用户名: 密码: 验证码:
自然工质CO_2水平管外沸腾换热强化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然工质CO2有着广阔的应用前景。本文以研究CO2满液式蒸发器为目的,研究了CO2沸腾换热的强化及水-水热泵中采用满液式蒸发器的相关问题,并重点实验研究CO2在水平光滑铜管和机械加工表面强化管管外沸腾换热性能。
     在充分调研了制冷剂沸腾换热的性能的基础上,对CO2的沸腾换热性能做了深入分析和研究。研究结果表明,CO2沸腾传热符合一般物质沸腾传热的规律,与其他常规工质相比,CO2具有换热系数高、易干涸,受静液高度影响小等特点。
     论文在水-水热泵实验台上对CO2在水平光滑铜管和机械加工表面强化管外池沸腾换热进行了研究。实验装置解决了较高压力下的密封、换热管温度测量和可视化的技术难点,根据实验数据,拟合出一定压力和热流密度下,CO2水-水热泵中光管和实验用强化管表面平均沸腾换热系数的关联式,为满液式蒸发器换热计算提供了必要的实验数据,具有重要工程价值。
     当蒸发压力P=3.2MPa时,在实验热流密度(28.69~54.27kW/m2)范围内,实验用强化管的强化倍率为2.02~2.24。实验结果表明,现有商用强化管对CO2管外沸腾换热有较好的强化作用,可直接应用于CO2系统满液式蒸发器。
     论文对光管和内螺纹管在内压和外压作用下的强度进行了有限元分析,指出对于内螺纹管,螺距对管强度影响不明显;在相同压力下,管受内压时最大等效应力发生在内螺纹根部的管内壁处,比受外压作用更容易受到破坏,为满液式蒸发器强化传热管的选择提供了依据。
     论文对CO2水-水热泵中使用满液式蒸发器进行了分析,并对CO2用满液式蒸发器提出了结构上的建议。
     论文还对纳米气泡的现象进行了分析,提出在CO2液态物质中,可能存在微小的异相气泡。
Natural refrigerant CO2 has a broad perspective of application. This thesis aims to study flooded evaporator used in CO2 refrigeration system by digging into the relevant questions of adopting flooded evaporator in water-to-water heat pump system and the enhancement of boiling heat transfer of CO2. Also this thesis emphasizes the experimental study on boiling heat transfer of CO2 on smooth and fabricated horizontal copper tubes.
     Based upon the thorough investigation and research of boiling heat transfer of refrigeration preparation, a deep analysis and study on boiling heat transfer of CO2 was performed. The research result shows that the boiling of CO2 is according with the rules of that of ordinary substances. And comparing to other general refrigerants, CO2 has the characteristics of high heat transfer coefficient, easy dry-out phenomenon, less influenced by the liquid height.
     The thesis studies the boiling heat transfer of CO2 on smooth and fabricated horizontal copper tubes on a water-to-water heat pump system test platform. The experimental device solved the technical difficulties of sealability, the measurement of temperature and visualization of heat transfer under relatively high pressure. This thesis provides the necessary experimental data for the calculation of heat transfer in flooded evaporator and has important project value. Correlations for the average boiling heat transfer coefficients of CO2 on smooth and fabricated horizontal tubes in water-to-water heat pump with certain evaporation pressure and heat flux are obtained from the experimental data.
     The enhancement ratios of fabricated tube are 2.02-2.24 within the range of experimental heat flux (28.69-54.27kW/m2) when the saturation pressure is 3.2MPa. The experimental results show that the existing commercial enhanced tubes have good strengthening effect for the pool boiling heat transfer of CO2 and thus can be directly applied to flooded evaporator in CO2 system.
     The thesis performs a finite element analysis of the intensity of smooth tube and internal-thread tube under both internal and external pressure. It points out that for the internal-thread tube, the distance between threads has no significant impact on the strength of the tube. When under the same pressure, the maximum equivalent stress occurs at the inner wall of the root of the internal-thread as the tube is under high internal pressure. It is easier to be damaged than under the impact of high external pressure. This result provides the gist of choosing enhanced heat transfer tubes for flooded evaporator.
     The thesis performs an analysis of adopting flooded evaporator in CO2 water-to-water heat pump system and brings forward the structural suggestions for flooded evaporator used in CO2 system.
     The thesis also analyzes the phenomenon of Nano bubbles and indicates that the tinny heterogeneous bubbles might exist in liquid state of CO2.
引文
[1] 王荣光, 沈天行等编著. 可再生能源利用与建筑节能. 北京: 机械工业出版社, 2004
    [2] 孙孝仁, 孙怡玲. 2020 年世界能源前景. 科技情报开发与经济, 2000, 10(2): 15~19
    [3] 孙孝仁. 21 世纪世界能源发展前景. 中国能源, 2001.2: 19~20
    [4] 李明. 中国能源发展报告. 北京: 科学出版社, 1977, 58~62
    [5] 何中舟.从数字看能源.中国改革,2004.7: 50~51
    [6] 约翰·M·斯雷特. 21 世纪煤炭在世界能源结构中的地位. 煤矿现代化, 1999, 29(1): 6~7
    [7] 魏东, 马一太, 吕灿仁. 温室气体减排与 21 世纪我国的能源发展战略. 能源技术, 2001, 23(2): 87~90
    [8] 麦永金. 大气中CO2增速加快. 中国环境报, 2004.4.9
    [9] IPPC. Climate change [A]. IPPC Second Assessment Report[R], 1995
    [10] 张坤民, 何雪炀. 气候变化与实施清洁发展机制的展望. 世界环境, 1999.4: 10~14
    [11] 陈彪. 可持续发展与环境保护. 芜湖职业技术学院学报, 2003, 5(3): 37~39
    [12] 丹尼斯·米都斯等著. 增长的极限. 长春: 吉林人民出版社, 1997
    [13] 世界环境委员会. 我们共同的未来. 长春: 吉林人民出版社, 1997
    [14] A.K.N. 雷迪, R.H. 威廉斯, T.B. 约翰森等. 里约会议以后的能源—世界能源前景与挑战. 国际石油经济, 1998, 6(2): 38~43
    [15] F.S. Rowland, M.J. Molina. Stratospheric sink for Chlorofluoromethanes: Chlorine atome catalyzed destruction of ozone. Nature, 1974, 249: 810~812
    [16] 查世彤. 二氧化碳跨临界循环膨胀机的研究与开发. 天津大学博士论文, 2002
    [17] 李刚. 制冷剂与环境保护的动态研究. 环境科学动态, 2005.1: 57~59
    [18] William L. Kopko. Beyond CFCs: Extending the search for new refrigerants. Int. J. Refrig., 1990, 13(3): 79-85
    [19] D.W. Shas, E. Granryd. Experimental and theoretical study on flow condensation with non-azeotropic refrigerant mixtures of R32/R134a. Refrigeration, 1998, 21(7): 57~60
    [20] 董天禄, 华小龙. 制冷剂替代技术的最新动态. 制冷技术, 1999.1: 18~21
    [21] J. L. Boot. Overview of alternatives to CFCs for domestic refrigerators and freezers. Int. J. Refrig., Vol.13, 1990, 13(3): 100~105
    [22] 丁国良. 德国制冷装置 CFCs 替代方案及 TEWI. 制冷学报, 1997,4: 57~60
    [23] 吕彦力. 汽车空调制冷系统工质替代研究. 制冷学报, 1999.3: 16~21
    [24] 朱明善. 21 世纪制冷空调行业绿色环保制冷剂的趋势与展望. 制冷与空调, 2000.1: 3~5
    [25] O. S. Hans. Compatibility requirements for CFC alternatives. Int. J. Refrig., 1990, 13(3): 73~78
    [26] 张绍志, 王剑峰, 陈光明. 水制冷系统闪蒸器特性的理论分析. 低温工程, 2000, 3(115): 12~18
    [27] Lorentzen G. The use of natural refrigerants: a complete solution to the CFC/HCFC predicament [J]. Int. J.Refrig, 1995, 18(3): 190 -197
    [28] 李敏霞, 马一太, 李丽新等. 氨在空调制冷领域的应用. 暖通空调, 2005, 35(3): 36~40
    [29] 杜建通, 申江, 邹同华等. 天然制冷剂在制冷空调装置中应用的技术进展. 流体机械, 2000, 28(6): 53~58
    [30] 查世彤, 马一太, 王景刚等. CO2-NH3低温复叠式制冷循环的热力学分析与比较. 制冷学报, 2002.2: 15~19
    [31] Lorentzen G, Pettersen J. A new, efficient and environmentally benign system for car air conditioning. Int. J. Refrig, 1993, 16(1): 4~12
    [32] Friedrich Kauf. Determination of the optimum high pressure for transcritical CO2-refrigeration cycles. International Journal of Thermal Sciences, 1999, 38(4): 325~330
    [33] S. M. Liao, T. S. Zhao, A. Jakobsen. A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles. Applied Thermal Engineering, 2000, 20(9) : 831~841
    [34] 曲天非, 王如竹, 张早校等. 改进二氧化碳制冷循环性能的理论分析. 流体机械, 1999, 27(9): 43~45
    [35] Douglas M. Robinson, Eckhard A. Groll. Efficiencies of transcritical CO2 cycles with and without an expansion turbine. International Journal of Refrigeration, 1998, 21(7): 577~589
    [36] 黄国平, 丁国良, 张春路. 不同跨临界二氧化碳制冷循环的性能比较. 上海交通大学学报, 2003, 37(7): 1094~1097
    [37] 魏东. 二氧化碳跨临界循环换热与膨胀机理的研究. 天津大学博士论文, 2002
    [38] 李敏霞. 二氧化碳跨临界循环转子式膨胀机分析与实验研究. 天津大学博士论文, 2003
    [39] 丁国良. CO2制冷技术新发展. 制冷空调与电力机械, 2002.2: 1~6
    [40] 马一太, 魏东等. 国内外自然工质研究现状与发展趋势. 暖通空调, 2003.1: 41~46
    [41] 丁国良, 黄东平, 张春路等. 跨临界循环二氧化碳汽车空调研究进展. 制冷学报, 2000.2: 7~13
    [42] 丁国良, 黄冬平, 张春路. 跨临界二氧化汽车空调稳态仿真. 工程热物理学报, 2001, 22(3): 272~274
    [43] 丁国良, 黄冬平, 张春路. 跨临界二氧化汽车空调特性分析. 制冷学报, 2001. 3: 17~23
    [44] 陈江平, 穆景阳, 刘军朴等. 二氧化碳跨临界汽车空调系统开发. 制冷学报, 2002.3: 14~17
    [45] Neksa P., Rekstad H., A. CO2 heat pump water heater: characteristics, system design and experimental results. Int. J. Refrig., 1994: 172-179
    [46] Neksa P., CO2 heat pump systems. Int. J. Refrig., 2002: 421-427
    [47] Schmidt.E.L, Klocker.K, Flacke.N, Steimle F. Applying thetranscritical CO2 process to a drying heat pump. International Journal of Refrigeration, 1998, 21(3): 202~211.
    [48] 管海清, 马一太, 杨俊兰. 日本家用CO2热泵热水器研究开发现状分析. 家电科技, 2004.6: 59~61
    [49] 王侃宏. CO2跨临界循环的理论分析与实验研究. 天津大学博士论文,2000
    [50] 马一太, 李敏霞, 王景刚等. CO2跨临界水—水热泵供热系统应用理论探讨. 暖通空调,2004, 34(7) : 11~14
    [51] 曾宪阳, 马一太, 李敏霞等. 二氧化碳热泵干燥系统的研究. 流体机械, 2006, 34(4): 52~56
    [52] 徐洪涛, 袁秀玲, 李国强等. 跨临界循环二氧化碳在热泵型热水器中的应用研究. 制冷学报, 2001.3: 12~16
    [53] S.G.Kim, M.S.Kim. Experiment and simulation on the performance of an autocascade refrigeration system using carbon dioxide as a refrigerant. International Journal of Refrigeration, 2002, 25: 1093~1101
    [54] 宁静红, 马一太, 李敏霞. R290/CO2自然工质低温复叠式制冷循环理论分析. 天津大学学报, 2006, 39(4): 449~453
    [55] 宁静红, 马一太 陈启. R290/ CO2复叠式循环中使用R22 压缩机的分析研究. 压缩机技术, 2006.1: 22~24
    [56] 李敏霞, 马一太, 李丽新等. CO2跨临界循环制冷压缩机的研究进展. 压缩机技术, 2004.5: 38~42
    [57] 季建刚, 黎立新, 蒋维刚. 跨临界循环二氧化碳制冷系统研究进展. 机电设备, 2002.4: 23~27
    [58] 王振邦. 关于提高二氧化碳制冷系统性能的探讨. 制冷与空调, 2000.2: 65~72
    [59] 杨俊兰, 马一太, 管海清. 微通道换热器在CO2跨临界制冷系统中的应用. 制冷与空调, 2005, 5(2): 52~56
    [60] S.S.Pitla, D.M.Robinson, E.A.Groll, S.Ramadhyani. Heat transfer from supercritical pressuer carbon dioxide in tube flow: A critical review. International Journal of HVAC&R Research, 1998,4(3): 281~301
    [61] S.S. Pitla, E.A. Groll, S.Ramadhyani. New correlation to predict the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2. International Journal of Refrigeration, 25 (2002) 887–895
    [62] S.M. Liao, T.S. Zhao. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes. International Journal of Heat and Mass Transfer, 45 (2002) 5025–5034
    [63] S.H.Yoon, J.H.Kim, Y.W.Hwang. Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region. International Journal of Refrigeration, 2003,26: 857–864
    [64] 杨俊兰. CO2跨临界循环及换热理论分析与实验研究. 天津大学博士论文,2005
    [65] A.M.K.Bredesen, A. Hafner, J. Pettersen. Heat transfer and pressure drop for in-tube evaporation of CO2. Proceedings International Conference on Heat Transfer Issues in Natural Refrigerants, College Park, 1997: 1~15
    [66] Rin Yun, Yongchan Kim, Min Soo Kim. Boiling heat transfer and dryout phenomenon of CO2 in a horizontal smooth tube. International Journal of Heat and Mass Transfer, 2003,46(13): 2353~2361
    [67] Xiulan Huai, Shigeru Koyama, T.S. Zhao. An experimental study of flow boiling characteristics of carbon dioxide in multiport mini channels. Applied Thermal Engineering, 2004,24: 1443~1463
    [68] Jostein Pettersen. Flow vaporization of CO2 in microchannel tubes. Experimental Thermal and Fluid Science, 2004,28: 111~121
    [69] Masafumi Katsuta, Hiromitu Kinpara, Shunta Yagi. The effect of oil contamination on evaporative heat transfer characteristies of CO2 refrigeration cycle[A]. The 2nd Asian Conference on Refrigeration and Air-conditioning ACRC[C]. Beijng: Chinese Association of Refrigeration, 2004, 332-340
    [70] S. Loebl, W.E. Kraus, H. Quack. Pool boiling heat transfer of carbon dioxide on a horizontal tube. International Journal of Refrigeration, 2005,28: 1196~1204
    [71] D. Gorenflo, S.Kotthoff. Review on pool boiling heat transfer of carbon dioxide. International Journal of Refrigeration, 2005,28: 1169~1185
    [72] S. Yilmaz, J.W. Westwater. Effect of velocity on heat transfer to boiling Freon-113. Journal of Heat Transfer,1980, 102: 26~31
    [73] K. Cornwell, L.S. Leong. On the analysis of low quality flow boiling. Int. J. of Heat and Fluid Flow,1979,1(2): 63~69
    [74] R.L. Singh, J.S. Saini, H.K. Varma. Effect of cross-flow on boiling heat transfer of refrigerant-12. Int. J. of Heat Mass Transfer,1985,28(2): 515~517
    [75] 谭志明, 邓颂九. 多孔表面强化沸腾传热的研究进展. 化工进展, 1994, 1: 9~14
    [76] S.B.Memory. Nucleate pool boiling of R-114 and R-114-oil mixtures from smooth and enhanced surfaces-I. Single tubes. Int. J. Heat Mass Transfer, 1995,38(8):1347~1361
    [77] Z.H. Ayub, A.E. Bergles. Pool boiling from GEWA surfaces in water and R-113. Warme- und Stoffubertagung, 1987,21: 209~219
    [78] R.L. Webb,C. Pais. Nucleate pool boiling data for five refrigerants on plain, integral-fin and enhanced tube geometries. Int. J. Heat Mass Transfer, 1992, 35(8): 1893~1904
    [79] Ken-Ichiro Nakajima, Akira Shiozawa. An experimental study on the performance of a flooded type evaporator. Heat transfer-Japanese research, 1975, 4(3): 49~66
    [80] Yu-Hao Qiu, Zhen-Hua Liu. Boiling heat transfer of water on smooth tubes in a compact staggered tube bundle. Applied Thermal Engineering, 2004, 24: 1431~1441
    [81] Zhen-Hua Liu, Yu-Hao Qiu. Enhanced boiling heat transfer in restricted spaces of a compact tube bundle with enhanced tubes. Applied Thermal Engineering, 2002, 22: 1931~1941
    [82] K. Cornwell, R.B. Schuller. A study of boiling outside a tube bundle using high speed photography. Int. J. Heat Mass Transfer, 1982, 25(5): 683~690
    [83] 杨世铭, 陶文铨编;传热学(第三版). 北京: 高等教育出版社, 1998
    [84] 鲁钟琪编. 两相流与沸腾传热. 北京: 清华大学出版社,2002
    [85] 徐济鋆编. 沸腾传热和气液两相流. 北京: 原子能出版社, 2001
    [86] [英]D.巴特沃思 G.F.休伊特. 两相流与传热. 北京: 原子能出版社, 1985
    [87] D. Gorenflo, U. Chandra, S. Kotthoff. Influence of thermophysical properties on pool boiling heat transfer of refrigerants. International Journal of Refrigeration. 2004, 27: 492~502
    [88] K.Stephan and M.Abdelsalam. Heat-transfer correlations for natural convection boiling . International Journal of Heat and Mass Transfer, 1980(23): 73~87
    [89] W. Leiner. Heat transfer by nucleate pool boiling—general correlation based on thermodynamic similarity . International Journal of Heat and Mass Transfer, 1994, (37): 763~769
    [90] D. Jung, Y. Kim, Y. Ko. Nucleate boiling heat transfer coefficients of pure halogenated refrigerants. International Journal of Refrigeration, 2003, (26): 240~248
    [91] S. Ljunggren, J.C. Eriksson. Colloids Surf. A: Physicochemical and Engineering Aspects, 1997, (129/130): 151~155
    [92] 张雪花,楼柿涛,张志祥等. 固液界面纳米气泡的研究. 电子显微学报,2003, 22(2):136~141
    [93] 张雪花,胡钧.固液界面纳米气泡的研究进展. 化学进展,2004,16(5): 673~681
    [94] M. Youbi-Idrissi, J. Bonjour, C. Marvillet. Impact of refrigerant–oil solubility on an evaporator performances working with R-407C. International Journal of Refrigeration, 2003,26: 284~292
    [95] ASHRAE Refrigeration Handbook 1998
    [96] 制冷和空调设备名义工况一般规定. 中华人民共和国机械行业标准 JB/T 7666-95 94
    [97] 颜志光. 润滑材料与润滑技术. 北京: 中国石化出版社,2000
    [98] 马一太, 管海清, 李敏霞等. CO2跨临界循环系统润滑油分析. 天津大学学报, 2004, 37(9): 783~786
    [99] 张永立. 满液式蒸发器回油的一个方案. 冷藏技术,2002.12: 47~49
    [100] S.H. Yoon, E.S. Cho, Y.W. Hwang, et al. Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development. Int. J. of Refrigeration, 2004, 27(2): 111-119
    [101] Z. Sun, E.A. Groll. CO2 flow boiling heat transfer in horizontall tubes, Part 2: experimental results. Preliminary proceedings of the 5th IIR-Gustav Lorentzen Conference on Natural Working Fluids at Guangzhou, China, September 17-20, 2002, 116-125
    [102] 林瑞泰. 沸腾传热. 科学出版社, 北京: 1988
    [103] W. Nakayama, T. Daikoku, H. Kuwahara. Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces Part I: Experimental Investigation. Journal of Heat Transfer, 1998, 102(8): 445~450
    [104] S. Kotthoff, D. Gorenflo, E. Danger. Heat transfer and bubble formation in pool boiling: effect of basic surface modification for heat transfer enhancement. Int. J. Thermal Sciences, 2006.45: 217~236
    [105] 刘卫华主编. 制冷空调新技术及进展. 北京: 机械工业出版社, 2004.9
    [106] 孙训方, 方孝淑, 关来泰编. 材料力学. 北京: 高等教育出版社, 2002.8
    [107] 余建阻编著. 换热器原理与设计. 北京: 北京航空航天大学出版社, 2006.1
    [108] Yu-Hao Qiu, Zhen-Hua Liu . Boiling heat transfer of water on smooth tubes in a compact staggered tube bundle. Applied Thermal Engineering, 2004,24: 1431~1441
    [109] 曹玉璋, 邱绪光著. 实验传热学. 北京: 国防工业出版社, 1998.6
    [110] 刘文毅, 李妩, 陶文铨. R123 水平强化单管外池沸腾换热实验研究. 制冷学报, 2005, 26(4): 30~34
    [111] Liang-Han Chien, R.L. Webb. Visualization of pool boiling on enhanced surfaces. Experimental Thermal and Fluid Science. 1998,16: 332~341
    [112] D. Gorenflo, E. Danger, A. Luke. Bubble formation with pool boiling on tubes with or without basic surface modifications for enhancement. International Journal of Heat and Fluid Flow, 2004,25: 288~297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700