surface[J]. Geochim. Cosmochim. Acta,2006,70(9):2311-2324
    [170]Hockney RW, Eastwood JW. Computer Simulation Using Particles[M]. New York:Adam Hilger, Taylor & Francis,1989
    [171]Hoover WG Constant-pressure equations of motion[J]. Phys. Rev. A,1986,34(3):2499-2500
    [172]Melchionna S, Ciccotti G. Holian BL. Hoover NPT dynamics for systems varying in shape and size[J]. Mol. Phys.,1993,78(3):533-544
    [173]Steinhardt PJ, Nelson DR, Ronchetti M. Bond-orientational order in liquids and glasses[J]. Phys. Rev. B,1983,28(2):784-805
    [174]Wolde PR, Ruiz-Montero MJ, Frenkel D. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling[J]. J. Chem. Phys.,1996,104(24):9932-9947
    [175]Clancy P. Annual Report GRI-93/0336[M]. Gas Research Institute, Chicago Illinois:1993
    [176]Jacobson LC, Hujo W, Molinero V. Thermodynamic stability and growth of guest-free clathrate hydrates:a low-density crystal phase of water[J]. J. Phys. Chem. B,2009,113(30):10298-10307
    [177]Voronoi G. Nouvelles applications des parametres continus a la theorie des formes quadratiques. Premier memoire. Sur quelques proprietes des formes quadratiques positives parfaits[J]. J. Reine Angew. Math.,1908,1908(133):97-102
    [178]Finney JL. Random packings and the structure of simple liquids. I. The geometry of random close packing[J]. Proc. R. Soc. Lond. A,1970,319(1539):479-493
    [179]van Duijneveldt JS, Frenkel D. Computer simulation study of free energy barriers in crystal nucleation[J]. J. Chem. Phys.,1992,96(6):4655-4668
    [180]Tanemura M, Hiwatari Y, Matsuda H, et al. Geometrical analysis of crystallization of the soft-core model[J]. Prog. Theor. Phys.,1977,58(4):1079-1095
    [181]Swope WC, Andersen HC.106-particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid[J]. Phys. Rev. B,1990,41(10):7042-7054
    [182]Idrissi A,Vyalov I, Kiselev M, et al. Heterogeneity of the local structure in sub-and supercritical ammonia:a voronoi polyhedra analysis[J]. J. Phys. Chem. B,2011,115(31):9646-9652
    [183]Starr FW, Sastry S, Douglas JF, et al. What do we learn from the local geometry of glass-forming liquids?[J]. Phys. Rev. Lett.,2002,89(12):125501-125504
    [184]Chakraborty D, Chandra A. An analysis of voids and necks in supercritical water[J]. J. Mol. Liq., 2011,163(1):1-6
    [185]Chakraborty SN, Grzelak EM, Barnes BC, et al. Voronoi tessellation analysis of clathrate hydrates[J]. J. Phys. Chem. C,2012,116(37):20040-20046
    [186]Matsumoto M, Baba A, Ohmine I. Topological building blocks of hydrogen bond network in water[J]. J. Chem. Phys.,2007,127(13):134504-134512
    [187]Jacobson LC, Molinero V. Can amorphous nuclei grow crystalline clathrates? The size and crystallinity of critical clathrate nuclei[J]. J. Am. Chem. Soc.,2011,133(16):6458-6463
    [188]Jacobson LC, Matsumoto M, Molinero V. Order parameters for the multistep crystallization of clathrate hydrates[J]. J. Chem. Phys.,2011,135(7):074501(1-7)
    [189]Bai D, Liu B, Chen G, et al. Role of guest molecules on the hydrate growth at vapor-liquid interfaces[J]. AIChE J., DOI:10.1002/aic.14011
    [190]Yousuf M, Qadri SB, Knies DL, et al. Novel results on structural investigations of natural minerals of clathrate hydrates[J]. Appl. Phys. A,2004,78:925-939
    [191]Jacobson LC, Molinero V. A methane-water model for coarse-grained simulations of solutions and clathrate hydrates[J]. J. Phys. Chem. B,2010,114(21):7302-7311
    [192]Jacobson LC, Hujo W, Molinero V. Amorphous precursors in the nucleation of clathrate hydrates[J]. J.Am. Chem. Soc.,2010,132(33):11806-11811
    [193]Bai D, Chen G, Zhang X, et al. Microsecond molecular dynamics simulations of the kinetic pathways of gas hydrate formation from solid surfaces[J]. Langmuir,2011,27(10):5961-5967
    [194]Nakashiki N, Ohsumi T, Shitashima K. Sequestering of CO2 in a deep ocean-fall velocity and dissolution rate of solid CO2 in the ocean[R]. Japan:CRIEPI Report (EU 91003),1991
    [195]Ozaki M, Sonoda K, Fujioka Y, et al. Sending CO2 into deep ocean with a hanging pipe from floating platform[J]. Energy Convers. Manage.,1995,36:475-478
    [196]Haugan PM, Drange H. Sequestration of CO2 in the deep ocean by shallow injection[J]. Nature, 1992,357(6376):318-320
    [197]Ohsumi T. CO2 disposal options in the deep sea[J]. Mar. Technol. Soc. J.,1995,29:58-66
    [198]Sloan ED. Fundamental principles and applications of natural gas hydrates[J]. Nature,2003, 426(6964):353-363
    [199]Koh CA, Sum AK, Sloan ED. Gas hydrates:unlocking the energy from icy cages[J]. J. Appl. Phys., 2009,106(6):061101(1-14)
    [200]Argyris D, Tummala NR, Striolo A. Molecular structure and dynamics in thin water films at the silica and graphite surfaces[J]. J. Phys. Chem. C,2008,112(35):13587-13599
    [201]Bai D, Chen G, Zhang X, et al. Nucleation of the CO2 hydrate from three-phase contact lines[J]. Langmuir,2012,28(20):7730-7736
    [202]Lee H, Lee JW, Kim DY, et al. Tuning clathrate hydrates for hydrogen storage[J]. Nature,2005, 434(7034):743-746
    [203]McElwain JC, Wade-Murphy J, Hesselbo SP. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals[J]. Nature,2005,435(7041):479-482
    [204]Bohannon J. Weighing the climate risks of an untapped fossil fuel[J]. Science,2008,319: 1753-1753
    [205]Kvenvolden KA. Potential effects of gas hydrate on human welfare[J]. Proc. Natl. Acad. Sci. U.S.A.,1999,96(7):3420-3426
    [206]Garden AL, Lane JR, Kjaergaard HG. Counterpoise corrected geometries of hydrated complexes[J]. J. Chem. Phys.,2006,125(14):144317-144323
    [207]de Lange KM, Lane JR. Explicit correlation and intermolecular interactions:investigating carbon dioxide complexes with the CCSD(T)-F12 method[J]. J. Chem. Phys.,2011,134(3):034301(1-9)
    [208]Makarewicz J. Intermolecular potential energy surface of the water-carbon dioxide complex[J]. J. Chem. Phys.,2010,132(23):234305-234314
    [209]Vlcek L, Chialvo AA, Cole DR. Optimized unlike-pair interactions for water-carbon dioxide mixtures described by the SPC/E and EPM2 Models[J]. J. Phys. Chem. B,2011,115(27): 8775-8784
    [210]Long JP. Gas hydrate formation mechanism and kinetic inhibitor[D]. Golden, CO:Colorado School of Mines,1994
    [211]Dvorkin J, Prasad M, Sakai A, et al. Elasticity of marine sediments:rock physics modeling[J]. Geophys. Res. Lett.,1999,26:1781-1784
    [212]Zhang Q, Li F, Sun C, et al. Compressional wave velocity measurements through sandy sediments containing methane hydrate[J]. Am. Mineral.,2011,96:1425-1432
    [213]Long JP, Sloan ED. Hydrates in the ocean and evidence for the location of hydrate formation[J]. Int. J. Thermophys.,1996,17:1-13
    [214]Smelik EA, King HE. Crystal-growth studies of natural gas clathrate hydrates using a pressurized optical cell[J]. Am. Mineral.,1997,82:88-98
    [215]Subramanian S, Sloan ED. Solubility effects on growth and dissolution of methane hydrate needles[A]. In:4th International Conference on Gas Hydrates[C]. Yokohama, Japan:2002, 856-861
    [216]Mastny EA, Miller CA, de Pablo JJ. The effect of the water/methane interface on methane hydrate cages:the potential of mean force and cage lifetimes[J]. J. Chem. Phys.,2008,129(3): 034701(1-8)
    [217]Rodger PM. Stability of gas hydrates[J]. J. Phys. Chem.,1990,94(15):6080-6089
    [218]Kvamme B. Mechanisms for initiation of hydrate from liquid water liquid phase clustering, surface adsorbtion, or what?[J]. Ann. N.Y. Acad. Sci.,1994,715:306-310
    [219]von Stackelberg M. Feste gas hydrate[J]. Naturwiss.,1949,36:359-362
    [220]Bai D, Zhang X, Chen G, et al. Replacement mechanism of methane hydrate with carbon dioxide from microsecond molecular dynamics simulations[J]. Energy Environ. Sci.,2012,5(5): 7033-7041
    [221]Ning F, Yu Y, Kjelstrup S, et al. Mechanical properties of clathrate hydrates:status and perspectives[J]. Energy Environ. Sci.,2012,5:6779-6795
    [222]Boswell R, Collett TS. Current perspectives on gas hydrate resources[J]. Energy Environ. Sci., 2011,4:1206-1215
    [223]Smith DH, Seshadri K, Wilder JW. In:1st National Conference on Carbon Sequestration[C]. US Department of Energy:National Energy Technology Laboratory,2001,1
    [224]Kirchner MT, Boese R, Billups WE, et al. Gas hydrate single-crystal structure analyses[J]. J. Am. Chem. Soc.,2004,126(30):9407-9412
    [225]Sarupria S, Debenedetti PG. Molecular dynamics study of carbon dioxide hydrate dissociation[J]. J. Phys. Chem. A,2011,115(23):6102-6111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700