用户名: 密码: 验证码:
多相泵增压单元的工作理论与设计方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋轴流式多相泵是用于油田多相混输生产的一项新技术,针对该泵的研究开发现在已经成为一大热点。本文首先回顾了泵的水力设计、叶片设计理论及泵内流场数值计算的研究现状,明确了多相泵研究中亟待解决的几个问题:缺乏足够的理论基础,设计方法急需改进等。
     本文采取的技术路线是理论、设计、实验及数值计算相结合,即首先研究泵的工作理论与混输机理,继而以理论为基础指导设计,给出一种设计方法,然后以实验与数值计算对工作理论与设计方法进行检验与修正。
     具体内容包括:⑴较系统地进行了多相混输泵增压单元工作理论与混输机理的研究,分析了混输泵的外特性,首次建立了泵特性参数、混输能力与结构参数、运行参数和混合液参数的关系,并导出了相关式,为今后方便正确的设计多相泵增压单元提供理论依据;⑵在理论研究的基础上,初步形成了混输泵增压单元结构参数的一种新的设计方法,用以指导泵的子午面设计;⑶基于上述理论,针对均匀流模型,采用准三维反问题的研究思路,以速度矩作为控制参数,导出了混输泵叶型的速度梯度方程,并给出了增压单元叶片型状的反问题设计方法;针对双流体模型,采用准三维正问题的研究思路,分别推导出气相与液相在混输泵中的运动方程,提出一种对混输泵增压单元内流场进行准三维数值计算的方法。并通过具体实例验证了以上两种研究思路所提出的设计方法的可行性;⑷依据上述给出的增压单元内流场准三维正问题的数值模型,并引用多目标遗传算法,首次对混输泵叶片型状进行了优化设计研究。通过对多目标优化设计结果的对比分析,结合混输能力与效率,提出了一种折衷的设计方案:该方案是在效率不低于初始设计要求的条件下混输能力最高的一种设计结果;同时分析了满足不同设计目标的叶片型状的变化趋势,此趋势对今后叶片型状的设计具有一定的指导意义。⑸利用实验与数值计算对工作理论与设计方法进行验证。结合多相泵的实验结果,研究找出一种对增压单元内流场进行数值分析的方法,利用该方法研究多相泵增压单元内气液两相的流动规律,模拟多相泵的特性参数,对多相泵增压单元的结构参数进行优化,并根据数值分析的结果,对增压单元的基础工作理论与设计方法进行检验与修正。
As a new technology used for multiphase product in oil field, R&D on helico-axial multiphase pump become a hot topic nowadays.
     This paper discussed the present research progress of multiphase pump, such as the current situation of hydraulic design for axial pump, the design theory for vane and the numerical calculation for interior flow field. Some problem which should be resolved urgently was proposed, including lack of perfect theory basis, the improvement on design method and so on.
     Combined with theory, design, experiment, and numerical calculation, work theory of multiphase pump was firstly discussed, and then based on which, the design method was presented. Finally the theory and design method was verified by finite element calculation.
     Main contents as follows were researched:
     ⑴Theory of compress units for multiphase pump and mechanism of multiphase transportation were conducted systemically, external characteristic of multiphase pump was analyzed. In addition, the relationship between characteristic parameter, multiphase transportation capability and structural parameter, operating parameter, mixed liquid parameter was put forward firstly, and then the related formula was raised, which can provide theory basis for the design of multiphase pump;
     ⑵On the basis of theory research, this paper presented a new design method of the structural parameter for compress unit, as a reference to the design of meridian plane.
     ⑶According to the inverse theory, taking inlet velocity torque as controlled variable, formula was deduced to calculate the velocity gradient of meridian plane, design method of vane shape in compress unit was provided; Meanwhile, according to quasi-three dimensional direct theory, gas and liquid equation running in the multiphase pump was also deduced separately. And a method to carry on the quasi-three dimensional numerical calculation of interior flow field was proposed, which provided basis for the vane shape optimization with multi-objective genetic algorithm. The feasibility of both methods was verified by experiments.
     ⑷With the theory of multi-objective genetic algorithm, Optimization of vane shape in compress unit was carried on. According to the comparison analysis of multi-objective optimization, combined with the multiphase transportation capability and efficiency of multiphase pump, a trade-off design method was proposed, which obtained the best multiphase capability while the efficiency is not lower than the primary requirement. While, the variable tendency of vane shape to fulfill different objective was analyzed and proved to be instructive for the further study.
     ⑸Working theory and design method developed here was proved by numerical calculation and experiments. With the result of lab experiments for multiphase pump, a method to do numerical analysis on the flow field of compress unit was developed, which researched on the flowing rule of gas and liquid in compress unit, simulated the characteristics of multiphase pump and optimized the structural parameter of compress unit. Finally, the working theory and design method of compress unit were improved and optimized according to the numerical analysis result.
引文
[1]李清平,薛敦松,朱宏武等.螺旋轴流式多相泵的设计与实验研究[J].工程热物理学报,2005,26(1):84~87
    [2]张武高,薛敦松.国外多相流泵的研究进展[J].水泵技术,1995,(6):7~13
    [3]王勇.国外多相泵和多相流混输技术综述[J].油气田地面工程(OGSE),1996,15(1):7~13
    [4] Jacques de Sails, Mike Cordner, Mark Birnov. Multiphase Pumping Comes of Age[J]. World Pumps, 1998, 384(9): 53~54
    [5] Yves Charron, Elise Acloque, Sylvain Stihle.Two-Phase Helical Axial Turbines. SPE Annual Technical Conference and Exhibition, SPE 84062, Colorado: 2003
    [6]王通.北海顿巴平台“海神”多相泵投产[J].国外油田工程,2000(12):40~41
    [7] Yves Charron, Philippe Pagnier, Elise Marchetta. Multiphase Flow Helico-Axial Turbine Applications and Performance. Abu Dhabi International Conference and Exhibition, SPE 88643, Abu Dhabi: 2004
    [8]李清平,薛敦松.叶片式多相泵内部相态分离过程的研究[J].石油大学学报(自然科学版),1997,21(2):53~57
    [9]李清平,薛敦松,朱宏武等.叶片式多相泵内部流动研究[J].工程热物理学报,1998,19(1):53~57
    [10]班耀涛,朱宏武,薛敦松.气液两相混合输送泵试验台架设计[J].石油机械,1998,26(3):8~10
    [11]李清平,薛敦松,卢文强等.多相泵设计方法初探[J].工程热物理学报,1999,20(1):61~64
    [12]班耀涛,赵宏,薛敦松.螺旋轴流式油气多相泵的性能预测模型[J].工程热物理学报,2000,21(2):187~190
    [13]李清平,薛敦松.螺旋轴流式多相泵外特性实验研究[J].工程热物理学报,2000,21(4):451~455
    [14]李清平,卢文强,薛敦松.流体机械转轮内气泡运动轨迹的数值分析[J].中国海上油气(工程),2000,12(2):48~54
    [15]李清平,薛敦松.油气多相混输泵的开发研究[J].中国海上油气(工程),2000,12(1):47~56
    [16]郑俐丹,赵宏,薛敦松.油气多相泵的最新研究进展[J].水泵技术,2001(3):15~19
    [17]郑俐丹,朱宏武,薛敦松.油气多相泵转轮叶片中液流角探讨[J].工程热物理学报,2003,24(3):426~428
    [18]李清平,薛敦松,李忠芳等.螺旋轴流式多相泵的实验研究与优化设计[J].工程热物理学报,2004,25(6):962~964
    [19]李清平,薛敦松,朱宏武等.螺旋轴流式多相泵的设计与实验研究[J].工程热物理学报,2005,26(1):84~87
    [20]何希杰.轴流泵相似设计[J].通用机械,2004,9:58~60
    [21]王福军.水泵CAD中的变工况相似设计法[J].农业工程学报,1996,12(1):35~40
    [22]刘彦春.采用相似设计法设计低比转速灰浆泵的分析与若干要点[J].水泵技术,2005,2:22~24
    [23]刘华志,王春波.泵的设计方法及其发展趋势[J].焦作工学院学报,2003,22(3):214~216
    [24]葛宰林,吕彬,于馨.基于速度系数法的离心泵叶轮优化设计[J].大连铁道学院学报,2006,27(3):37~40
    [25]严敬,杨小林.低比转速泵叶轮水力设计方法综述[J].排灌机械,2003,21(3):6~9
    [26]沙毅,康灿,陈燕.基于IS系列离心泵转速系数法水力设计[J].水泵技术,2005(4):20~23
    [27]李文广.离心泵叶片设计理论与应用研究进展综述[J].水泵技术,1998,(5):20~27
    [28] Wu Chong-hua. A General Theory of Three-Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial-, Radial- and Mixed-Flow Types. NACA, TN2604, 1952
    [29] Denton J D, Xu L. The Exploitation of Three-Dimensional Flow in Turbomachinery Design. Proceedings of the Institution of Mechanical Engineers-Part C-Journal of Mechanical Engineering Science, 1999, 213(2): 125~137
    [30] Calvert W J, Ginder R B. Transonic Fan and Compressor Design. Proceedings of the Institution of Mechanical Engineers-Part C-Journal of Mechanical Engineering Science, 1999, 213(5): 419~436
    [31] Asuaje Miguel, Bakir Farid, Kouidri Smaine, et al. Inverse Design Method for Centrifugal Impellers and Comparison with Numerical Simulation Tools. International Journal of Computational Fluid Dynamics, 2004, 18(2): 101~110
    [32] Chung J, Lee K D. Shape Optimization of Transonic Compressor Blade Using Quasi-Three-Dimensional Flow Physics. AIAA Journal, 2002, 40(2): 389~390
    [33] R M Jenkins, D A Moore. An Inverse Calculation Technique for Quasi-Three- Dimensional Turbomachinery Cascades. Applied Mathematics and Computation, 1993, 57(2): 197~204
    [34] S Ziaei-Rad, M Ziaei-Rad. Inverse Design of Supersonic Diffuser with Flexible Walls Using a Genetic Algorithm. Journal of Fluids and Structures, 2006, 22(4): 529~540
    [35]罗兴琦,梁武科,廖伟丽等.水力机械转轮准三维反问题研究与发展[J].西安理工大学学报,1997,13(2):157~162
    [36]罗兴琦,林汝长,陈乃祥.有厚叶片的S2流面反问题计算[J].水利学报,1995(7):8~15
    [37]李文广.离心泵叶片反问题设计[J].农业机械学报,2005,31(3):49~51,54
    [38]王福军.考虑滑移的离心泵叶片S2流面反问题计算方法[J].水利学报,1998(1):10~13
    [39]林汝长.水力机械流动理论[M].北京:机械工业出版社,1995:28~68
    [40]忻孝康,朱士灿,蒋锦良.叶轮机械三元流动与准正交面法[M].上海:复旦大学出版社,1988:30~35
    [41]杨琳,陈乃祥.水力机械转轮三维反问题研究及其新进展[J].水力发电学报,2004,23(1):97~101
    [42] Daneshkhah Kasra, Ghaly Wahid S. An Inverse Blade Design Method for Subsonic and Transonic Viscous Flow in Compressors and Turbines. Inverse Problems in Science & Engineering, 2006, 14(3): 211~231
    [43] Asuaje Miguel, Bakir Farid, Kouidri Sma?ne, et al. Inverse Design Method for Centrifugal Impellers and Comparison with Numerical Simulation Tools. International Journal of Computational Fluid Dynamics, 2004, 18(2): 101~110
    [44] Tiow W T, Zangeneh M. Application of a Three-Dimensional Viscous Transonic Inverse Method to NASA Rotor 67. Proceedings of the Institution of Mechanical Engineers-Part A-Power & Energy, 2002, 216(3): 243~255
    [45] Zangeneh M, Goto A, Harada H. On the Role of Three-Dimensional Inverse Design Methods in Turbomachinery Shape Optimization. Proceedings of the Institution of Mechanical Engineers-Part C-Journal of Mechanical Engineering Science, 1999, 213(1): 27~42
    [46] Sunao Miyauchi, Hironori Horiguchi, Jun-ichirou Fukutomi. Optimization of Meridional Flow Channel Design of Pump Impeller. International Journal of Rotating Machinery, 2004, 10(2): 115~119
    [47] Biba Yuri, Menegay Peter. Inverse Design of Centrifugal Compressor Stages Using a Meanline Approach. International Journal of Rotating Machinery, 2004, 10(1): 75~84
    [48]彭国义.水力机械转轮反问题数值研究与进展[J].甘肃工业大学学报,1997,23(4):31~36
    [49]罗兴琦,廖伟丽,林汝长等.流体机械叶轮设计的研究与发展[J].力学进展,1997,27(3):372~388
    [50]俞志毅,曹树良,彭国义.运用正反问题迭代法进行叶片式气液混输泵叶轮的水力设计[J].机械工程学报,2006,42(4):135~146
    [51]蔡佑林,王立祥,张新.喷水推进混流泵叶轮三元可控速度矩设计[J].船舶,2006(1):24~26
    [52]杨华.基于整机紊流模拟的离心泵叶型优化方法与实验研究[D]:[博士学位论文].上海:上海交通大学,2005
    [53]樊红刚,陈乃祥,杨琳等.可调叶片混流转轮全三维反问题计算方法研究[J].水力发电学报,2003(1):95~101
    [54]彭国义,罗兴琦,郭齐胜等.轴流式水轮机转轮全三维有旋流动反问题计算[J].水利学报,1996(10):61~67
    [55] Dang T, Damle S. Euler-Based Inverse Method for Turbomachine Blades, Part 2: Three-Dimensional Flows. AIAA Journal, 2000, 38(11): 2007~2013
    [56] Fainekos Georgios E, Giannakoglou Kyriakos C. Inverse Design of Airfoils Based on a Novel Formulation of the Ant Colony Optimization Method. Inverse Problems in Engineering, 2003, 11(1): 21~38
    [57] Ahn C S, Kim K Y. Aerodynamic Design Optimization of a Compressor Rotor with Navier-Stokes Analysis. Proceedings of the Institution of Mechanical Engineers-Part A -Power & Energy, 2003, 217(2): 179~183
    [58] Burguburu Stephane, Le Pape Arnaud. Improved Aerodynamic Design of Turbomachinery Bladings by Numerical Optimization. Aerospace Science & Technology, 2003, 7(4): 277~287
    [59] Ghaly Wahid S, Mengistu Temesgen T. Optimal Geometric Representation of Turbomachinery Cascades Using Nurbs. Inverse Problems in Engineering, 2003, 11(5): 359~373
    [60] Kammerer Steffen, Mayer Jurgen F, Stetter Heinz, et al. Development of a Three Dimensional Geometry Optimization Method for Turbomachinery Applications. International Journal of Rotating Machinery, 2004, 10(5): 373~385
    [61] Martelli F, Pazzi S, Michelassi V. Automatic Computational Fluid Dynamics-Based Procedure for the Optimization of a Centrifugal Impeller. Proceedings of the Institution of Mechanical Engineers-Part A-Power & Energy, 2005, 219(7): 549~557
    [62] Giannakoglou K C, Papadimitriou D I, Kampolis I C. Aerodynamic Shape Design Using Evolutionary Algorithms and New Gradient-Assisted Metamodels. Computer Methods in Applied Mechanics & Engineering, 2006, 195(44): 6312~6329
    [63] S Pierret, R Filomeno Coelho, H Kato. Multidisciplinary and Multiple Operating Points Shape Optimization of Three-Dimensional Compressor Blades. Structural & Multidisciplinary Optimization, 2007, 33(1): 61~70
    [64]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002:575~601
    [65]陈次昌,刘正英,刘天宝等.两相流泵的理论与设计[M].北京:兵器工业出版社,1994:11~15
    [66] Kiyoshi Minemura, Tomomi Uchiyama. Three-Dimension Calculation of Air-Water Two-Phase Flow in Centrifugal Pump Impeller Based on a Bubby Flow Model[J]. Journal of Fluids Engineering, 1993, 115(4): 781~783
    [67] Kiyoshi Minemura, Tomomi Uchiyama. Prediction of Air-Water Two-Phase Flow Performance of a Centrifugal Pump Based on One-Dimensional Two-Fluid Model[J]. Journal of Fluids Engineering, 1998, 120(3): 327~334
    [68]李清平.螺旋轴流式多相泵设计初探及其内部气液两相流动的三维数值分析[D]:[博士学位论文].北京:石油大学(北京),1998
    [69] Wu Yulin et al. Three-Dimension Calculation of Oil-Bubble Flows Through a Centrifugal Pump Impeller. Proceeding of the Third Internal Conference on Pump and Fan, Tsinghua University Press, 1998, 526~532
    [70] Kiyoshi Minemura, Tomomi Uchiyama. Three-Dimension Calculation of Air-Water Two-Phase Flow in Centrifugal Pump Impeller Based on a Bubby Flow Model[J]. Journal of Fluids Engineering, 1993, 115(4): 766~771
    [71] Kiyoshi Minemura, Tomomi Uchiyama. Three-Dimension Calculation of Air-Water Two-Phase Flow in Centrifugal Pump Impeller Based on a Bubby Flow Model with Fixed Cavity. JSME Internal Journal, Series B, 1994, 37(4): 726~735
    [72] A Poullikkas, Compressibility and Condensation Effects when Pumping Gas Liquid Mixtures[J]. Fluid Dynamics Research, 1999(25): 57~62
    [73] You Raek et al. Influence of Tip Clearance on Pump Performance of Two-Phase Flow in a Screw Centrifugal Pump. Proceeding of the Third Internal Conference on Pump and Fan, Tsinghua University Press, 1998, 346~357
    [74]黄思,吴玉林.叶片式泵内气液两相泡状流的三维数值计算[J].水利学报,2001,6:57~61
    [75]卢金玲,席光,祁大同.离心泵叶轮内气液两相三维流动数值研究[J].工程热物理学报,2003,24(2):237~240
    [76]马希金,郭俊杰,孙永平.轴流式油气混输泵内部的CFD分析及优化设计[J].化工机械,2004,31(2):90~92
    [77]马希金,郭俊杰,吴蓓.CFD法设计轴流式油气混输泵初探[J].流体机械,2004,32(7):15~18
    [78]马希金,王宏亮,赵学.轴流式油气混输泵压缩级流场CFD模拟分析[J].农业机械学报,2006,37(2):41~44
    [79]丁成伟.离心泵与轴流泵原理及水力设计[M].北京:机械工业出版社,1981:183~186
    [80]查森.叶片泵原理及水力设计[M].北京:机械工业出版社,1988:296~313
    [81]万邦烈,李继志等.石油工程流体机械[M].第二版.北京:石油工业出版社,1998:199~202
    [82]包艳.轴流叶轮内流场相对速度的计算[D]:[硕士学位论文].成都:西华大学, 2005
    [83]吴望一.流体力学(下册)[M].北京:北京大学出版社,1983:394~400
    [84]苗长山,李增亮,李继志.混输泵扬程与流量特性曲线的理论分析[J].石油学报,2007,28(3):145~148
    [85]班耀涛.螺旋轴流式多相泵性能预测及其实验研究[D]:[博士学位论文].北京:石油大学(北京),1999
    [86]张敏,袁惠新.聚结分离过程的机理、方法及应用[J].过滤与分离,2003,13(1):44~46
    [87]张敏,袁惠新.旋流聚结的机理及应用[J].流体机械,2003,31(5):29~32
    [88] Ch Brutu. Two-Phase Pump Transient Behaviour. SPE Annual Technical Conference and Exhibition, SPE 30660, Dallas: 1995
    [89]关醒凡.现代泵技术手册[M].北京:宇航出版社,1995
    [90]黄思,李汗强,班耀涛等.叶片式气液混输泵水力设计的一种选型方法[J].石油机械,1999,27(12):9~11
    [91]朱俊华.合理选择轴流泵的导叶数[J].水泵技术,1996,(6):4~7
    [92]杨敬江.轴流泵水力设计CAD软件系统[D]:[硕士学位论文].镇江:江苏理工大学,1999
    [93]刘高联,王甲升.叶轮机械气动动力学基础[J].机械工业出版社,1980
    [94]黄典贵.一种新的叶片反问题优化设计方法在压缩机设计中的应用[J].风机技术,1999(1)
    [95]金东海,桂幸民.应用多目标遗传算法的叶栅气动优化设计[J].航空动力学报,2007,22(2):285~290
    [96]曾庭卫,邵雪明,魏民等.轴流通风机的正反命题设计计算[J].风机技术,2005,6:12~14
    [97]张礼达,陈冬冬,代应等.斜流式水轮机转轮准三元设计方法研究[J].水力发电,2006,32(5):43~47
    [98]康立山.非数值并行算法(第一册)—模拟退火法[M].北京:科学出版社,1997:22~55
    [99]张启德.准三元设计方法在水轮机转轮设计中的应用[J].东方电气评论,1998,12(2):75~79
    [100]胡英,张桂芳.混流式水轮机转轮三元流场的分析及有限元解[J].昆明理工大学学报,1997,22(3):43~47
    [101]蔡佑林,王立祥,张新.混流泵叶轮三元可控速度矩的设计[J].流体机械,2005,33(11):13~15
    [102]刘大有.二相流体动力学[M].北京:高等教育出版社,1993:26~36
    [103]樊会元,席光,王尚锦.遗传算法在流体机械优化设计中的应用[J].机械科学与技术,2000,19(6):910~912
    [104]常红玲.基于遗传算法的离心压缩机叶轮叶片型线的气动优化设计[D]:[硕士学位论文].西安:西安交通大学,2002
    [105]隋洪涛.基因遗传算法及气动外形最优化设计[D]:[博士学位论文].南京:南京航空航天大学,2001
    [106]田东平,迟洪钦.混合遗传算法与模拟退火法[J].计算机工程与应用,2006,22:63~65
    [107] Besnard E. Design optimization with advanced simulated annealing[R]. AIAA 99-0186,1999
    [108] Lee S L. Aerodynamic design of transonic airfoils using simulated annealing and Navier-Stokes equation [R]. AIAA 2000-0728, 2000
    [109]王宏刚,曾建潮,徐玉斌.优良模式自学习遗传算法[J].自动化学报,1999,25(3):375~380
    [110]申元霞,张翠芳.一种新型保持种群多样性的遗传算法[J].系统仿真学报,2005,17(5):1052~1054
    [111]杜永贵,石洪献.混合遗传算法的研究现状[J].科技情报开发与经济,2006,16(10):168~169
    [112]武广号,文毅,乐美峰.遗传算法及其应用[J].应用力学学报,1996,13(2):93~97
    [113]吕杰武,雷毅.基于遗传算法的机械优化设计[J].计算机辅助工程,2003,2:41~45
    [114]玄光男,陈润伟.遗传算法与工程设计[M].北京:科学出版社,2000
    [115] Holland J H.Genetic Algorithms[J].Scientific American,July,1992:44~50
    [116] Goldberg D E.Genetic Algorithms in Search[M],Optimization and Machine Learning[M]. Addison-Wesley Publishing Company Inc.,1985
    [117] Holland J H.Adaptation in natural and artificial systems [M].MI:University of Michigan Press,1975
    [118] J. H. Holland.Adaptive plans optimal for payoff-only environments,in Proceeding of the Second Hawaii International Conference on System Sciences,1969:917~920
    [119]金东海,展昭,桂幸民.基于混合遗传算法的压气机叶型自动优化设计[J].推进技术,2006,27(4):349~353
    [120] S.Kirkpatrick, C. D. Gelatt, M.P. Vecchi. Optimization by Simulated Annealing. Science, No 4598. 13, May,1983
    [121] Jang M. Genetic algorithm based design of transonic airfoils using Euler equations[R].AIAA 2000-1584, 2000
    [122] Terry L. Aerodynamic shape optimization using a realnumber-encoded genetic algorithm [R]. AIAA 2001-2473, 2001
    [123]苏日娜.基于二进制编码的遗传算法的研究[J].宁波工程学院学报,2005,17(2):11~14
    [124]韩娟.遗传算法概述[J].西部探矿工程,2007,7:213~215
    [125]王小平,曹立明.遗传算法[M].西安:西安交通大学出版社,2002
    [126]黄洪钟,赵正佳,姚新胜等.遗传算法原理、实现及其在机械工程中的应用研究与展望[J].机械设计,2000,3:1~6
    [127]王鲁.基于遗传算法的多目标优化算法研究[D]:[硕士学位论文].武汉:武汉理工大学,2006
    [128]高玉根,王国彪,丁予展.遗传算法在机械优化设计中的应用现状及展望[J].机械,2002,29(3):8~11
    [129]樊会元.基于演化计算技术的离心压缩机静止叶栅优化设计方法的研究[D]:[博士学位论文].西安:西安交通大学,2000
    [130]马立肖,王江晴.遗传算法在组合优化问题中的应用[J].计算机工程与科学,2005,27(7):72~73,82
    [131]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1996,46~50
    [132] D.E.Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, 1989
    [133]王晓鹏.遗传算法及其在气动优化设计中的应用研究[D]:[博士学位论文].西安:西北工业大学,2000
    [134] V. Cours Pareto. D’Economies Politique, volume I and II. Rouge,Lausanne,1896
    [135] H.Y. Fan, Xi and S.J.Wang, Multi-point optimal design for cascade of centrifugal compressor, accepted to be published in Proc. Instn. Mech. Engrs
    [136]王晓鹏.多目标优化设计中的Pareto遗传算法[J].系统工程与电子技术,2003,25(12):1558~1561
    [137]杨昌明.轴流泵间隙流动数值模拟与试验研究[D]:[博士学位论文].成都:西南交通大学,2003
    [138]曹国强.基于并行计算技术的离心式叶片泵流场数值模拟及三维设计软件开发[D]:[博士学位论文].沈阳:辽宁工程技术大学,2005
    [139]赵兴艳,苏莫明,张楚华等.CFD方法在流体机械设计中的应用[J].流体机械,2000,28(3):22~25
    [140]胡春波,姜培正,魏进家.离心泵叶轮内宾汉流体湍流流场的数值计算[J].应用力学学报,1999,16(2):104~107
    [141]赵斌娟,王泽.离心泵叶轮内流数值模拟的现状和展望[J].农机化研究,2002,3:49~52
    [142]曹国强,梁冰,包明宇.基于FLUENT的叶轮机械三维紊流流场数值模拟[J].机械设计与制造,2005,8:22~24
    [143]罗海彬,吴剑鸣,吕鑫等.PC Cluster的建立和技术探讨[J].计算机与应用化学,2002,19(1):116~121
    [144]吕利红.轴流式叶栅三维流场的数值模拟与计算[D]:[硕士学位论文].济南:山东科技大学,2001
    [145]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004:123~124
    [146]王宏亮.轴流式油气混输泵单个压缩级叶轮流场CFD模拟分析[D]:[硕士学位论文].兰州:兰州理工大学,2005
    [147]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].北京:清华大学出版社,2007:175~190
    [148]郭俊杰.轴流式油气混输泵单个压缩级内部流场模拟与分析[D]:[硕士学位论文].兰州:兰州理工大学,2004
    [149]孙永平.轴流式油气混输泵单个压缩级的流场计算[D]:[硕士学位论文].兰州:甘肃工业大学,2003
    [150]陈山.轴流式油气混输泵压水室流场分析与实验研究[D]:[硕士学位论文].兰州:甘肃工业大学,2002
    [151]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:289~290
    [152]赵新学,李增亮.井下气液混输泵试验台架设计及试验[J].石油机械,2007,35(4):1~4
    [153]赵新学.螺旋轴流式多相混输泵输送气液两相时特性试验研究[D]:[硕士学位论文].东营:中国石油大学(华东),2007
    [154]朱兵.轴流泵内部流动及受力特性的分析与研究[D]:[硕士学位论文].上海:上海大学,2005
    [155]李湘洲.离心泵流量-扬程曲线特性研究[J].湖南大学学报,1996,23(2):78~83
    [156]朱君,姜民政,崔振华.潜油电泵高效运行的研究[J].石油学报,1997,18(2):117~122
    [157]李波.高气油比油井潜油电泵采油工艺研究[J].石油矿场机械,2004,33(3):87~89
    [158]张连山.电动潜油离心泵技术发展[J].石油机械,1994,22(10):45~49
    [159]宫伟.电动潜油螺杆泵采油系统应用研究[J].胜利油田职工大学学报,2005,19(5):53~54
    [160]李增亮,张来斌,何元君等.双螺杆油气混输泵设计使用中有关问题的讨论[J].石油机械,2002,30(10):48~50
    [161]凌国平.国内外油气混输泵技术的研究和发展[J].华东船舶工业学院学报.2000,14(5):83~87
    [162]宇富平,任爱菊,刘克强螺旋轴流式多相泵的研究现状[J].石油矿场机械,2004,33(增刊):4~7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700