用户名: 密码: 验证码:
静态顶空分析的新理论、新技术及其在制浆造纸中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静态顶空分析技术,是一种定量准确、灵敏度和自动化程度高的气相萃取检测技术。该技术不仅成功地消除了样品基质溶剂及非挥发性组分对GC分析的影响和对仪器的损害,而且大大简化了样品的预处理步骤、节约了时间、避免了在样品准备过程中被检测物质的流失,十分适合于对基质复杂性高的样品(如制浆造纸工业中的废液、纸品、原料等)进行分析检测。然而,顶空分析技术进样理论的不完善性及新技术的欠缺,使得它还不能对制浆造纸研究中很多难检测被分析物进行准确分析、甚至不能分析。因此,建立适应现实需求的顶空分析技术的新理论、新技术以及相应检测方法的开发,对于改善制浆造纸工业分析方法的研究现状、进而提高对相关科学问题展开研究的可能性和研发速度具有十分重要的现实意义。
     为了保证顶空分析技术的进样准确性、提高检测灵敏度,通过对顶空分析的制样平衡、高温平衡、加压平衡、放压平衡四种平衡态下的物料衡算、压力衡算、并综合温度效应,建立了静态顶空分析技术的进样理论基础及灵敏度分析体系。研究了相平衡体系和SFV-FET、SPV-FET、SNV-FET四种典型顶空分析技术中溶质全挥发率、检测灵敏度与溶剂饱和蒸汽压、温度、气液分配系数、定量环体积之间的关系,并给出了提高检测灵敏度的方式。建立了顶空加压过程的非平衡态动态模型,并利用空气中的氧气做示踪剂建立了一种检测样品体积或密度的示踪检测方法。
     以全挥发理论的灵敏度分析结果为出发点,为了提高极难挥发的被检测物质的检测灵敏度、解决水相样品高温HS-GC-MS检测的困难,开发了溶剂全固化-溶质全挥发顶空分析技术。该技术成功避免了溶剂高温下大量挥发对气相中被检测物质的稀释,降低了放压过程中气相体积膨胀系数,并消除了被检测物质气液平衡系数对全挥发率的影响(样品最大允许进样量仅与全固化试剂用量相关),极大地提高了检测的灵敏度(2~6个数量级);同时,避免了溶剂对气相色谱柱分离、检测器的影响,使得水相样品进行高温HS-GC-MS分析成为可能。并建立了氧脱木素废液及纸浆洗涤滤液中低浓度甲醇的检测方法,相比传统全挥发技术该方法的定量限(60ppb)提高了约1800倍。
     结合上述建立的低浓度甲醇检测方法,分别研究了麦草浆、南方松硫酸盐浆、高卡伯值桉木浆及低卡伯值桉木浆在氧脱木素过程中的甲醇生成规律,建立了适合描述四种浆料甲醇生成的修正一级动力学模型,并结合木素脱除的动力学模型及纸浆黏度的变化给出了四种纸浆氧脱木素过程中甲醇生成量的控制方案。研究发现:麦草浆和两种桉木浆的甲醇生成动力学参数具有一致性,且其甲醇生成量与卡伯值之间的线性关系不受氧脱木素条件影响;而对于南方松木浆的氧脱木素过程,提高反应温度和用碱量不仅可在更短时间内达到目标卡伯值(并保证了纸浆的黏度)、更可显著降低氧脱木素过程中甲醇的生成量(>50%)。
     在相反应转化顶空分析应用中,分别基于高锰酸钾、碘酸钾在酸性体系下的反应特性,建立了漂白废液中残余过氧化氢和草酸根含量的高灵敏度、批量检测方法;并依托硼氢化钠在碱性条件下的高选择性,建立了纸巾和微胶囊乳液中甲醛含量的间接检测方法。结果表明,在本研究确定的反应条件下,四种方法均能满足实际样品的定量限要求(H_2O_22.8ppm,C_2O_4~-13ppm,CH_2O7.7ppm,CH_2O5.7ppm),且具有很好的选择性(有效屏蔽了干扰组分)、准确性(RSD>95%)和可靠性(回收率95%~105%)。另外,还利用样品的破坏性预处理方式,以42.5%磷酸为反应介质通过对反应和检测条件的优化建立了纸浆中甲醇含量的检测方法,经验证该方法具有很高的检测限(66ppm)、准确性(RSD>96.5%)、及可靠性(回收率93%~102%)。
     利用示踪顶空分析技术,分别结合顶空的两相非稳态平衡和三相稳态分配平衡建立了高温高浓流体粘度及纳米微乳液颗粒平均粒径、挥发性组分的液-固吸附平衡常数的检测模型。证实了使用两相非稳态平衡示踪检测模型对高温(110℃)高浓(固形物53%~75%)黑液粘度的适用性;并将三相稳态检测模型应用于纳米级聚苯乙烯微乳液的粒径分析中(采用甲苯作示踪技术),结果表明利用该方法检测纳米颗粒平均粒径的方法是完全可行的,并最终确定了甲苯的液-固体系吸附平衡常数(2651cm-1)。
     采用高压-溶剂全挥发顶空分析技术建立了气相中挥发性组分浓度与GC检测信号之间比例系数的检测方法,并将其应用于纸品中甲醇向空气的脱附研究中;建立了纸品中甲醇释放的动力学模型,确定了纸品在不同存放密度及环境温度下达到国家室内甲醇限量标准所需的时间、给出了相应的通风条件建议。利用多次顶空抽提技术建立了原位检测过氧化氢漂白过程中氧气生成动态变化的研究方案,并结合具体条件给出了不同体系下氧气生成量与反应条件的关系。
As a vapor-phase extraction technique, static headspace gas chromatography (HS-GC) isan indirect detection technology with high accuracy, sensitivity and automaticity. HSextraction is not only successful in eliminating the effects of solvent and non-volatilecomponents in sample matrix on GC analysis or the possible damage to instrument system,but also greatly simplifies the steps of sample pretreatment, saves time, and avoids the analyteloss during sample preparation. It is very suitable for the determination of analytes in processsamples with high complexity of matrices, such as raw materials, waste effluents, andproducts in pulp and paper industry. However, as a relatively new technology, there is still agreat potential to explore some new theories and techniques for the headspace based analysis,from which the quantification for many difficult industrial samples can be performed byHS-GC.
     In order to improving the accuracy and detection sensitivity in headspace analysis, wehave established some new theories of headspace sampling based on mass balance, pressurebalance, and pressure and temperature effects at the equilibrium states. The relations ofanalyte evaporation rate and detection sensitivity with the solvent saturated vapor pressure,temperature, gas-liquid partition coefficient, and sample loop volume have been investigatedfor the typical headspace analysis’ techniques, i.e., phase equilibrium, solvent fullvaporization-full evaporation technique (FET), solvent partial vaporization-FET,non-volatile solvent-FET. Several methodologies have developed for improving the detectionsensitivity in headspace analysis. Moreover, a tracing (using oxygen in sample vial air)detection method that is able to measure the sample’ density/volume has been established.
     In order to improve detection sensitivity for trace amount of volatile analytes andovercome the water-vapor problem met in HS-GC-MS analysis for aqueous samples, asolvent full solidification full evaporation technique (SFS-FET) has been developed. Thistechnique can avoid the dilution of solvent vaporization on analytes in vapor, reduce theexpansion coefficient of gas phase in headspace vial during venting, and eliminate the effectof gas-liquid coefficient of analytes on its evaporation rate. The SFS-FET could not onlygreatly increase the detection sensitivity (from2to6orders of magnitude), but also avoid theimpacts of solvent on GC detector and its column separation, which makes it possible toconduct a HS-GC-MS analysis at high temperature for aqueous samples. The limits ofquantification in the new method were60ppb, which is1800times low of the traditional FETmethod in methanol testing. This technique has been successfully applied to the determination of methanol in oxygen delignification (OD) effluents and pulp washing filtrate.
     Based on the above method for methanol, we conducted series of investigations on themethanol formation during OD processes of wheat straw, southern pine, and eucalyptus pulpwith high and low kappa number, respectively, from which a modified first-order kineticmodel was developed and it is suitable to describe the methanol formation in these processes.Combined the kinetic model for lignin removal with the variation of pulp viscosity, weproposed the methanol control strategies at these processes. For the processes of wheat strawand eucalyptus pulp, their kinetic parameters are uniform. The reaction conditions of ODprocess have no influence on the linear relationship between the amounts of methanol and thekappa number of pulps. For southern pine pulp, the improvement of the reaction efficiencycould also significantly reduce the methanol amount (>50%) generated in the process.
     Based on phase reaction conversion headspace analysis, a batch testing method for theresidual hydrogen peroxide (with potassium permanganate) and oxalate (with potassiumiodate), respectively, in bleaching effluents were developed. Moreover, an indirect detectionmethod for formaldehyde in the tissue paper and microcapsules latex, using sodiumborohydride as reducing agent in both cases, was also developed. The results showed thatthese methods could meet the testing requirements in these sample analyses, in which theaccuracies of the method were better than95%and LOQ for H_2O_2, C_2O_4~-, CH_2O, and CH_2Owere2.8,13,7.7, and5.7ppm respectively. It was found that using42.5%phosphoric acid asa pretreatment reaction medium could completely dissolve the paper fibers, thus the methanolentrapped in paper products could be released and quantitatively measured by the HS-GCmethod mentioned above.
     Based on the tracing headspace analysis technique, the viscosity of a concentrated fluidsample at high temperature was determined, in which a two-phase unsteady-state model wasderived. The tracing headspace analysis technique was also used for measuring the averageparticle size of nano-particles of a polymer latex, according to the solid adsorptionequilibrium constant of volatile components from a three-phase steady-state model.
     Based on high pressure SFV-FET, a detection method was established for measuring theproportional coefficients between analytes’ concentration in gas phase and GC signal. It wasapplied to the study of the air emission of methanol from paper products. A similar approach(coupled with a multiple headspace extraction technique) was also used for in-situ detectionof oxygen formation during the degradation of hydrogen peroxide.
引文
[1] Huang J., Yuan H. F., Song C. F., Li X. Y., Xie J. C., Du J. Q. Determination ofalpha-cellulose content of natural cellulose pulp in a new clean pulping process usingnear infrared diffuse reflectance spectroscopy [J]. Spectroscopy and Spectral Analysis,2013,33(1):60-64.
    [2] Iakovlev M., Van Heiningen A. So2-ethanol-water (sew) pulping: I. Lignindetermination in pulps and liquors [J]. Journal of Wood Chemistry and Technology,2011,31(3):233-249.
    [3] Granholm K., Ek P., Sokalski T., Harju L., Bobacka J., Ivaska A. Determination ofcalcium with ion-selective electrode in black liquor from a kraft pulping process [J].Electroanalysis,2009,21(17-18):2014-2021.
    [4] Yang X. T., Chai X. S., Hou Q., Zhu J. Y., Danielsson L. G. Spectroscopicdetermination of anthraquinone in kraft pulping liquors using a nafion membraneinterface [J]. Journal of Pulp and Paper Science,2003,29(9):299-302.
    [5] Yang X. T., Chai X. S., Hou Q. X., Zhu J. Y., Danielsson L. G. Determination ofanthraquinone-2-sulfonate in alkaline pulping liquor by spectrophotometry using anafion membrane interface [J]. Anal Chim Acta,2002,474(1-2):69-76.
    [6] Wu X. S., Xie Y. M., Liu H. B. Kappa number determination in kraft pulping by nirspectroscopic measurements on spent liquor [J]. Emerging Technologies of Pulping&Papermaking of Fast-Growing Wood,1998:417-423.
    [7]柴欣生.现代制浆造纸分析测试的一些新方法[J].造纸科学与技术,2009,(06):150-153.
    [8]柴欣生,付时雨,莫淑欢,万顺刚,朱俊勇.静态顶空气相色谱技术[J].化学进展,2008,(05):762-766.
    [9]田迎新,胡会超,柴欣生.顶空气相色谱法快速检测卫生纸中的细菌含量[J].造纸科学与技术,2012,(02):59-62.
    [10]钟金锋,付时雨,柴欣生,詹怀宇.一种顶空气相色谱测定乳液聚合过程单体转化率的新方法[J].分析测试学报,2009,(10):1111-1114.
    [11]孙蕾,柴欣生,万顺刚,王双飞.一种快速测定厌氧污泥活性的顶空气相色谱技术[J].色谱,2007,(03):443-444.
    [12]侯庆喜,柴欣生,朱俊勇.顶空气相色谱在制浆造纸工业中的应用[J].中国造纸学报,2005,(02):198-202.
    [13]侯庆喜,柴欣生,朱俊勇.应用顶空气相色谱测定纸浆纤维的羧基含量[J].中国造纸,2005,(09):5-9.
    [14] Zhu J. Y., Chai X. S. Some recent developments in headspace gas chromatography [J].Current Analytical Chemistry,2005,1(1):79-83.
    [15] Kolb B.; Ettre, L. S.. Static headspace-gas chromatography: Theory and practicesecond edition [M]. Hoboken, New Jersey; John Wiley&Sons, Inc.2006.
    [16] Snow N. H., Slack G. C. Head-space analysis in modern gas chromatography [J].Trac-Trends in Analytical Chemistry,2002,21(9-10):608-617.
    [17]王宇成主编.最新色谱分析检测方法及应用技术实用手册[M].吉林省,长春市;吉林省出版发行集团.2004.
    [18] Chai X. S., Zhu J. Y. Determination of the solubility of inorganic salts by headspace gaschromatography [J]. J Chromatogr A,2003,996(1-2):157-161.
    [19] Gupta A. K., Teja A. S., Chai X. S., Zhu J. Y. Henry's constants of n-alkanols (methanolthrough n-hexanol) in water at temperatures between40degrees c and90degrees c [J].Fluid Phase Equilibria,2000,170(2):183-192.
    [20] Zhu J. Y., Liu P. H., Chai X. S., Bullock K. R., Teja A. S. Henry's law constant ofmethanol in pulping spent liquors [J]. Environ Sci Technol,2000,34(9):1742-1746.
    [21] Elsner T., Rothweiler B., Marx F., Pfeilsticker K.[detection of treatment of chickenbreast with ionized rays and gradation of radiation dosage with the help of headspacegas chromatography and discriminant analysis evaluation][J]. Z Lebensm UntersForsch,1996,202(1):63-65.
    [22] Linssen J., Reitsma H., Cozijnsen J. Static headspace gas chromatography ofacetaldehyde in aqueous foods and polythene terephthalate [J]. Z Lebensm UntersForsch,1995,201(3):253-255.
    [23] Herber U., Meisch H. U. Studies about the desorption of volatile halocarbons fromactivated carbon by application of static headspace gas chromatography [J]. AnalBioanal Chem,1995,353(2):219-221.
    [24] Tsukamoto S., Kanegae T., Matsumura Y., Uchigasaki S., Kitazawa M., Muto T., ChibaS., Oshida S., Nagoya T., Shimamura M. Simultaneous measurement of alcohols andhydrogen cyanide in biological specimens using headspace gas chromatography [J].Nihon Hoigaku Zasshi,1994,48(5):336-342.
    [25] Solanky A. A. Effect of different concentrations of sodium fluoride on blood alcoholdetermination by headspace gas chromatography using the internal standard method [J].J Anal Toxicol,1994,18(1):63.
    [26] Odoul M., Fouillet B., Nouri B., Chambon R., Chambon P. Specific determination ofcyanide in blood by headspace gas chromatography [J]. J Anal Toxicol,1994,18(4):205-207.
    [27] Kok P. W., Ong C. N. Blood and urinary benzene determined by headspace gaschromatography with photoionization detection: Application in biological monitoring oflow-level nonoccupational exposure [J]. Int Arch Occup Environ Health,1994,66(3):195-201.
    [28] Jones A. W. Salting-out effect of sodium fluoride and its influence on the analysis ofethanol by headspace gas chromatography [J]. J Anal Toxicol,1994,18(5):292-293.
    [29] Chao T. C., Lo D. S., Koh J., Ting T. C., Quek L. M., Koh T. H., Koh-Tan C. Y.,Zubaidah A. Glue sniffing deaths in singapore--volatile aromatic hydrocarbons inpost-mortem blood by headspace gas chromatography [J]. Med Sci Law,1993,33(3):253-260.
    [30] Jones A. W., Lofgren A., Eklund A., Grundin R. Two fatalities from ingestion ofacetonitrile: Limited specificity of analysis by headspace gas chromatography [J]. JAnal Toxicol,1992,16(2):104-106.
    [31] Frankel E. N., German J. B., Davis P. A. Headspace gas chromatography to determinehuman low density lipoprotein oxidation [J]. Lipids,1992,27(12):1047-1051.
    [32] Norman K. N. Determination of tetrachloroethylene in olive oil by automatedheadspace gas chromatography [J]. Food Addit Contam,1991,8(4):513-516.
    [33] Jones A. W. Limits of detection and quantitation of ethanol in specimens of wholeblood from drinking drivers analyzed by headspace gas chromatography [J]. J ForensicSci,1991,36(5):1277-1279.
    [34] Frankel E. N., Tappel A. L. Headspace gas chromatography of volatile lipidperoxidation products from human red blood cell membranes [J]. Lipids,1991,26(6):479-484.
    [35] Tsuchihashi H., Nakajima K., Nishikawa M., Suzuki S., Oka Y., Otsuki K. Screeningtest of stimulants in human urine utilizing headspace gas chromatography for field test[J]. Forensic Sci Int,1990,45(1-2):181-189.
    [36] Senkowski C. M., Thompson K. A. The accuracy of blood alcohol analysis usingheadspace gas chromatography when performed on clotted samples [J]. J Forensic Sci,1990,35(1):176-180.
    [37] Mcneal T. P., Hollifield H. C. Quantitative multiresidue analyses for volatile organics inwater and milk, using a fused silica open-tubular wide-bore capillary column andautomated headspace gas chromatography [J]. J Assoc Off Anal Chem,1990,73(2):328-331.
    [38] Weller J. P., Wolf M.[mass spectroscopy and headspace gas chromatography][J]. BeitrGerichtl Med,1989,47:525-532.
    [39] Tsuchihashi H., Nakajima K., Nishikawa M., Shiomi K., Takahashi S. Headspace gaschromatography of stimulants in urine by in-column trifluoroacetyl derivatizationmethod [J]. J Chromatogr,1989,467(1):227-235.
    [40] Matsumoto K., Moriya F., Nanikawa R. The movement of blood formaldehyde inmethanol intoxication. I. A simple headspace gas chromatography-mass spectrometryfor determining the amount of formaldehyde in the blood [J]. Nihon Hoigaku Zasshi,1989,43(6):443-448.
    [41] Laakso I., Seppanen-Laakso T., Hiltunen R., Muller B., Jansen H., Knobloch K. Volatilegarlic odor components: Gas phases and adsorbed exhaled air analysed by headspacegas chromatography-mass spectrometry [J]. Planta Med,1989,55(3):257-261.
    [42] Jones A. W., Schuberth J. Computer-aided headspace gas chromatography applied toblood-alcohol analysis: Importance of online process control [J]. J Forensic Sci,1989,34(5):1116-1127.
    [43] Frankel E. N., Hu M. L., Tappel A. L. Rapid headspace gas chromatography of hexanalas a measure of lipid peroxidation in biological samples [J]. Lipids,1989,24(11):976-981.
    [44] Woodrow J. E., Mcchesney M. M., Seiber J. N. Determination of methyl bromide in airsamples by headspace gas chromatography [J]. Anal Chem,1988,60(5):509-512.
    [45] Koppen B., Dalgaard L., Christensen J. M. Determination of trichloroethylenemetabolites in rat liver homogenate using headspace gas chromatography [J]. JChromatogr,1988,442:325-332.
    [46] Gill R., Hatchett S. E., Osselton M. D., Wilson H. K., Ramsey J. D. Sample handlingand storage for the quantitative analysis of volatile compounds in blood: Thedetermination of toluene by headspace gas chromatography [J]. J Anal Toxicol,1988,12(3):141-146.
    [47] Wolf M., Weller J. P.[a simple procedure for co detection in blood usingmicro-headspace gas chromatography][J]. Beitr Gerichtl Med,1987,45:395-398.
    [48] Urbach G. Dynamic headspace gas chromatography of volatile compounds in milk [J]. JChromatogr,1987,404(1):163-174.
    [49] Dahlgran J. R., Shingleton C. R. Determination of ethylene oxide in ethoxylatedsurfactants and demulsifiers by headspace gas chromatography [J]. J Assoc Off AnalChem,1987,70(5):796-798.
    [50] Santa Maria I., Carmi J. D., Ober A. G. Residual styrene monomer in chilean foods byheadspace gas chromatography [J]. Bull Environ Contam Toxicol,1986,37(2):207-212.
    [51] Costantino A. G., Park J., Caplan Y. H. Carbon monoxide analysis: A comparison of twoco-oximeters and headspace gas chromatography [J]. J Anal Toxicol,1986,10(5):190-193.
    [52] Startin J. R., Gilbert J. Single ion monitoring of butadiene in plastics and foods bycoupled mass spectrometry-automatic headspace gas chromatography [J]. J Chromatogr,1984,294:427-430.
    [53] Koppen B., Dalgaard L. Assay for beta-glucuronidase utilizing headspace gaschromatography [J]. Anal Biochem,1984,136(1):272-275.
    [54] Varner S. L., Breder C. V., Fazio T. Determination of styrene migration fromfood-contact polymers into margarine, using azeotropic distillation and headspace gaschromatography [J]. J Assoc Off Anal Chem,1983,66(5):1067-1073.
    [55] Gilbert J., Startin J. R. A survey of styrene monomer levels in foods and plasticpackaging by coupled mass spectrometry--automatic headspace gas chromatography [J].J Sci Food Agric,1983,34(6):647-652.
    [56] Westerberg E., Larsson L. The use of automated headspace gas chromatography fordetermination of1,1,1-trichloroethane in rat blood and brain tissue [J]. Int J EnvironAnal Chem,1982,12(3-4):233-239.
    [57] Ramsey J. D., Flanagan R. J. Detection and identification of volatile organiccompounds in blood by headspace gas chromatography as an aid to the diagnosis ofsolvent abuse [J]. J Chromatogr,1982,240(2):423-444.
    [58] Marsili R. T. Monitoring bacterial metabolites in cultured buttermilk by highperformance liquid chromatography and headspace gas chromatography [J]. JChromatogr Sci,1981,19(9):451.
    [59] Gilbert J., Startin J. R. Single-ion monitoring of styrene in foods by coupled massspectrometry-automatic headspace gas chromatography [J]. J Chromatogr,1981,205(2):434-437.
    [60] Di Pasquale G., Capaccioli T. Oxygen doping of carrier gas in the determination ofdichloromethane in liquid foodstuffs by headspace gas chromatography withelectron-capture detection [J]. J Chromatogr,1981,206(3):589-593.
    [61] Anthony R. M., Sutheimer C. A., Sunshine I. Acetaldehyde, methanol, and ethanolanalysis by headspace gas chromatography [J]. J Anal Toxicol,1980,4(1):43-45.
    [62] Pausch J. B., Arner R. E., Lattimer R. P. An automated sampler for high temperatureheadspace gas chromatography [J]. J Automat Chem,1978,1(1):22-27.
    [63] Meyer T. Determination of alcohol in biological samples by headspace gaschromatography using a glass capillary column [J]. Acta Pharmacol Toxicol (Copenh),1978,43(2):164-168.
    [64] Sakura N., Nishimura S., Fujita N., Namera A., Yashiki M., Kojima T. Determination ofacrolein in human urine by headspace gas chromatography and mass spectrometry [J]. JChromatogr B Biomed Sci Appl,1998,719(1-2):209-212.
    [65] Poddar T. K. Comments on the determination of the partition coefficient and henry'sconstant by static headspace gas chromatography-response [J]. J Chromatogr Sci,1998,36(6):325-326.
    [66] Natishan T. K., Wu Y. Residual solvents determination in the antibiotic l-749,345bystatic headspace gas chromatography [J]. Journal of Chromatography A,1998,800(2):275-281.
    [67] Ettre L. S. Comments on the determination of the partition coefficient and henry'sconstant by static headspace gas chromatography [J]. J Chromatogr Sci,1998,36(6):322-324.
    [68] Ettre L. S. Headspace gas chromatography-an ideal technique for sampling andanalysis of volatile compounds present in non-volatile martices [J]. Abstracts of Papersof the American Chemical Society,1998,216: U66-U67.
    [69] Chai X. S., Dhasmana B., Zhu J. Y. Determination of volatile organic compoundcontents in kraft mill streams using headspace gas chromatography [J]. Journal of Pulpand Paper Science,1998,24(2):50-54.
    [70] Bleich S., Hapla F., Sprung R. Possible risk to develop nasal cancer by occupationalexposure to wood dust containing methanol and methylacetate. Investigations of wooddust using headspace gas chromatography [J]. Holz Als Roh-Und Werkstoff,1998,56(6):367-372.
    [71] Barth C., Horst R., Wolf B. A.(vapour plus liquid) equilibria of (water plusdimethylformamide): Application of the headspace gas chromatography for thedetermination of thermodynamic interactions [J]. Journal of Chemical Thermodynamics,1998,30(5):641-652.
    [72] Asprion N., Hasse H., Maurer G. Limiting activity coefficients in alcohol-containingorganic solutions from headspace gas chromatography [J]. Journal of Chemical andEngineering Data,1998,43(1):74-80.
    [73] Stuart J. D., Miller M. E., Williamsburnett M. L. The effect of various soil matrices onthe analysis of vocs by automated static headspace gas chromatography [J]. Journal ofSoil Contamination,1997,6(5):439-463.
    [74] Stenroos L., Clark T., Garcia C., Laycock G., Munar M., Sobczak J., Gatward N., CaseyG. Sulfur dioxide in beer by headspace gas chromatography [J]. Journal of the AmericanSociety of Brewing Chemists,1997,55(4):184-184.
    [75] Richelieu M., Houlberg U., Nielsen J. C. Determination of alpha-acetolactic acid andvolatile compounds by headspace gas chromatography [J]. J Dairy Sci,1997,80(9):1918-1925.
    [76] Ojala M., Ketola R., Mansikka T., Kotiaho T., Kostiainen R. Detection of volatileorganic sulfur compounds in water by headspace gas chromatography and membraneinlet mass spectrometry [J]. Hrc-Journal of High Resolution Chromatography,1997,20(3):165-169.
    [77] Mcgarrity M., Garcia C., Hurst L., Lee J., Lyness A., Munar M., Penarski J., Sakuma S.,Shamaila M., Murphey J. Beer volatiles by headspace gas chromatography [J]. Journalof the American Society of Brewing Chemists,1997,55(4):193-196.
    [78] Markovich R. J., Ong S., Rosen J. Quantitation of the residual solvent naphtha in apharmaceutical soft gelatin capsule product by equilibrium headspace gaschromatography [J]. J Chromatogr Sci,1997,35(12):584-592.
    [79] Koppen B. Determination of ethephon in pesticide formulations by headspace gaschromatography [J]. J AOAC Int,1997,80(2):289-293.
    [80] Keymeulen R., Parewijck B., Gornabinkul A., Vanlangenhove H. Determination ofpartition coefficients of monocyclic aromatic hydrocarbons between leaf essential oiland air by headspace gas chromatography [J]. Journal of Chromatography A,1997,765(2):247-253.
    [81] Hemmerling C., Seidl G. Rapid determination of ethephon residues in food withheadspace gas chromatography [J]. Deutsche Lebensmittel-Rundschau,1997,93(8):239-242.
    [82] Correa C. L., Pedroso R. C. Headspace gas chromatography with capillary column forurine alcohol determination [J]. J Chromatogr B Biomed Sci Appl,1997,704(1-2):365-368.
    [83] Constant M., Collier J. Headspace gas chromatography profiles of fruit-flavored maltbeverages using solid-phase microextraction [J]. Journal of the American Society ofBrewing Chemists,1997,55(3):112-118.
    [84] Bartnett C., Attard P., Benard M., Bresler S., Garcia M. C., Haag R., Laycock G.,Lorenzana R., Oxford E., Penarski J., Perez G., Rasmussen H., Shamaila M., Shelton I.,Stenroos L., Yoshimura N., Munar M. Dimethyl sulfide precursor in malt by headspacegas chromatography [J]. Journal of the American Society of Brewing Chemists,1997,55(4):205-206.
    [85] Yasuda N., Oka Y., Otsuki K., Tsuchihashi H., Katagi M., Nishikawa M.[study ofcomponents in crude drugs by headspace gas chromatography. Ii. Components ofatractylodes][J]. Yakugaku Zasshi,1996,116(9):728-734.
    [86] Tao Z. Y., Chai X. S., Wu S. B. Determination of epichlorohydrin and1,3-dichloro-2-propanol in synthesis of cationic etherifying reagent by headspace gaschromatography [J]. J Chromatogr A,2011,1218(37):6518-6521.
    [87] Chai X. S., Verrill C. L. Determination of inorganic salt solubility at a temperatureabove the boiling point of water by multiple headspace extraction gas chromatography[J]. Industrial&Engineering Chemistry Research,2011,50(10):6413-6417.
    [88] Jin-Feng Zhong, Xin-Sheng Chai, Shi-Yu Fu, Xiao-Li Qin. An improved samplepreparation method for monomer conversion measurement using headspace gaschromatography in emulsion polymerization research [J]. Journal of Applied PolymerScience,2012,124(5):3525-3528.
    [89] Chai X. S., Zhu J. Y. Indirect headspace gas chromatographic method for vapor-liquidphase equilibrium study [J]. Journal of Chromatography A,1998,799(1-2):207-214.
    [90] Chai X. S., Falabella J. B., Teja A. S. A relative headspace method for henry's constantsof volatile organic compounds [J]. Fluid Phase Equilibria,2005,231(2):239-245.
    [91] Chai X. S., Liu P. H., Zhu J. Y. Analysis of volatile organic sulphur compounds in kraftliquors by full evaporation headspace gas chromatography [J]. Journal of Pulp andPaper Science,2000,26(5):167-172.
    [92] Chai X. S., Hou Q. X., Schork F. J. Determination of residual monomer in polymerlatex by full evaporation headspace gas chromatography [J]. J Chromatogr A,2004,1040(2):163-167.
    [93] Zhong J. F., Chai X. S., Qin X. L., Fu S. Y. A full evaporation headspace gaschromatographic method for determination of monomer conversion in cellulose graftpoly-methyl methacrylate [J]. Carbohydrate Polymers,2011,86(1):367-370.
    [94] Li Hailong, Chai Xin-Sheng, Deng Yulin, Zhan Huaiyu, Fu Shiyu. Rapid determinationof ethanol in fermentation liquor by full evaporation headspace gas chromatography [J].Journal of Chromatography A,2009,1216(1):169-172.
    [95] Li Hailong, Chai Xin-Sheng, Zhan Huaiyu, Fu Shiyu. Rapid determination of furfuralin biomass hydrolysate by full evaporation headspace gas chromatography [J]. Journalof Chromatography A,2010,1217(48):7616-7619.
    [96] Li H., Zhan H., Fu S., Liu M., Chai X. S. Rapid determination of methanol in blackliquors by full evaporation headspace gas chromatography [J]. J Chromatogr A,2007,1175(1):133-136.
    [97] Zhu J. Y., Chai X. S. Automation in determining solute concentration and henry'sconstant by multiple headspace extraction gas chromatography [J]. AmericanLaboratory,1999,31(17):28C-+.
    [98] Chai X. S., Hou Q. X., Schork F. J. Determination of the solubility of a monomer inwater by multiple headspace extraction gas chromatography [J]. Journal of AppliedPolymer Science,2006,99(3):1296-1301.
    [99] Zhu J. Y., Chai X. S., Luo Q. The formation of volatile organic compounds (vocs) in akraft mill multiple-effect evaporator [C].2001International Chemical RecoveryConference, Whistler, British Columbia,269-273.
    [100] Chai X. S., Dong C., Deng Y. In situ determination of bacterial growth by multipleheadspace extraction gas chromatography [J]. Anal Chem,2008,80(20):7820-7825.
    [101] Chai X. S., Luo Q., Zhu J. Y. Multiple headspace extraction-gas chromatographicmethod for the study of process kinetics [J]. Journal of Chromatography A,2002,946(1-2):177-183.
    [102] Chai X. S., Schork F. J., Decinque A. Simplified multiple headspace extraction gaschromatographic technique for determination of monomer solubility in water [J].Journal of Chromatography A,2005,1070(1-2):225-229.
    [103] Chai X. S., Zhu J. Y. Simultaneous measurements of solute concentration and henry'sconstant using multiple headspace extraction gas chromatography [J]. Anal Chem,1998,70(16):3481-3487.
    [104] Chai X. S., Luo Q., Zhu J. Y. Analysis of nonvolatile species in a complex matrix byheadspace gas chromatography [J]. J Chromatogr A,2001,909(2):249-257.
    [105] Chai X. S., Maurer R. W., Hsieh J. S., Zhang D., Wang S. F. Determination of acidicand basic species by headspace gas chromatography [J]. J Chromatogr A,2005,1093(1-2):212-216.
    [106] Chai X. S., Hou Q. X., Zhu J. Y., Chen S. L., Wang S. F., Lucia L. Carboxyl groups inwood fibers.1. Determination of carboxyl groups by headspace gas chromatography [J].Industrial&Engineering Chemistry Research,2003,42(22):5440-5444.
    [107] Chai X. S., Maurer R. W., Hsieh J. S., Hou Q. X., Zhang D. C., Wang S. F. Animproved and practical headspace gas chromatographic method for determination ofcarboxyl acids content in wood fibers [J]. Industrial&Engineering Chemistry Research,2005,44(26):10013-10015.
    [108] Li H., Chai X. S., Demartini N., Zhan H., Fu S. Determination of oxalate in black liquorby headspace gas chromatography [J]. J Chromatogr A,2008,1192(2):208-211.
    [109] Chai X. S., Samp J., Song H. N., Zhu H. X. Novel headspace gas chromatographicmethod for determination of oxalate in oxygen delignification liquor [J]. Journal ofChromatography A,2006,1122(1-2):209-214.
    [110] Guzowski J. P., Golanoski C., Montgomery E. R. A gas chromatographic method for theindirect determination of hydroxylamine in pharmaceutical preparations: Conversioninto nitrous oxide [J]. J Pharm Biomed Anal,2003,33(5):963-974.
    [111] Blau K.; King, G. S. Handbook of derivatives for chromatography [M]. London;Heyden&Son.1977.
    [112] Gonzalez-Cordova A. F., Vallejo-Cordoba B. Quantitative determination of short-chainfree fatty acids in milk using solid-phase microextraction and gas chromatography [J]. JAgric Food Chem,2001,49(10):4603-4608.
    [113] Waldemar Wardencki Piotr Sowiński, Janusz Curylo. Evaluation of headspacesolid-phase microextraction for the analysis of volatile carbonyl compounds in spiritsand alcoholic beverages [J]. Journal of Chromatography A,2003,984(1):89-96.
    [114] Chai X. S., Samp J. C., Yang Q. F., Song H. N., Zhang D. C., Zhu J. Y. Determinationof microstickies in recycled whitewater by headspace gas chromatography [J]. JChromatogr A,2006,1108(1):14-19.
    [115] Zhong Jin-Feng, Chai Xin-Sheng, Fu Shi-Yu. Homogeneous grafting poly (methylmethacrylate) on cellulose by atom transfer radical polymerization [J]. CarbohydratePolymers,2012,87(2):1869-1873.
    [116] Chai X. S., Schork F. J., Decinque A., Wilson K. Measurement of the solubilities ofvinylic monomers in water [J]. Industrial&Engineering Chemistry Research,2005,44(14):5256-5258.
    [117] Zhu Jy, Yoon S-H, Liu Pi-Hsin, Chai Xin-Sheng. Methanol formation during alkalinewood pulping [J]. Tappi Journal,2000,83(7):65.
    [118] Pinkerton John, E. Mact portion of the cluster rule [J]. Tappi Journal,1998,81:
    [119]石淑兰,何福望.制浆造纸分析与检测[M].北京;中国轻工业出版社.2003.
    [120] Chai X.-S., Zhu J.Y., Li J. A simple and rapid method to determine hexeneuronic acidgroups in chemical pulps [J]. Journal of Pulp and Paper Science,2001,27(5):165-170.
    [121] Patnaik P. Handbook of inorganic chemicals [M]. New York; McGraw-Hill.2002.
    [122] Green J Mark. A practical guide to analytical method validation [J]. Anal Chem,1996,68(9):305A-309A.
    [123] Ala-Kaila K., Li J. B., Gellerstedt G. R. Chemical character of the response of softwoodkraft pulp towards industrial two-stage oxygen-alkali delignification [J]. Paperi JaPuu-Paper and Timber,2004,86(5):353-358.
    [124] Salmela M., Alen F., Ala-Kaila K. Fate of oxygen in industrial oxygen-alkalidelignification of softwood kraft pulp [J]. Nordic Pulp&Paper Research Journal,2004,19(1):97-104.
    [125] Sankari M., Ala-Kaila K., Sillanpaa M., Dahl O., Peramaki P. Effects of some specificorganic wash loss compounds on the oxygen delignification response of softwood kraftpulp [J]. Appita Journal,2004,57(3):228-233.
    [126] Van Tran A. The two-stage oxygen delignification of hardwood kraft pulp [J]. AppitaJournal,2004,57(6):440-443.
    [127] Danielewicz D., Surma-Slusarska B. Oxygen delignification of high-kappa number pinekraft pulp [J]. Fibres&Textiles in Eastern Europe,2006,14(2):89-93.
    [128] Hart P. W., Mancosky D., Armstead D. Medium consistency oxygen delignificationperformed with a controlled cavitation reactor [J]. Tappi Journal,2006,5(2):13-19.
    [129] Ji Y., Van Heiningen A. A new cstr for oxygen delignification mechanism and kineticsstudy [J]. Pulp&Paper-Canada,2007,108(5):38-42.
    [130] Ji Y., Wheeler M. C., Van Heiningen A. Oxygen delignification kinetics: Cstr and batchreactor comparison [J]. Aiche Journal,2007,53(10):2681-2687.
    [131] Guay D., Cole B., Fort R. Mechanisms of oxidative degradation of carbohydratesduring oxygen delignification [J]. Pulping Conference, Vols1-3,1998:27-28.
    [132] Guay D. F., Cole B. J. W., Fort R. C., Genco J. M., Hausman M. C. Mechanisms ofoxidative degradation of carbohydrates during oxygen delignification. I. Reaction ofmethyl beta-d-glucopyranoside with photochemically generated hydroxyl radicals [J].Journal of Wood Chemistry and Technology,2000,20(4):375-394.
    [133] Guay D. F., Cole B. J. W., Fort R. C., Hausman M. C., Genco J. M., Elder T. J., OverlyK. R. Mechanisms of oxidative degradation of carbohydrates during oxygendelignification. Ii. Reaction of photochemically generated hydroxyl radicals withmethyl beta-cellobioside [J]. Journal of Wood Chemistry and Technology,2001,21(1):67-79.
    [134] Guay D. F., Cole B. J. W., Fort R. C., Hausman M. C., Genco J. M., Elder T. J.Mechanisms of oxidative degradation of carbohydrates during oxygen delignification.Part iii: Reaction of photochemically generated hydroxyl radicals with1,5-anhydrocellobitol and cellulose [J]. Journal of Pulp and Paper Science,2002,28(7):217-221.
    [135]Chang H.; Gratzl, J. S. Ring cleavage reactions of lignin models with oxygen and alkali,in. Chemistry of delignification with oxygen, ozone and peroxide [M]. Tokyo, Japan;Uni Pub. Co. Ltd.1980:.
    [136]Crawford Robert J, Rovell-Rixx David C, Jett Steven W, Jain Ashok K, Dillard David S.Emissions of volatile organic compounds and hazardous air pollutants from oxygendelignification systems [J]. Tappi Journal,1995,78(5):81-91.
    [137] Chai X. S., Luo Q., Yoon S. H., Zhu J. Y. The fate of hexenuronic acid groups duringkraft pulping of hardwoods [J]. Journal of Pulp and Paper Science,2001,27(12):403-406.
    [138] Chai X. S., Yoon S. H., Zhu J. Y., Li J. The fate of hexenuronic acid groups duringalkaline pulping of loblolly pine [J]. Journal of Pulp and Paper Science,2001,27(12):407-411.
    [139] Gellerstedt G ran, Lindfors E-L. Hydrophilic groups in lignin after oxygen bleaching[J]. Tappi Journal,1987,70(6):119-122.
    [140] Jiang Z.-H., Argyropoulos D.S. Isolation and characterization of residue lignins in kraftpulps [J]. Journal of Pulp and Paper Science,1999,25(1):25-29.
    [141] Zou H, Liukkonen A, Cole B, Genco J, Miller W. Influence of kraft pulping on thekinetics of oxygen delignification [J]. Tappi Journal,2000,83(2):
    [142] Chen Q. Y., Li D. H., Zhu Q. Z., Zheng H., Xu J. G. Application ofiron-tetrasulfonatophthalocyanine as a new mimetic peroxidase in the determination ofhydrogen peroxide with p-hydroxyphenylpropionic acid as a substrate [J]. Anal ChimActa,1999,381(2-3):175-182.
    [143] Chai X. S., Hou Q. X., Luo Q., Zhu J. Y. Rapid determination of hydrogen peroxide inthe wood pulp bleaching streams by a dual-wavelength spectroscopic method [J]. AnalChim Acta,2004,507(2):281-284.
    [144] Awad M. I., Oritani T., Ohsaka T. Simultaneous potentiometric determination ofperacetic acid and hydrogen peroxide [J]. Anal Chem,2003,75(11):2688-2693.
    [145] De Wael K., Bashir Q., Van Vlierberghe S., Dubruel P., Heering H. A., Adriaens A.Electrochemical determination of hydrogen peroxide with cytochrome c peroxidase andhorse heart cytochrome c entrapped in a gelatin hydrogel [J]. Bioelectrochemistry,2012,83:15-18.
    [146] Reichert Js, Mcneight Sa, Rudel Hw. Determination of hydrogen peroxide and somerelated peroxygen compounds [J]. Industrial&Engineering Chemistry AnalyticalEdition,1939,11(4):194-197.
    [147] Lowendahl L, Petersson G, Samuelson O. Formation of carboxylic acids by degradationof carbohydrates during kraft cooking of pine [pulping][J]. Tappi,1976,59:
    [148] Ulmgren P. Non-process elements in a bleached kraft pulp mill with a high degree ofsystem closure-state of the art [J]. Nordic Pulp and Paper Research Journal,1997,12:
    [149] Elsander Anna, Ek Monica, Gellerstedt G ran. Oxalic acid formation during ecf and tcfbleaching of kraft pulp [J]. Tappi Journal,2000,83(2):73-77.
    [150] H r Matti, Sundberg Anna, Willf r Stefan. Paper chemistry-calcium oxalate—asource of" hickey" problems—a literature review on oxalate formation, analysis andscale control [J]. Nordic Pulp and Paper Research Journal,2011,26(3):263.
    [151] Utzman Steve. Improved analysis of process liquors for the pulp and paper industry byion chromatography [J]. Journal of Chromatography A,1993,640(1):287-292.
    [152] Salomon Delmar R, Romano Joe. Applications of capillary ion electrophoresis in thepulp and paper industry [J]. Journal of Chromatography A,1992,602(1):219-225.
    [153] Sirén Heli, Kokkonen Raimo, Hiissa Tarja, S rme Timo, Rimpinen Olli, Laitinen Risto.Determination of soluble anions and cations from waters of pulp and paper mills withon-line coupled capillary electrophoresis [J]. Journal of Chromatography A,2000,895(1):189-196.
    [154] Holloway Warren D, Argall Mary E, Jealous Wayne T, Lee John A, Bradbury J Howard.Organic acids and calcium oxalate in tropical root crops [J]. J Agric Food Chem,1989,37(2):337-341.
    [155] Schilling Jonathan S, Jellison Jody. High-performance liquid chromatographic analysisof soluble and total oxalate in ca-and mg-amended liquid cultures of three wood decayfungi [J]. Holzforschung,2004,58(6):682-687.
    [156] Dosch Werner. Rapid and direct gas chromatographic determination of oxalic acid inurine [J]. Urological research,1979,7(3):227-234.
    [157] Krasowski Ja, Marton J. The formation of oxalic acid during bleaching of kraft pulp [J].Journal of Wood Chemistry and Technology,1983,3(4):445-458.
    [158] Ohkawa H. Gas chromatographic determination of oxalic acid in foods [J].Journal-Association of Official Analytical Chemists,1985,68(1):108.
    [159] March Jg, Simonet Bm, Grases F, Mu oz Ja, Valiente M. Determination of traceamounts of oxalate in renal calculi and related samples by gas chromatography-massspectrometry [J]. Chromatographia,2003,57(11-12):811-817.
    [160] Kasidas Gp, Rose G Alan. Oxalate content of some common foods: Determination byan enzymatic method [J]. International Journal of Food Sciences and Nutrition,1980,34(4):255-266.
    [161] Milardovi Stjepan, Grabari Zorana, Rumenjak Vlatko, Juki Marijana. Rapiddetermination of oxalate by an amperometric oxalate oxidase‐based electrode [J].Electroanalysis,2000,12(13):1051-1058.
    [162] Chai X-S, Samp J, Song Hn, Zhu Hx. Novel headspace gas chromatographic methodfor determination of oxalate in oxygen delignification liquor [J]. Journal ofChromatography A,2006,1122(1):209-214.
    [163] Li Hailong, Chai Xin-Sheng, Demartini Nikolai, Zhan Huaiyu, Fu Shiyu.Determination of oxalate in black liquor by headspace gas chromatography [J]. Journalof Chromatography A,2008,1192(2):208-211.
    [164] De A. K. A textbook of inorganic chemistry,9th ed.[M]. New Delhi; New AgeInternational.2003.
    [165] Holik H. Handbook of paper and board [M]. Weinheim; Wiley-VCH.2006.
    [166] Reuss G., Disteldorf W., Gamer A.O., Hilt A."Formaldehyde" in ullmann'sencyclopedia of industrial chemistry [M]. Weinheim; Wiley-VCH.2002.
    [167] Scott W. E. Principles of wet end chemistry [M]. Atlanta; Tappi Press.1996.
    [168] Goldschmidt Bernard M. Role of aldehydes in carcinogenesis [J]. Journal ofEnvironmental Science&Health Part C,1984,2(2):231-249.
    [169] Textiles-limit to formaldehyde content [S]. General Administration of QualitySupervision Inspection and Quarantine of the People's Republic of China,2001.
    [170] Agency Us Environmental Protection. Formaldehyde, casrn50-00-0[OLS].http://www.epa.gov/iris/subst/0419.htm.2012.
    [171] Labor United States Department Of. Occupational safety and health standards: Toxicand hazardous substances-formaldehyde [OLS].http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=STANDARDS&p_id=10075.2012.
    [172] Walker J.F."Formaldehyde"[M]. New York; E.I. Dupont de Nemours&Company Inc.,Reinbold Publishing Corporation.1974.
    [173] Altshuller Aubrey P, Miller David L, Sleva Stanley F. Determination of formaldehydein gas mixtures by the chromotropic acid method [J]. Anal Chem,1961,33(4):621-625.
    [174] Luong Jim, Sieben Lyndon, Fairhurst Mary, De Zeeuw Jaap. Determination of lowlevels of formaldehyde and acetaldehyde by gas chromatography/flame ionizationdetection with a nickel catalyst [J]. Journal of High Resolution Chromatography,1996,19(10):591-594.
    [175] Possanzini M, Di Palo V. Determination of formaldehyde and acetaldehyde in air byhplc with fluorescence detection [J]. Chromatographia,1997,46(5-6):235-240.
    [176] Büldt Andrea, Lindahl Roger, Levin Olof, Karst Uwe. A diffusive sampling device forthe determination of formaldehyde in air usingn-methyl-4-hydrazino-7-nitrobenzofurazan (mnbdh) as reagent [J]. Journal ofEnvironmental Monitoring,1999,1(1):39-43.
    [177] Ensafi Ali A, Abassi S. Sensitive reaction rate method for the determination of lowlevels of formaldehyde with photometric detection [J]. Fresenius J Anal Chem,1999,363(4):376-379.
    [178] Medvedovici Andrei, David Victor, David Frank, Sandra Pat. Optimization in theformaldehyde determination at sub-ppm level from acetals by hplc-dad [J]. AnalyticalLetters,1999,32(3):581-592.
    [179] Burini Giovanni, Coli Roberto. Determination of formaldehyde in spirits byhigh-performance liquid chromatography with diode-array detection after derivatization[J]. Anal Chim Acta,2004,511(1):155-158.
    [180] Bianchi F, Careri M, Musci M, Mangia A. Fish and food safety: Determination offormaldehyde in12fish species by spme extraction and gc–ms analysis [J]. Food Chem,2007,100(3):1049-1053.
    [181]Sugaya Naeko, Nakagawa Tomoo, Sakurai Katsumi, Morita Masatoshi, Onodera Sukeo.Analysis of aldehydes in water by head space-gc/ms [J]. Journal of Health Science,2001,47(1):21-27.
    [182] Chaikin Saul W, Brown Weldon G. Reduction of aldehydes, ketones and acid chloridesby sodium borohydride [J]. Journal of the American Chemical Society,1949,71(1):122-125.
    [183]Lide D.R. Crc handbook of chemistry and physics, eighty-sixth edition [M]. CRC Press.2005.
    [184]詹怀宇.制浆原理与工程(第三版)[M].北京;中国轻工业出版社.2009.
    [185] Johansson Miriam, Vamling Lennart, Olausson Lars. Heat transfer in evaporating blackliquor falling film [J]. International Journal of Heat and Mass Transfer,2009,52(11):2759-2768.
    [186] Llamas P, Dominguéz T, Vargas Jm, Llamas J, Franco Jm, Llamas A. A novel viscosityreducer for kraft process black liquors with a high dry solids content [J]. ChemicalEngineering and Processing: Process Intensification,2007,46(3):193-197.
    [187] Zaman Aa, Fricke Al. Effect of pulping conditions and black liquor composition onnewtonian viscosity of high solids kraft black liquors [J]. Industrial&EngineeringChemistry Research,1996,35(2):590-597.
    [188]Zaman Abbas A, Fricke Arthur L. Newtonian viscosity of high-solids kraft black liquors:Effects of temperature and solids concentrations [J]. Industrial&EngineeringChemistry Research,1994,33(2):428-435.
    [189] Mccabe Warren, Smith Julian, Harriott Peter. Unit operations of chemical engineering,5th edition [M]. Singapore; McGraw Hill.1993.
    [190] Ozaki Asako, Yamaguchi Yukihiko, Fujita Tadao, Kuroda Koichi, Endo Ginji. Chemicalanalysis and genotoxicological safety assessment of paper and paperboard used for foodpackaging [J]. Food and Chemical Toxicology,2004,42(8):1323-1337.
    [191] Escabasse Jy, Ottenio D. Food-contact paper and board based on recycled fibres:Regulatory aspects--new rules and guidelines [J]. Food Additives&Contaminants,2002,19(S1):79-92.
    [192] Ziegleder Gottfried. Odorous compounds in paperboard as influenced by recycledmaterial and storage [J]. Packaging Technology and Science,2001,14(4):131-136.
    [193] Freire Mt De A, Castle L, Reyes Fgr, Damant Ap. Thermal stability of polyethyleneterephthalate food contact materials: Formation of volatiles from retail samples andimplications for recycling [J]. Food Additives&Contaminants,1998,15(4):473-480.
    [194] Conti Marcelo Enrique. The content of heavy metals in food packaging paper boards:An atomic absorption spectroscopy investigation [J]. Food Research International,1997,30(5):343-348.
    [195] Castle Laurence, Offen Christopher P, Baxter Malcolm J, Gilbert John. Migrationstudies from paper and board food packaging materials.1. Compositional analysis [J].Food Additives&Contaminants,1997,14(1):35-44.
    [196] Castle Laurence, Damant Andrew P, Honeybone Christina A, Johns Susan M, JickellsSue M, Sharman Matthew, Gilbert John. Migration studies from paper and board foodpackaging materials. Part2. Survey for residues of dialkylamino benzophenone uv‐cure ink photoinitiators [J]. Food Additives&Contaminants,1997,14(1):45-52.
    [197] Vollrath A, Hohl C, Seiler Hg. Trace analysis of chlorofluorocarbons/partiallyhalogenated chlorofluorohydrocarbons (cfc/hcfc) in polymeric foams by headspacecapillary gas chromatography with electron-capture detection or ion trap detectioncombined with preconcentration on a cold trap [J]. Fresenius J Anal Chem,1995,351(2-3):251-259.
    [198] Tice Philip A, Offen Christopher P. Odors and taints from paperboard food packaging[J]. Tappi Journal,1994,77:
    [199] Abrantes Shirley. Gc‐ms identification of styrene and oligomers in polystyrene plasticfor milk packaging. Headspace and solution injection technique [J]. Journal of HighResolution Chromatography,1993,16(2):113-115.
    [200] Soderhjelm L, Eskelinen S. Characterization of packaging materials with respect totaint and odour [J]. Appita,1985,38(3):205-209.
    [201] Fugassi P, Ostapchenko G. Kinetics of the sorption of methanol on cellulose [C].Carnegie Inst. of Tech., Pittsburgh.1957.
    [202] Fang Zhangqiang, Li You-Ming, Chen Zhong-Hao. Study on the toxicity and toxicityemission load of bagasse pulp ceh bleaching effluents [J]. Biotechnology,2005,2:68-70.
    [203] Fang Zhanqiang, Li Youming, Chen Zhonghao. Toxicity and toxicity emission load ofreed pulp ceh bleaching effluents [J]. JOURNAL OF CHEMICAL INDUSTRY ANDENGINEERING (CHINA),2005,56(6):1086.
    [204] Hage Ronald, Lienke Achim. Applications of transition‐metal catalysts to textile andwood‐pulp bleaching [J]. Angewandte Chemie International Edition,2006,45(2):206-222.
    [205] Gibson A, Wajer M. The use of magnesium hydroxide as an alkali and celluloseprotector in chemical pulp bleaching [J]. PULP AND PAPER CANADA,2003,104(11):28-32.
    [206] Wiklund Leif, hman Lars-Olof, Lidén Jan. Solid solution formation between mn (ii)and mg (ii) hydroxides in alkaline aqueous solution [J]. Nordic Pulp&Paper ResearchJournal,2001,16(3):240-245.
    [207] Liden J, hman Lo. Redox stabilization of iron and manganese in the+ii oxidationstate by magnesium precipitates and some anionic polymers. Implications for the use ofoxygen-based bleaching chemicals [J]. Journal of Pulp and Paper Science,1997,23(5):J193-J199.
    [208] Zeronian Sh, Inglesby Mk. Bleaching of cellulose by hydrogen peroxide [J]. Cellulose,1995,2(4):265-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700