用户名: 密码: 验证码:
岩性油气藏勘探理论和方法体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的快速发展,能源需求在不断扩大。在构造油气藏已基本落实的情况下,岩性油气藏成为大油气田的勘探方向,岩性圈闭已经成为石油勘探的重要目标。由于岩性油气藏形成和赋存的隐蔽性和复杂性,其理论和方法体系研究即是石油地质学领域的重要研究内容,成为降低油气勘探风险的有效方法。准噶尔盆地的油气勘探处在由构造油气藏勘探向岩性油气藏勘探转变的转折时期,以往的勘探目标以古凸起上的断块和低幅度背斜为主,随着勘探程度的提高,勘探目标转向斜坡区和深凹陷的岩性圈闭成为必然趋势。按照层序地层学分析,准噶尔盆地夏盐地区和中拐地区侏罗系不整合面上、下和斜坡区辫状河三角洲前缘是岩性油气藏发育的有利场所,具有较大的勘探潜力。本文以夏盐地区和中拐地区的侏罗系岩性油气藏为研究对象,研究准噶尔盆地岩性油气藏勘探理论、方法体系及其应用实效。
     利用地质、地震、测井相结合的综合研究方法,分析了夏盐地区和中拐地区3000km~2三维地震资料和80多口探井资料,建立了岩性油气藏勘探理论和方法体系,全面阐述了基于区带评价的研究方法和基于岩性圈闭识别和评价的研究方法。研究内容包括岩性油气藏勘探理论研究、地质基础研究和区带评价、物探基础和技术方法研究、岩性圈闭识别和评价、岩性油气藏特征和成藏条件研究。在岩性油气藏勘探的地质基础、方法体系、技术创新和勘探实效上取得了很好的效果。
     从层序地层学入手,按等时地层格架划分小层并进行砂层对比,结合沉积体系和古地貌研究,指出了岩性油气藏形成的新层系和有利区,深入分析了岩性油气藏研究的资料条件和影响因素,按基于目标评价的研究方法落实和评价了石南4井东岩性圈闭和拐19井西断层—岩性圈闭,分析了石南31井区岩性油气藏地质特征,解剖了石南4区、石南21区构造—岩性油气藏之间的关系,并建立了准噶尔盆地岩性油气藏勘探理论和方法体系。主要取得了以下研究成果:
     岩性油气藏勘探理论主要包括:①层序地层学划分确定有利层系;②坡折带研究预测岩性油气藏的类型;③沉积体系和沉积相研究确定有利区,勘探实践表明:大型河湖过渡带是岩性油气藏富集的有利区带;④含油气系统研究确定工作思路,针对准噶尔盆地侏罗系“古源型”油气系统和富砂坳陷型湖盆提出了岩性油气藏勘探研究的思路是“岩性油气藏—岩性圈闭—砂体—储层—含油气性”;⑤岩性油气藏的控制因素有:最大和初次湖泛面控制了岩性油气藏分布的层系;不整合面控制了地层油气藏的分布;油源断层控制了岩性油气藏的分布区域,成圈断层控制了岩性油气藏的规模,成藏断层控制了岩性油气藏的富集。
     在层序地层学指导下用基于区带评价的研究方法和基于圈闭评价的研究方法解决岩性油气藏勘探中区带级和目标级任务。资料条件研究和成藏条件研究是岩性圈闭评价过程中研究圈闭可靠性和有效性的关键环节。岩性油气藏形成的控制因素比较复杂,关键因素即不整合面、最大洪泛面和断层面(主要作为油气系统的疏导体系)。岩性圈闭识别归结落实“四条线”和
With the national express economic growth, energy is demanded rapidly. To obtain the profitable business from oil exploration, stratigraphic trap has become dominant target of oil exploration. Because stratigraphic traps are of subtle and complexion, the system of theory and methodology for stratigraphic trap exploration has become important basic research in petroleum geology and effective means to avoid the risk for oil exploration. As an example, the petroleum exploration in Junggar basin is at the turn point from the stage of structure trap on paleo-uplift to the stage of stratigraphic trap on its slope. It is priority region of Jurassic stratigraphic trap exploration in their slops of the Xiayuan uplift and Zhongguai uplift that are braid delta front. So the study on the system of theory and methodology for exploring stratigraphic reservoir has been fulfilled in the dissertation.The integrative research methods are used in the study on stratigraphic trap, such as the combination of geology, seismology and loggings, analyzing 7 blocks 3D seismic data and more than 80 wells log curves and cuttings. A system of theory and methodology for exploring stratigraphic reservoir has been up built based on play and trap assessment. Many aspects of stratigraphic reservoir, including its definition, classification, basic geological, geophysical and technical research, identifying trap, play and trap assessment, characteristics and formation of stratigraphic reservoir, have been discussed. And more progress has been made.Under the guidance of sequence stratigraphy, the sequence boundary between Cretaceous and Jurassic system is reset by using seismic profiles and well data in Xiayan region. The new stratigraphic layer and play for stratigraphic reservoir are proposed. The dominant factors and data condition that affected stratigraphic trap are also analyzed. The East-Well Shinan 4 stratigraphic trap and The West-Well Guai 19 fault-stratigraphic trap have been identified and valued by the method based on trap assessment. The geological characteristic of Shinan 31 stratigraphic reservoir, Shinan 4 and Shinan 21 are anatomized based on reservoir analysis. The system of theory and methodology for exploring stratigraphic trap has been set up. The productions of the dissertation are as follows:The theory for exploring stratigraphic has been accepted as follows.The profitable reservoir is ascertained by compartmentalizing sequence stratigraphy. The types of stratigraphic reservoir are predicted by studying break slope. The prospecting area is outlined by plotting sedimentary system and facies and the abundant stratigraphic reservoir has enriched in fluvial-lacustrine transitional zones .The idea is guided by understanding oil system. The idea for exploring Jurassic stratigraphic reservoirs has been proposed based on the their Paleozoic source rock and sandstone enriched depression as stratigraphic reservoir, stratigraphic trap,
    sandstone bodies, reservoir rock and reservoir. The stratigraphic reservoir are dominated as follows, the series of stratigraphic reservoir related sedimentary is dominated by Max and earlier fluvial surfaces, stratigraphic reservoir is dominated by unconformity. The distribution, acreage and richness of stratigraphic reservoir are dominated by source faults, trap faults, reservoir faults.The methodology for exploring stratigraphic has been proposed as follows: The play assessment is studied under guidance of sequence stratigraphy sedimentary system and facies analysis, and the trap assessment is studied based on identifying trap, and the reliability and effectiveness of stratigraphic trap are estimated based on reliability of seismic data and petroleum system. The formation of stratigraphic reservoir is complex, and its dominant factors are unconformity, source faults, max higher fluvial surface and drainages system of petroleum. The stratigraphic traps are dominated by four lines such as pinch out, erosion, iso- thickness of reservoir, and iso-structure line, and four surfaces ceiling, bottom of reservoir, unconformity and fault. The contents of stratigraphic trap studies include data analysis of seismic and logging, stratigraphic trap play assessment, stratigraphic trap identification and stratigraphic trap formation mechanism. The accuracy of stratigraphic trap is affected in different stage of data gathering, processing, interpreting, impendence, mapping. It is emphasis that improving resolving power should be resolved in field stage and predicting petrology should be resolved in data processing stage.The sequence boundary between Jurassic and Cretaceous system is reclassified correctly in Xiayan region, because the stratigraphic trap has been discovered and enhanced the view.On the aspect of play assessment, the stratigraphic horizon (J2t0) and new play are proposed latterly, the newly stratigraphic layers (J2t0 Jzt3 J2x4) , including former Iayers(J2t2-. J2x2 J2S2) .are of stratigraphic trap. Seven stratigraphic trap plays, the Jidong play(the reservoir of J2t3N J2t2),the North-Well Shinan7 play(the reservoir of J2t2), the Jinan play(the reservoir of J2t3 J2t2 J2t1 J2t0), the Jibei play(the reservoir of J2t2 J2t J2t0), the northern of Sangequan sag play (the reservoir of J2t3 J2t2 J2t1 J2t0),the Shinanl3-Ji002(the reservoir of J1s1,), the northern of Shinan sag play (the reservoir of J2x3, J2x2 J2x1). Otherwise, in Zhongguai region, it is a prospecting region in its southern slope that some of the multiple horizons(the reservoir of J1b34 J1b1 3 J1S21 J2s31) are discovered of stratigraphic reservoirs.On the aspect of trap assessment, a variety of stratigraphic trap developed in Xianyan and Zhongguai region. There are uniform-orientation stratigraphic trap, converse-orientation stratigraphic trap, oblique-orientation stratigraphic trap, stratigraphic trap, left-fault stratigraphic trap, right-fault stratigraphic trap by intersecting sedimentary orientation with structure.
    On the aspect of reservoir character, the reservoir Shinan31 is regarded as structure-stratigraphic reservoir (J:to- Ktq) that is dominated by structure, lithology and stratigraphy. The Shinan4 (^2) & the Shinan21 (J2t2) are back-fence structure- stratigraphic reservoir by a narrow strait, which are different oil-water contact.The achievement of the research & its application has filled the blank of Junggar basin that the dream of discovering stratigraphic reservoir under the guideline of exploring stratigraphic trap has become true. The Shinan 31 Block structure-stratigraphic reservoir, which is regard as milestone of exploring stratigraphic reservoir in Junggar basin, has been discovered and 2119xlO4 tone geological reserve has been proved. The characteristics of the reservoir is considered as a structure-stratigraphic reservoir , which ceiling is of Cretaceous mudstone(K!q) , floor of Jurassic mudstone(J2t) , reservoir(J2t0) of Cretaceous conglomerates(Kiq) and Jurassic sandstone(J2to) that combined with unconformity(K/J).The theory and methodology for exploring stratigraphic reservoir has magnificent meanings of geological theory and practical application. So it might be applied in Junggar basin and the others.
引文
1.Halbouty著.寻找隐蔽油藏.刘民中译.北京:石油工业出版社,1988.3-18.
    2.大庆石油地质与开发编辑部编.中国隐蔽油气勘探论文集.黑龙江:科学技术出版社.1984.
    3.胡见义,徐树宝,刘叔萱,等.非构造油气藏[M].北京:石油工业出版社.1986.
    4.Dobrin M.B著.地震勘探寻找地层圈闭.牛毓荃,徐怀大,陈俊生,等译.见:佩顿主编.地震地层学在油气勘探中的应用.北京:石油工业出版社,1980.224-230.
    5. Magoon L. B. and Dow W. G. The petroleum system: from source to trap. AAPG Memoir 60, 1994, 226-234.
    6.潘元林,孔凡仙主编.中国隐蔽油气藏[M].北京:地质出版社.1998.
    7.丘东洲.准噶尔盆地西北缘三叠-侏罗系隐蔽油气圈闭勘探[J].新疆石油地质,1994,15(1):1-9.
    8.贾承造,赵文智,邹才能,等.岩性地层油气藏研究的两项核心技术[J].石油勘探与开发,2004,31(3):3-9.
    9.王东坡,刘立.大陆裂谷盆地层序地层学的研究[J].岩相古地理,1994,14(3):1-9.
    10.田景山,曾允浮,张长俊,等.东营凹陷沙河街组层序地层和地层格架研究[J].矿物岩石,1994,14(2):37-49.
    11.沈守文,彭大钧,颜其彬,等.层序地层学预测隐蔽油气藏的原理和方法[J].地球学报,1997,21(3):300-305.
    12.徐怀大.如何推动我国层序地层学迅速发展[J].地学前缘,1994,2(3~4):103-113.
    13.张振生,黎英,王冰.冀中坳陷陆相地层层序地层学的应用[J].石油学报,1997,18(2):26-33.
    14.丁翠平,雷安贵.岩性油气藏预测技术[J].石油勘探与开发,1999,26(1):6-9.
    15.沈守文,彭大钧,颜其彬,等,试论隐蔽油气藏的分类及勘探思路[J],石油学报.2000,21(2):16-22.
    16.林雄,田景春.非构造油气藏国内外研究现状及发展方向[J].岩相古地理,1998,18(4):63-73.
    17.刘护创,王文慧.吐哈盆地台北凹陷隐蔽油气藏勘探潜力分析[J].新疆石油地质,2000,21(4):279-281.
    18.薛良清.湖相盆地中的层序、体系域与隐蔽油气藏[J].石油与天然气地质,2002,23(2):115-120.
    19.蒲仁海,郑显华,袁丽珍,等.论非构造油气藏综合勘探方法[J].西北大学学报(自然科学版1998,28(6):522-526.
    20.杨平,刘云武,金成志.岩性圈闭预测方法及应用[J].大庆石油地质与开发.2003,22(3):10-12.
    21.王屿涛,吕化纲.准噶尔盆地陆西地区含油气系统研究[J].断块油气田,1999,6(3):1-4.
    22.赵文智,胡素云,瞿辉.含油气系统研究思路和方法在油气资源评价中的应用.[J].石油学报,2004,26(增刊):30-34.
    23.伍新和,伊海生,王成善.准噶尔盆地石南油田油气藏地球化学特征.天然气工业,2004:24(12):24-27.
    24.张年富,张越迁,徐常胜.陆梁隆起断裂系统及其对油气运聚的控制作用[J].新疆石油地质,2003,24(4):281-283.
    25.王绪龙,康素芳.准噶尔盆地腹部及西北缘斜坡区原油成因分析[J].新疆石油地质,1999,22(3):213-216.
    26.王绪龙,杨海波,康素芳,等.准噶尔盆地陆粱隆起陆9井油源与成藏分析[J].新疆石油地质,2001,22(3):213-216.
    27.崔炳富,王海东,康素芳,等.准噶尔盆地车拐地区石油运聚规律研究[J].新疆石油地质,2005,26(1):36~38.
    28.中国石油天然气集团公司油气储层重点实验室编.陆相层序地层学应用指南[M].北京:石油工业出版社.2002.17-68.
    29.蒲仁海,梅志超,唐忠华.准噶尔盆地东部侏罗系陆相层序地层学探讨[J].新疆石油地质,1994,15(4):335-341.
    30.张满郎,张琴,朱筱敏.准噶尔盆地侏罗系层序地层划分探讨[J].石油实验地质,2000,22(3):236-249.
    31.王宜林,王英民,齐雪峰,等.准噶尔盆地侏罗系层序地层划分[J].新疆石油地质,2001,22(5):382-385.
    32.李天明,支东明,靳军.准噶尔盆地车排子地区侏罗系层序地层格架[J].新疆石油地质,2002,23(1):286-290.
    33.鲍志东,管守锐,李儒峰,等,准噶尔盆地侏罗系层序地层学研究[J].石油勘探与开发,2002,29(1):48-51.
    34.林畅松,潘元林,肖建新,等.“构造坡折带”—断陷盆地层序分析和油气预测的重要概念.地球科学中国地质大学学报,2000,25(3):260-266.
    35.王英民,刘豪,李立诚,等.准噶尔大型坳陷湖盆坡折带的类型和分布特征[J].地球科学,2002,27(5):683-688.
    36.王英民,刘豪,王嫒.准噶尔盆地侏罗系非构造圈闭的勘探前景.石油与天然气地质,2002,29(1):44-47.
    37.张善文,王英民,李群.应用坡折带理论寻找隐蔽油气藏[J].石油勘探与开发.2003,30(3):5-7.
    38.刘豪,王英民,王媛,等.大型坳陷湖盆坡折带的研究及其意义——以准噶尔盆地西北缘侏罗纪坳陷湖盆为例[J].沉积学报.2004(1):97-104.
    39.刘豪,王英民,王媛.坳陷湖盆坡折带特征及其对非构造圈闭的控制[J].石油学报,2004,25(2):30-35
    40.李道燧,张宗林.鄂尔多斯盆地中部古地貌与构造对气藏的控制作用[J].石油勘探与开发,1994,21(3):9-14.
    41.何自新,郑聪斌,陈安宁,等.长庆气田奥陶系古沟槽展布及其对气藏的控制[J].石油学报,2001,22(4):35-38.
    42.杨智,等.靖边地区下古生界储层预测与开发井位优选[C].储层预测技术及其实践,2001,北京:石油工业出版社.
    43.易士威,臧焕荣.鄂尔多斯盆地东部加里东期的古地貌及其对气藏的控制[J].古潜山,1998,(4):9-13.
    44.拜文华,吕锡敏,李小军,等.古岩溶盆地岩溶作用模式及古地貌精细刻画——以鄂尔多斯盆地东部奥陶系风化壳为例[J].现代地质,2002,16(3):292-298.
    45.费宝生.隐蔽油气藏的勘探[J].油气地质与采收率.2002,9(6):29-32.
    46.尚尔杰.油气系统研究方法应用中若干问题的讨论[J].石油勘探与开发.2003,30(3):97-101.
    47.谭开俊,田鑫,孙东,等.准噶尔盆地西北缘断裂带油气分布特征及控制因素[J].断块油气田,2004,11(6):13-15.
    48.付广,薛永超,付晓飞.油气运移疏导系统及其对成藏的控制[J].新疆石油地质,2001,22(1):24-26
    49.何登发,陈新发,张义杰,等.准噶尔盆地油气富集规律[J].石油学报,2004,25(3):1-10.
    50.陈中红,查明,吴孔友,等.陆梁隆起白垩系底部不整合面特征与油气运聚[J].新疆石油地质,2002,23(4):283-285.
    51.刘银河.准噶尔盆地侏罗系沉积构造与油气分布[J].石油勘探与开发,1999,26(5):12-15.
    52.周荔青.中国陆相含油气盆地斜坡区重大中型岩性型油气田形成条件[J].石油与天然气地质.2003,24(4):362-366.
    53.曾溅辉,郑和荣,王宁.东营凹陷岩性油气藏成藏动力学特征[J].石油与天然气地质,1998,19(4):326-329.
    54.刘银河.准噶尔盆地侏罗系沉积构造与油气分布[J].石油勘探与开发,1999,26(5):12-15.
    55.张年富,张越迁,姚新玉,等.准噶尔盆地莫北凸起油气成藏条件与分布规律[J].新疆石油地质,2001,22(2):103-106.
    56.刘豪,王英民,王嫒.坳陷湖盆坡折带特征及其对非构造圈闭的控制[J].石油学报,2004,25(2):30-35.
    57.[美]R.E.谢里夫,[加]L.P.吉尔达特.初英,等(译).勘探地震学(第二版).北京:石油工业出版社,1999.
    58.徐怀大.如何推动我国层序地层学迅速发展[J].地学前缘,1995,2(3-4):103-113
    59.凌云研究组.应用振幅的调谐作用探测地层厚度小于1/4波长地质目标[J].石油地球物理勘探.2003,38(3):268-274.
    60.凌云研究组.地震分辨率极限问题的研究[J].石油地球物理勘探,2004,39(4):435-442.
    61.凌云研究组.测井与地震信息标定研究[J].石油地球物理勘探,2004,39(1):68-74.
    62.狄桂生,石星.对地震资料处理中几个问题的看法[J].新疆石油地质,2003,103(4):306-307.
    63.郭栋,韩文功,杨玉龙.车西高分辨率地震资料精细层位标定方法[J].石油地球物理勘探.2001,36(5):533-539.
    64.张继武.应用Strata软件进行波阻抗反演的几点认识[J].新疆石油地质,2005,26(1):26-30.
    65.Al istair R.Brown.地震属性及其分类[J].严又生译.国外油气勘探,1997,9(4):529-530.
    66.Quincy Chen,Steve Sidney.用于储层预测和监测的地震属性技术[J].张翠兰译.国外油气勘探,1998,10(2):220-231.
    67.刘文岭,牛彦良,李刚,等.多信息储层预测地震属性提取与有效性分析方法[J].石油物探.2002,41(1):100-106.
    68.刘豪,王英民,王嫒.浅析准噶尔盆地侏罗系煤层在层序地层中的意义[J].沉积学报.2002,20(2):197-201.
    69.崔凤林,管叶君.时频分析——薄互层结构研究的新途径[J].石油物探,1992,31(2):1-15.
    70.董臣强,王军,张金伟.时频分析技术在三角洲层序分析中的应[J].断块油气田,2002,9(2):18-20.
    71.张奎凤,蓝晖.短时窗地震信号谱分析方法[J].石油物探,1995,34(2):94-98.
    72.Partyka G., Gridley J., Lopez J.. 张忠伟,马劲风,李合群译,频谱分解在油藏描述中的解释性应用[J].国外油气勘探,2000,12(1):94-101.
    73.朱庆荣,等.频谱分解技术在表征储层中的运用[J].矿物岩石,2003,23(3):104-108.
    74.张荣忠,季玉新,崔凯,等.油储地球物理综合描述技术频率域地表—致性反褶积方法及应用效果分析[J].勘探地球物理进展,2002,25(1):12-18.
    75.徐伯勋,白旭滨,等.地震勘探信息技术[M].北京:地质出版社,2001.114-134.
    76.蒋鸿亮,蔡希源,唐振国.岩性圈闭识别方法[J].大庆石油地质与开发,1997,16(1):5-8.
    77.靳军,刘楼军,邵雨,等.综合地球物理方法识别准噶尔盆地的岩性圈闭[J].石油地球物理勘探,2002,37(3):287-290.
    78.蔡希源,侯启军.油气圈闭地质评价方法及应用[J].大庆石油地质与开发,1994,13(2):1-5.
    79.李玉喜,庞雄奇,姜振学,等.圈闭勘探风险构成与评价方法探讨—以松辽盆地徐家围子深层火山岩岩性圈闭勘探为例[J].油气地质与采收率,2002,9(1):24-26.
    80.江平.油气系统中圈闭地质模型探讨[J].天然气工业,2004,24(1):20-23.
    81.邓宏文.美国层序地层研究中的新学派——高分辨率层序地层学[J].石油与天然气地质,1995,16(2): 90-97.
    82.邓宏文.沉积物体积分配原理——高分辨率层序地层学的理论基础[J].地学前缘,2000,7(4):305-313.
    83.郑荣才,尹世民,彭军.基准面旋回结构与叠加样式的沉积动力学分析[J].沉积学报,2000,18(3):369-375.
    84.刘豪,王英民,王媛,等.用高分辨率层序地层学进行非构造圈闭研究[J].西安石油学院学报(自然科学版),2001,16(6):1-4.
    85.雍世和,张超谟.测井数字处理与综合解释.山东东营:石油大学出版社,1996
    86.吴瑞堂,张宗信.现代地层学.武汉:中国地质大学出版社,1989
    87.裘亦楠,薛叔浩.油气储层评价技术.北京:石油工业出版社(第二版),1997
    88.王明渝,许运新,黄德利,等.陆相沉积地层油层对比方法.北京:石油工业出版社,1999
    89.韩永林,杨阳,冀小林,等.鄂尔多斯盆地中南部三叠系延长组至侏罗系延安组地层对比.低渗透油气田,2000,5(2):5~9.
    90.刘招君,唐清水.陆相层序地层学导论与应用.北京:石油工业出版社,2002
    91.池秋鄂,龚福华.层序地层学基础与应用.石油工业出版社,2001
    92.曾文冲.油气藏储集层测井评价技术.北京:石油工业出版社,1991
    93.车卓吾,主编.测井资料分析手册.北京:石油工业出版社,1995
    94.赵红格,刘池洋.物源分析方法与研究进展[J].沉积学报,2003,21(3):410-415.
    95.黄小平,高玉春.对Garden公式应用条件的探讨[J].新疆石油地质,2000,21(3):233-235.
    96.黄小平,杜洪凌,史晓川.地震相分析在石南21井区沉积相划分中的应用[J].新疆石油地质,2004,25(6):671-672.
    97.韩文功.地震剖面的极性问题[J].石油地球物理勘探,1994,29(9):770-772.
    98.狄桂生,石星.对地震资料处理中几个问题的看法[J].新疆石油地质,2003,103(4):306-307.
    99.杨文孝,赵铮亚.准噶尔盆地侏罗系勘探进展及成藏特征[J].新疆石油地质,2002,23(6):466-470
    100.查明,陈中红,朱筱敏,等.准噶尔盆地陆梁地区油气成藏系统.新疆石油地质2003,24(2):97-99.
    101.陈新发等.准噶尔盆地昌吉凹陷天然气成藏模式[J].新疆石油地质,1998,19(4):270-271.
    102.徐常胜,王斌,杨梦云,等.准噶尔盆地腹部白垩系底界划分[J].新疆石油地质,2004,26(3):278-279.
    103.王明渝,许运新,等,陆相沉积地层油层对比方法.北京:石油工业出版社.1999.17-68.
    104.陈文学,等著.层序地层学与隐蔽圈闭预测.北京:石油工业出版社.2001.101-114.
    105.张有平,凌支虎,帕尔哈提,等.石南油气田J_2t~2砂层组沉积相特征[J].新疆石油地质,2005,26(3):253-255.
    106. Levorsen A. L.The obscure and subtle trap. AAPG Bulletin, 1966, 50(10): 2058-2067.
    107. Halbouty M. T. (ed.). The deliberate search for the subtle trap. AAPG Memoir, 1982, 32: 351-368.
    108. Robert E. K. (ed.). Stratigraphic oil and gas fields—Classification, Exploration methods and Case histories. AAPG Memoir, 1972, 16: 14-28.
    109. Kamen-kaye M.Drilling stratigraphic prospects seen imperative. Oil & Gas Journal, 1989,87(31): 100-104.
    110. Hopkins J C. .Characterization of reservoir lithologies within subunconformity pools: Pekisko Formation, Medicine River Field, Alberta, Canada. AAPG Bulletin, 1999, 83(11): 1855-1870.
    111. Bulling T P.Breyer J A. Exploring for subtle with high-resolution palegeographic maps: Reklaw 1 Interval (Eocene), South Texas. AAPG Bulletin, 1989,73(1): 24-39.
    112. Milton N J,Bertram G T. Trap styles-a new classification based on sealing surfaces. AAPG Bulletin, 1992, 76(7): 983-999.
    113. Reymond B A,Stampfli G M. Three-dimensional sequence stratigraphy and subtle stratigraphic traps associated with systems tracts: West Cameron region, offshore Louisiana, Gulf of Mexico. Marine and Petroleum Geology, 1996, 13(1): 41-60.
    114. Maria H, Williams M, Cook S, et al. Prospecting for subtle stratigraphic traps with 3-D seismic and well information: examples from the Lewis Formation, Red Desert Basin, Wyoming(Abs.). AAPG Bulletin, 1999, 83(7): 1183.
    115. Stanistreet I.G.McCarthy T S. The Okavango Fan and the classification of subaerial fan system. Sedimentary Geology, 1993, 85(1-4): 115-133.
    116. Ashworth P J.Best J L, Roden J E, et al. Morphological evolution and dynamics of a large, sand braid-bar, Jamuna River, Bangladesh. Sedimentology, 2000,47: 533-555.
    117. Page K J.Nanson G C, Frazier P S. Floodplain formation and sediment strtigraphy resulting from oblique accretion on the Murrumbidgee River, Australia. Journal of Sedimentary Research, 2003,73(1): 5-14.
    118. Stanistreet I G,Cairncross B, McCarthy T S. Low sinuosity and meandering Bedload Rivers of the Okavango Fan: channel confinement by vegetated levees without fine sediment. Sedimentary geology, 1993, 85(1-4): 135-156.
    119. Robinson J.W,McCabes P J. Sandstone-body and shale-body dimensions in a braided fluvial system: Salt Wash sandstone Member (Morrison Formation), Garfield County, Utah. AAPG Bulletin, 1997, 81(8): 1267-1291.
    120. Liu Keyu, Boult P,Painter S, et al. Outcrop analog for sandy braided stream reservoirs: permeability patterns in the Triassic Hawkesbury sandstone, Sydney Basin, Australia. AAPG Bulletin, 1996,80(12): 1850-1866.
    121. Wescott W A,Channel versus valley: semantics or significance. The Leading Edge, 1997, (6): 867-873.
    122. Galloway W E,Siliclastic slope and base-of-slope depositional systems: Component facies, stratigraphic architecture, and classification. AAPG Bulletin, 1998,82(4): 569-595.
    123. Holmes A. Principles of physical geology. London: Thomas Nelson and Sons., Ltd.,1965, 288.
    124. McPherson J G,Shanmugam G, Moiola R J. Fan-deltas and braid deltas: varieties of coarse-grained deltas. Geological society of America Bulletin, 1987, 99(3): 331-340.
    125. Pollard J E, Steel R J.Undersrud E. Facies sequences and trace fossils in lacustrine/fan delta deposits, Hornelen Basin (M. Devonian), Western Norway. Sedimentary Geology, 1982, 32(1-2): 63-87.
    126. Posamentier H W,Allen G P, James D P. High resolution sequence stratigraphy-the east Coulee delta, Alberta. Journal of Sedimentary Petrology, 1992, 62(2): 310-317.
    127. Hoy R G, Ridgway K D. Sedimentology and sequence stratigraphy of fan-delta and river-delta deposystems, Pennsylvanian Minturn Formation, Colorado. AAPG Bulletin, 2003, 87(7): 1169-1191.
    128. Hamlin H S, Dutton S P.Seggie R J, et al. Depositional controls on reservoir properties in a braid delta sandstone, Tirrawarra oil field, South Australia. AAPG Bulletin, 1996,80(2): 139-156.
    129. Coleman J M. Dynamic changes and processes in the Mississippi River delta. Geological Society of America Bulletin, 1988,100(7): 999-1015.
    130. Morton R A,Suter J R. Sequence stratigraphy and composition of late Quaternary shelf-margin deltas, northern Gulf of Mexico. AAPG Bulletin, 1996, 80(4): 505-530.
    131. Walker R G Deep water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic traps, AAPG Bulletin, 1978, 62(6): 932-966.
    132. Galloway W E. Clastic depositional systems and sequences: applications to reservoir prediction, delineation and characterization. The Leading Edge, 1998, (2): 173-180.
    133. Wynn R B, Kenyon N H, Masson D G, et al. Characterization and recognition of deep-water channel-lobe transition zones. AAPG Bulletin, 2002, 86(8): 1441-1462.
    134. Carter R. M, The nature and evolution of deep-sea channel systems. Basin Research, 1988, 1: 41-54.
    135. Reading H. G, Richards M. Turbidite systems in deep-water basin margins classified by grain size and feeder system. AAPG Bulletin, 1994, 78(5): 792-822.
    136. Eyles C. H, Eyles N. Subaqueous mass flow origin for Lower Permian diamictites and associated facies of the Grant Group. Barbwire Terrace, Canning Basin, Western Australia. Sedimentology, 2000, 47: 343-356.
    137. Posamentier H. W, Kolla V. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of Sedimentary Research, 2003, 73(3): 367-388.
    138. Lowe D R. Sediment gravity flows: Ⅱ. Depositional models with special reference of the deposits of high-density turbidity currents. Journal of Sedimentary Petrology, 1982, 52(1): 279-297.
    139. Eriksson K A. Geometry and internal characteristics of Archaean submarine channel deposits, Piibara block, western Australia. Journal of Sedimentary Petrology, 1982, 52(2): 383-393.
    140. Piper D J W, Normark W R. Sandy fans—from Amazon to Hueneme and beyond. AAPG Bulletin, 2001, 85(8): 1407-1438.
    141. Pratson L F, Coakley B J, A model for the headward erosion of submarine canyons induced by downsiope-eroding sediment flows. Geological Society of America Bulletin, 1996, 108(2): 225-234.
    142. Pimpirev C, Sarmiento G Submarine fan and channel levee deposits in the Lower Cretaceous Bogota trough, Colombian Andes. Sedimentary Geology, 1993, 86(3-4): 229-246.
    143. Samuel A, Kneller B, Raslan S, et al. Prolific deep-marine slope channels of the Nile Delta, Egypt. AAPG Bulletin, 2003, 87(4): 541-560.
    144. Elliott T. Megaflute erosion surfaces and initiation of turbidite channels. Geology, 2000, 28(2): 119-122.
    145. Kolla V, Perlmutter M A. Timing of turbidite sedimentation on the Mississippi Fan. AAPG Bulletin, 1993, 77(7): 1129-1141.
    146. Clark J D, Picketing K T. Architectural elements and growth patterns of submarine channels: application to hydrocarbon exploration. AAPG Bulletin, 1996, 80(2): 194-221.
    147. McCaffrey W, Kneller B. Process controls on the development of stratigraphic trap potential on the margins of confined turbidite systems and aids to reservoir evaluation. AAPG Bulletin, 2001, 85(6): 971-988.
    148. Adrian H, Cronin B. On the causal relationship between muddy debris flows and sandstones body development in deep marine elastic systems: reservoir and analogue examples (abs.). AAPG Bulletin, 1999, 83(8): 1316.
    149. Dutton S P, Fianders W A, Barton M D. Reservoir characterization of Permian deep-water sandstone, East Ford field, Delaware basin, Texas. AAPG Bulletin, 2003, 87(4): 609-627.
    150. Moraes M A. Diagenetic evolution of Cretaceous-Tertiary turbidity reservoirs, Campos Basin, Brazil AAPG Bulletin, 1989, 73(5): 598-612.
    151. Nelson C H, Karabanov E B, Colman S M, et al. Tectonic and sediment supply control of deep fir lake turbidite systems: Lake Baikal, Russia. Geology, 1999, 27(2): 163-166.
    152. 198. Carroll A R, Bohacs K M. Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology, 1999, 27(2): 99-102.
    153. Collinson J D, Martinsen O Bakken B, et al. Early fill of the Western Irish Namurian Basin: a complex relationship between turbidites and deltas. Basin Research, 1991, 3: 223-242.
    154. Scberer M. Parameters influencing porosity in sandstones: A model for sandstone porosity prediction. AAPG Bulletin, 1987, 71(5): 485-491.
    155. Osborne M J, Swarbrick E S. Mechanisms for generation overpressure in sedimentary basins: a reevaluation. AAPG Bulletin, 1997, 81(6): 1023-1041.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700