用户名: 密码: 验证码:
基于电流变阻尼器气浮工作台关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,采用直线电机直接驱动工作台的方式越来越多。直线电机直接驱动与精密滚珠丝杠副传动进给方式相比,具有进给速度快、加速度高、定位精度好、行程长和动态响应快等特点。对于由直线电机驱动的气浮工作台来说,由于气浮工作台缺少必要的阻尼环节,使得直线电机进给系统阻尼小、抗扰动能力差,易产生超调和振荡现象,从而限制了直线电机直接驱动气浮工作台的使用范围。因此,开展直线电机直接驱动气浮工作台关键技术研究是一项非常有意义的工作。经过前期研究,本文提出了“基于电流变阻尼器气浮工作台关键技术的研究”课题,本文通过研究首先构建了半主动控制电流变阻尼器气浮工作台数学模型;然后,利用构建的模型对系统关键结构进行了研究设计;最后利用MATLAB和ADAMS软件对所构建的系统进行了仿真实验,通过实验研究,初步证明了该方法能较好的解决直线电机直接驱动气浮工作台所存在的某些问题。本文研究内容可阐述如下:
     第一章,绪论。首先阐述了论文研究的背景及意义,通过对国内外电流变液阻尼器与直线电机控制技术现状的研究,确立了本论文主要研究内容。
     第二章,电流变阻尼器气浮工作台理论基础。为了能更好的开展后续的研究工作,本章对气浮工作台、电流变阻尼器技术进行了学习、归纳和研究。
     第三章,半主动控制电流变阻尼器气浮工作台数学模型。根据经济高效实用的设计原则,本章通过半主动控制电流变阻尼器气浮工作台方案的比较设计,首先确立了最优方案,然后再通过对设计方案的研究,构建了“半主动控制电流变阻尼器气浮工作台数学模型”。
     第四章,关键结构设计。利用已构建的“半主动控制电流变阻尼器气浮工作台动力学模型”,针对本章主要研究内容:气动控制阀和电流变阻尼器二个关键结构的设计,进行了较为深入的研究探讨。考虑到气浮轴承供气的稳定性,对传统气动控制阀进行了结构改进设计;从电流变阻尼器工作模式出发,研究设计了复合模式下的电流变阻尼器,并且通过能量损失守恒计算出电流变阻尼器等效线性阻尼系数,研究设计了一种新型的电流变阻尼器。
     第五章,仿真实验。首先利用MATLAB对具有电流变阻尼器气浮工作台的动力学特性进行了仿真;再联合ADAMS软件,对“半主动控制电流变阻尼器进行联合仿真,通过仿真实验研究,初步证明了电流变阻尼器能较好的解决气浮工作台系统抗扰动能力差,易产生超调问题。
     第六章,工作总结,本章主要对论文研究工作进行了回顾与展望。通过回顾与展望重点阐述了本论文主要创新点;也对研究工作存在的问题进行了总结,同时对本课题今后可能研究问题进行了展望。
With development of science and technology, the table system by using linear motor direct drive is more popular. Compared with ball screw transmission, direct drive is of high feed speed, acceleration, high accuracy, long trip, fast dynamic response. For the aerostatic table system by direct drive, the table is poor in anti-disturbance ability, easy to produce oscillations, which limits the aerostatic table system. Therefore, it is a meaningful task that studies the key technology of high precision table by direct drive. After previous studies, this paper presents“Study on Aerostatic Table System Equipped With the Electrorheological Fluid Damper”.At first,the mathematical model of the semi-active controlled table by ER damper is constructed, then ,using the established model of system to design the key structure of table, Finally, using the ADAMS software MATLAB constructing a simulation experiment, the experimental results show that this method by adding ER damper can be a good way to solve some of these problems .The contents of paper are as follows:
     Chapter One: introduction. First, this chapter expounds the background and significance of research that the key technology of ER dampers and the linear motor control at home and abroad, established the mainly research content of this thesis.
     Chapter Two: the theory of the aerostatic table system with ER damper. In order to make a better follow-up research, this chapter learned, summarized and studied the ER damper technology and aerostatic table system.
     Chapter Three: mathematical model of the aerostatic table by semi-controlled with ER damper. According to the principle of economic efficient and practical design, this chapter chooses the optimal scheme of design scheme by comparing with the two scheme of design, and then constructed the“mathematical model of semi-active controlled table with ER dampers ".
     Chapter Four: the key structural design. Making use of the dynamic model of semi-controlled aerostatic table with ER damper, the two structural the pneumatic valve and the ER damper were designed. Taking into the account the stability of supply air, the structural of valve was improved .Designed the ER damper working on the composite mode and calculated the equivalent of coefficient.
     Chapter Five: The simulation experiment. First, a dynamic simulation of aerostatic table with ER damper was made. Then, united Adams, the results demonstrated the problems such as anti-disturbance can be solved better added with ER damper.
     Chapter Six: working summary.this chapter for research work reviews and looking through the retrospect and prospect, this essay expounds the main innovation points; Also in research work summarizes the problems existing in the future, and this project could research problems are prospected
引文
[1]董吉洪,田兴志.李志来,王明哲.100nm步进扫描投影光刻机工件台、掩膜台的发展[J].微纳科学与技术,2004,11(5):20~24.
    [2]王继红,唐小平.0.35微米分步重复投影光刻气浮工件台研究[J].微细加工技术,2001,13(3):20~24.
    [3]叶云岳.直线电机原理与应用[M].机械工业出版社,2000.
    [4]陈亚英,朱煜,段广洪.基于电流变阻尼超精密气浮工作台研究[J].润滑与密封,2007,2(2): 7~9.
    [5] Choi Seung-Bok, Kim Wan-Kee. Vibration control of a semi~active suspension featuring electrorheological fluid dampers [J].Journal of Sound and Vibration.2000. 234(3): 537~546.
    [6]陶宝祺.智能材料结构研究[M].国防工业出版社,1997.
    [7]龚烈航,张庚申,王强,陈宁.电流变液体阻尼器数学模型研究[J].液压与气动,2003,1 (7): 1~3.
    [8]刘鹏,刘红军,腾军,曹天义.电流变阻尼器的设计及模型参数识别[J].功能材料,2006,5(37): 774~779.
    [9] Lionel B,Young-Tai C,Norman W. electrorheological damper analysis using an eyring constitutive relationship [J] .Journal of intelligent Material systems and structures,2002,13 :633~639.
    [10]叶佩青,杨开明等.基于振动模型的精密工作台运动控制[J].清华大学学报科学版,2006,2: 206~209.
    [11]陈学东,何学明等.超精密气浮工作台技术—气浮系统动力学与控制[M].华中科技大学出版社,2008.
    [12] N.D.Sims, D.J.Peel.The electrorheological long-stroke damper: a new modeling technique with experimental validation [J]. Journal of sound and vibration, 2000.
    [13]沈崇棠,刘鹤年.非牛顿流体力学及其应用[M].高等教育出版社.1989.
    [14]魏宸官.电流变技术—机理,材料,工程应用[M].北京理工大学出版社.2000.
    [15]王先奎主编,精密加工技术实用手册[M]机械工业出版社,2001.
    [16]王云飞著.气体润滑理论与气体轴承设计[M].机械工业出版社.1999.
    [17]刘暾等著.静压气体润滑[M].哈尔滨工业大学出版社.1990.
    [18] C.B.Choi,S.S.Han.Vibration control of a smart material based damper system considering temperature variation and time delay[J].Acta Mechanica,2005:73-82.
    [19]刘红军:电流变技术在结构振动抑制上的应用[D].西北工业大学博士论文.
    [20]高晶敏,张少华等.电流变体减振器的研究[J].汽车工程,1999.
    [21]阎安志,徐辉,陈丁跃,敬晓明.大阻尼力电流变阻尼器的结构设计及力学性能[J].西安交通大学学报,2002,9(36).
    [22]王晓杰,唐新鲁等.理想电流变阀的流体动力学响应[J].中国科技大学学报,1998.
    [23]惠晓明.电流变体在结构振动抑制中的应用研究[D].西北工业大学硕士论文.
    [24] Faramarz Gordaninejad, M.Saiidi, Sivakumar Uthiram. Experimental study of a multielectrode cylindrical ER fluid damper for in~planemotion[J]SPIE,2003
    [25] M.Kamath, M.Wereley. Nonlinear modeling and performance prediction of ER fluid dampers [J] SPIE.2001.
    [26]张大卫,冯晓梅.音圈电机的技术原理[J]中北大学学报,2006,27(3).
    [27] Shoshi Hidaka. Adaptive Vibration control by a variable damping dynamic absorber using er fluids [J] Vibration and acoustics, ASME, 1998.
    [28] R.Stanway, J L Sproston. Applications of electrorheological fluids in vibration control [J] Smart mater struct.2001.
    [29]张扬,钟康明,陈再良等.基于杠杆-铰杆增力机构的液压-机械负荷传动装置[J].现代机械,2005(6).
    [30] Jun-Ichi Takimoto, Keiji Minaga. Numerical study of the response time of ER suspensions [J] .Annals of the CIRP, 2003.
    [31]刘燕霞,朱宇珠等.气膜润滑及应用[J].江西科学,2002,20(3):174~178.
    [32]路小波,陶云刚,周结敏.基于神经网络的柔性结构振动主动控制研究[J].振动工程学报,2000,3(13).
    [33]陈立平,张云清,任卫群,谭刚.机械系统动力学分析及ADAMS应用教程[M].清华大学出版社.2005.
    [34]肖曙红,夏红梅,张伯霖.高速大推力直线电机直接驱动进给系统动态性能的分析[J].机床与液压,2007,5(35),20~23.
    [35] Hidenori Shinno, Hitoshi Hahizume. Nanometer Position of a linear motor driven ultraprecision aerostatic table system with electrorheological fluid dampers [J].Annals of the CIRP.1999.
    [36] Andreas kagi, Klaus Holzmann.Active and semi-active control of electrorheological fluid devices [J].Solid Mechanics and its applications,2006.
    [37]陈吉安,张博明,王殿富,杜善义.三种电流变阻尼器阻尼特性的对比分析[J].应用力学学报,2000.12(4):58~65.
    [38]肖曙红,张伯霖,郑时雄.直线电机直接驱动进给单元刚度研究[J].机械工艺师,2001.4:5~7
    [39]谢传锋.动力学[M].高等教育出版社.2004.
    [40]陈伯时.电力拖动自动控制系统-运动控制系统[M].机械工业出版社.2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700