用户名: 密码: 验证码:
污垢和超声波对场协同的影响及除垢效果评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据对流换热场协同理论和超声学理论,对污垢及除垢超声波对换热器内对流换热场协同的影响和超声波防除垢效果的影响因素及除垢效果的评价等问题进行了研究。首先分析了污垢的特性及其对传热和对流换热场协同的影响;其次,为了提高超声波防除垢效果,根据多普勒频移原理,建立了超声波在流动液体中传播的数学模型,并求出描述超声波声压分布的解析解。利用数值模拟软件,对超声波在各种管型中传播特性进行数值模拟,得出超声波的声压分布及其频响特性,从而分析了影响除垢超声波传播特性和空化的因素。在此基础上,利用数值模拟,研究了超声空化对换热管内速度场与热流场协同的影响。为了优化超声波防除垢仪的运行,首次提出防除垢效果实时在线评价方法,并定义了评价指标。最后,对数值模拟结果进行了实验验证,并根据所得研究成果,提出了优化超声波防除垢仪设计和运行的构想,为后续研究指明了方向。
     根据场协同原理,应用数值计算方法分别对不同管型内由CaCO3污垢对换热过程的影响进行了数值模拟,并对计算结果进行了细致的分析,对每种管型做出了客观的评价。计算结果表明,各种管型的污垢对速度矢量与温度梯度的协同程度影响不同,其中,波纹管的协同角β随污垢厚度的增加而减小,在结垢状态下波纹管的管内换热能力有所增强。而其它管型的协同角β随污垢厚度的增加而增大,协同程度变差。所有管型的速度与压力梯度的场协同角θ随污垢厚度增加均增大,压损增加。交叉缩放管的速度与温度梯度的协同角β要比其它强化换热管型小,其换热效果要强于其它管型;并且其速度与压力梯度的协同角θ受污垢的影响也较小,从综合换热性能系数来看,交叉缩放管的综合换热性能系数最高,所以交叉缩放管在高效低阻强化换热领域有很大的发展前景。
     根据多普勒频移原理,对静止的波动方程进行改进,建立了超声波在流动液体和粘滞性液体中传播的数学模型,并求出解析解。求解结果表明,当换热介质流动速度不大时,声压衰减幅度不大。当介质流速增大时,相应的单位体积内的能量密度减小,防垢效果减弱。液体的粘滞性是超声波在换热介质中传播衰减的主要原因。粘滞性的增加,使介质的声吸收系数增大,使超声波吸收的速度加快,减小了超声波传播的距离,降低超声波的防除垢效果。利用数值模拟软件,对超声波在各种管型中传播特性进行数值模拟,得出超声波的声压分布,从而得到强化管对超声波防除垢的影响。
     利用数值模拟研究了超声空化对换热管内速度场与热流场协同的影响,得出不同结构形式管道的空化数是不同的,圆管的空化数最大,然后依次为横肋管、波纹管,最后为横纹管。场协同数与空化数存在对应的函数关系,流体场协同数随着空化数的增加而增加。超声空化后流体速度与温度梯度的场协同数要比未空化时的场协同数减小
     结合传热理论,首次提出了一种可以实时在线评价超声波防除垢效果的方法,并定义了评价指标,对影响评价指标的因素进行了分析和修正,使修正后的评价系数能够在线评价换热器在变工况条件下的除垢效果。
     建立超声波防除垢实验台,通过实验测试了流速和温度对超声波传播特性的影响,实验结果表明:超声波在水中传播的最佳介质温度为55℃,超声波在换热器内的有效作用距离约为2m。
The paper studied mainly fouling and descaling ultrasorlic influence heat convection of pace synergism in convection heat exchange, and the factors which affects ultrasonic anti descaling effect and the question of descaling effective evaluation based on principles of field synergy and ultrasonic theory.Firstly, analyzing the characteristics of fouling and it affects heat transfer and heat convection of pace synergism.Secondly, according to the Doppler frequency shift principle, in order to improve the ultrasonic anti-descaling effect, establishing the spread of mathematical model of ultrasonic in flowing liquid to find out the analytical solution for distribution of sound pressure. The propagation characteristic of ultrasonic in all kinds of tube type was acquired by using numerical simulation software. It was concluded that the distribution of sound pressure and frequency response characteristics, and analyzing the factors that affect the propagation characteristic of descaling ultrasonic and cavitation, then, for further study, the ultrasonic cavitation effect on the velocity and heat flow of field synergy heat exchange tube. In order to optimize the operation of the ultrasonic anti-descaling instrument, the author put forward real-time online evaluation method of anti-descaling effect and defines the evaluation index for the first time. Finally, the numerical simulation results validated by experiment, and according to the research results, the paper puts forward optimizing instrument design and operation of conception for ultrasonic anti descaling, and pointed out the direction for follow-up research.
     According to the principles of field synergy, heat transfer process was affected by different tubes which scale CaCO3dirt by using numerical simulation method, and the results of calculation made a detailed analysis and objective evaluation. The result of calculation indicates that the velocity vector and the temperature gradient of the synergy degree were affected by different tube. The collaborative angle B of corrugated pipe decreased with the increases of dirt thickness, and the bellows tube heat exchange capacity and the heat exchange capacity of corrugated pipe increased in the fouling state. However, the collaborative angle β for other type tube increased with the thickness of fouling and the synergy degree become poor. The synergy Angle θ of velocity and pressure gradient increased with fouling thickness and the loss of pressure for all types of tube. Although the collaborative angle B of speed and temperature gradient for alternating axis tubes was smaller than other heat exchange tube, the heat transfer effect was stronger than other tube type and the collaborative angle θ of velocity and pressure gradient were less influenced by fouling. From the view of integrated heat transfer coefficient performance alternating axis tubes, the performance of comprehensive heat exchange coefficient was highest. Alternating axis tubes had great prospects on the high efficiency and low resistance enhanced heat transfer area.
     According to the Doppler frequency shift principle, wave equation on the stationary was improved, then established spreading mathematical model of ultrasonic flow in liquid and viscous liquid, and calculated the analytic solution. The results showed that acoustic attenuation amplitude was relatively small when the heat transfer medium flow rate was relatively small. When the flow velocity increased, the energy density per unit volume will be smaller and anti-scaling effect will be weaker. Liquid viscosity is the main reason for ultrasonic attenuation in heating medium. Viscosity increasing made the increase of absorption coefficient and the speed of ultrasonic absorption, and made the reduction of ultrasonic wave propagation distance and ultrasonic anti-fouling effect. Using numerical simulation software, the ultrasonic propagation characteristics in a variety of tube were numerically simulated that the distribution of sound pressure and the effect of enhanced tube of ultrasonic anti-fouling can get.
     We can get cavitation effect on velocity and temperature of field synergy in the heat exchanger by using numerical simulation. Simulation results showed that cavitation coefficient was different while difference of structure forms pipe. Cavitation coefficient of round tube was maximum, transverse tube's coefficient was greater than the bellow, and coefficient was minimum for transversely ridged tube. Field synergy coefficient and cavitation coefficient existed a corresponding function that synergy coefficient in the fluid field increased with increase of cavitation coefficient. Field synergy coefficient of fluid velocity and temperature gradient after ultrasonic cavitation was smaller than the untreated.
     The thesis proposes the method that can realize real-time online evaluation for ultrasonic anti-fouling effect combined heat transfer theory, and defined the evaluation index. Evaluation indexes which were analyzed and modified made the coefficient can use to online evaluation of the descaling effect when heat exchanger worked in variable conditions.
     The ultrasonic anti-fouling experimental station is established. In the ultrasonic antifouling experiment station, the effect of temperature is studied on ultrasonic propagation character of descaling.The results show that the best temperature is55℃, ultrasonic wave propagation in the water.And ultrasonic effective action range is2m in heat exchanger.
引文
[1]杨善让,徐志明,孙灵芳.换热设备污垢与对策(第二版).北京:科学出版社,2004:20-22
    [2]过增元,黄素逸.场协同原理与强化传热新技术.北京:中国电力出版社2004:1-2
    [3]崔海亭.螺旋槽纹管管内湍流流动与换热数值研究.河北科技大学学报,2002,Vol.23(4):86-89
    [4]田刚,刘海军,李晓东.波纹管内强制对流换热的实验研究.低温建术,2004,25(4): 86-87
    [5]李隆键,崔文智,辛明道.螺旋管内单相及沸腾的强化换热与阻力特性.核动力工程,2005,26(1):6-9
    [6]过增元.对流换热的物理机制及其控制:速度场与热流场的协同.科学通报,2000,45(19):2118-2122
    [7]俞秀民.传热设备污垢防治的重大经济意义.化学清洗,1995,11(3):22-25
    [8]程立新.换热设备防结垢技术进展.石油化工设备,2000,29(4):22-24
    [9]陈晓文,张早校,陈二锋.换热设备污垢监测及预测研究进展.化工机械,2005,20(4):60-64
    [10]Garrett-Price B A. Fouling of heat exchanger characteristics, costs, prevention, control and removal. Park Ridge, New Jersey:Noyes Publications,1985:1-26
    [11]Pritchard A M. The economics of fouling.in fouling Science and Technology, edts. Melo, L.F, Bott, TR.and Bernardo, C.A. NATO AS1 Series E, Kluwer Academic Publishers,1987:145 ~ 148
    [12]Steinhagen R, Muller-Steinhagen HM and Maani K.exchanger applications, fouling problems and fouling in new Zealand industries.Ministry of Commerce RD8829,1990:1-116
    [13]Steinhagen R, Muller-Steinhagen H M, Maani K.Fouling problem and fouling coasts in new Zealand industries.Heat Transfer Engineering,1993:262'266
    [14]MuTler-Steinhagen H. Heat exchanger fouling. Germany:Publico Publications, 2000:152-156
    [15]徐志明,杨善让,郭淑青等.电站凝汽器污垢费用估算.中国动力工程学报, 2005,25(1):102-106
    [16]李杰训,胡殿启,李焕昌.超声波管道防垢技术.管道技术与设备,2006,32(2):11-1 3
    [17]任晓光,李铁凤,宋永吉等.聚能式超声波的阻垢性能研究.工业用水与废水,2006,37(1):67-70
    [18]张金红,钱广华.超声波防垢器的阻垢效果及分析.石化技术,2006,11(7):231-234
    [19]程立新,杨杰辉.换热设备防结垢技术进展.石油化工设备,2000,29(4):355-357
    [20]梁成浩,白忻平.超声波阻垢性能的研究.中国给水排水,2003,34(19):64-66
    [21]陈博武.冷却水污垢监测技术的现状及发展方向.工业水处理,2006,26(5):5-8
    [22]Bipan Bansal, H.Muller-Steinhagen, X.D.Chen.Comparis. Crystallization Fouling in Plate and Double-Pipe Heat Exchangers.Transfer Engineering, 2001,22:13 ~ 25
    [23]Webb R L, Li W.Fouling in enhanced robes using cooling tower water Part I: long term fouling data.International Journal of Heat and Mass Transfer,2000, 43(19):3567-3578
    [24]Webb R L, Li W.Fouling in enhanced tubes using cooling tower water part II: combined particulate and precipitation fouling.International Journal of Heat and Mass Transfer,2000,43(19):3579-3588
    [25]邵天成.几种强化管污垢特性实验研究[M].吉林:东北电力大学,2007
    [26]朱华,庄博.螺纹管中实际冷却水污垢和颗粒污垢的特性研究.热能动力工程,2008,23(2):168-169
    [27]杨秀杰,钱才富.圆弧切线波纹换热管内流动与传热性能的数值模拟.化工机械,2008,35(3):152-155
    [28]邵兵华.螺旋槽管传热特性与污垢特性的实验研究[M].北京工业大学,2009
    [29]张利,杨昆,刘伟.椭圆形和圆形翅片管流动与传热的数值研究.工程热物理学报,2009,30(9):1571-1574
    [30]孟继安,陈泽敬,李志信等.交叉缩放椭圆管换热与流阻实验研究.工程热物理学报,2004,25(5):813-815
    [31]Lv Zhenhai, Gu Bo. Fouling formation and its impact on shell and tube type heat exchanger design. Refrigigeration and air-conditioning,2009,9(2):261 ~ 264
    [32]Kim W T,Cho Y I. Experimental study of the crystal growth behavior of CaCO3 fouling using a microscope[J].Experimental Heat Transfer,2000,13:153 ~ 161
    [33]Brahim F,Augustin W, Bohnet M. Numerical simulation of fouling process[J].Int. J of Thermal Sciences,2003,42:323-334
    [34]Sheikholeslami R. Calcium sulfate fouling-precipitation or particulate:A proposed composite model[J].Heat Transfer Engineering,2000,21:24-33
    [35]陈博武.冷却水污垢监测技术的现状及发展方向.工业水处理,2006,26(6):5-8
    [36]陈永昌,马重芳,刑晓凯,等.换热表面结垢过程及机理的实验研究[J].北京工业大学学报,2005,31(增刊):86-89
    [37]陈小砖,任晓利,陈永昌,等.高硬度循环水结垢机理的实验研究.工业水处理,2008,28(7):17-20
    [38]苏欣,程新广,孟继安,等.层流场协同方程的验证及其性质.工程热物理学报,2005,26(2):289-291
    [39]周俊杰,陶文铨,王定标.场协同原理评价指标的定性分析和定量探讨.郑州大学学报(工学版),2006,27(2):45-47
    [40]孙昆峰,秦贵棉,王军.对流换热场协同理论的新视角.能源技术,2004,25(2):54-55
    [41]熊少武,罗小平,高贵良.强化传热的场协同理论研究进展.石油化工设备,2007,36(1):50-54
    [42]Incropera F P, DeWitt D P. Fundamentals of Heat and Mass Transfer [M]. New York:John Wiley & Sons Co.,2002
    [43]宋富国,屈治国,何雅铃,等.低速下空气横掠翘片管换热规律的数值研究[J].西安交通大学学报,2002,36(9):899-902
    [44]Tao W Q,Guo Z Y, Wang B X. Field Synergy Principle for Enhancing Convective Heat Transfer-Its Extension and Numerical Verifications[J].Int. J. Heat Mass Transfer,2002,45:3849-3856
    [45]杨泽亮,宋卓睿,宋耀祖.纵向涡发生器强化换热的场协同分析[J].华南理工大学学报,2002,30(6):33-35
    [46]陈颖,邓先和,王杨君.粗糙肋面上湍流热量传递中场协同关系的数值分析[J].化工学报,2003,54(8):1054-1058
    .[47] Wang S, Guo Z Y, Li Z X. Heat transfer enhancement by using metallic filament insert in channel Flow[J]. Heat mass transfer,2001,44 (9):1373-1378
    [48]崔国民,卢洪波,蔡祖恢,等.协同下的多股流换热器换热性能研究[J].工程热物理学报,2002,23(3):323-326
    [49]Rin R C,Li H Z,Li W. Heat transfer and pressure drop measure on four types plate fin-and-tube heat sxchanger surfaces[C]//Transport phenomena-science and technology. Beijing:Higher education press,1992:942 ~ 947
    [50]Kang H C, Kim M H. Effect of strip location on the air-side pressure and heat transfer in strip fin-and-tube heat exchanger[J]. International Jouranl of Journal of Refrigeration,1999,22(6):303~310
    [51]屈治国,何雅铃,陶文铨.平直开缝翘片的三维数值模拟及场协同原理分析[J].工程热物理学报,2003,24(5):825-827
    [52]Wang C C,Chi k Y,Chang CJ. Heat transfer and friction characteristics of plain fin-and-tube heat exchangers:Part Ⅱ-orrelation[J].Heat and mass transfer, 2000,43(7):2693 ~2700
    [53]刘伟,刘志春,过增元.对流换热层流流场的物理量协同与传热强化分析.科学通报,2009,54:1779-1785
    [54]孟继安,陈泽敬,李志信,等.管内对流换热的场协同分析及换热强化.工程热物理学报,2003,24(4):652-654
    [55]傅耀,王彤,谷传纲.圆管内对流换热的场协同理论分析.中国电机工程学报,2008,28(17):70-75
    [56]苑中显,张建国,姜明健.变壁温管内对流换热场协同优化分析.中国科学(E辑,工程科学、材料科学),2004,34(9):1003-1()1()
    [57]过增元.换热器中的场协同原则及应用.机械工程学报,2003,12(2):1-9
    [58]过增元,魏澍,程新广.换热器强化的场协同原则.科学通报,2003,48(22):2324-2327
    [59]吴宏,宋耀祖,过增元.换热场协同理论的数值模拟.清华大学学报(自然科学版),2002,42(4):466-469
    [60]梁晓军,岳希明,吴金星,工勇.换热器管内强化传热的模拟分析.郑州轻工业学院学报(自然科学版).2003,18(3):32-34
    [61]C.K. Lee and S.A. Abdel-Monetm. Computational Analysis of Heat Transfer in turbulent Flow Past a Horizontal Surface with Two-Dimensional Ribs.Heat Mass Transfer.2001,28(2):161 ~ 170.
    [62]S.Wang, Z.Y.Guo, Z.X.Li. Heat Transfer Enhancement by Using Metallic Filament Insert in Channel Flow. International Journal of Heat and Mass Transfer.2001, (44):1373~1378
    [63]何春霞,王厚华,廖光亚,赵力.三维外肋管的自然对流换热特性的实验 研究.重庆建筑大学学报.2003,26(3):59-62
    [64]屈治国,何雅玲,陶文诠.平直开缝翅片传热特性的三维数值模拟及场协同原理分析.工程热物理学报.2003,24(5):825-827
    [63]V.I. Terekhov a M.A. Pakhomov b. Numerical Study of Heat Transfer in a Laminar Mist Flow over a Isothermal Flat Plate. International Journal of Heat and Mass Transfer.2002, (45):2077~2085
    [66]宇波,林明杰,徐佳莹,陶文铨.纵向波纹内翅片管中层流充分发展对流换热的数值模拟.西安交通大学学报.1998,32(9):51-55
    [67]Ming Yang, Li Wang, Huazhi Li.2-Dimensinal CFD Simulation and Correlation Development for Optimization of Fin Heatsinks in Electronic Cooling. J.of Thermal Science.2001,10(4):363-371
    [68]黄德斌,邓先和,邢华伟.异形管内水力、传热性能的数值模拟.高校化学工程学报.2003,17(2):146-150
    [69]M. Zhang, Scott D. Dahl.Computational Study of Heat Transfer and Friction Characteristics of a Smooth Wavy Fin Heat Exchanger. ASHRAE Transactions.2000(106):864-871
    [70]何雅玲,黄鹏波,屈治国,陶文铨.场协同理论在交变流动缝隙式回热器中的数值验证.工程热物理学报.2003,24(4):649-651
    [71]赵丽华.通道内对流换热场协同强化数值模拟研究[M].北匕京:北京工业大学硕士论文,2005
    [72]Guo Zengyuan, Wei Shu, CHENG Xinguang. A novel method to improve the performance of heat exchanger-Temperature fields coordination of fluids. Chinese Science Bulletin,2004,49(1):111 ~ 114
    [73]Z.Y. Guo, W.Q. Tao, R.K. Shah. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer. International Journal of Heat and Mass Transfer,2005,48:1797~1807
    [74]Guo Zengyuan, CHeng Xinguang, Xia Zaizhong. Least dissipation principle of heat transport potential capacity and its application in heat conduction optimization. Chinese Science Bulletin 2003,48 (4):406 ~ 410
    [75]CHeng Xinguang, Li Zhixin, GUO Zengyuan. Constructs of highly effective heat transport paths by bionic optimization. SCIENCE IN CHINA(Series E), 2003,46 (3):296-302
    [76]Wen-Lih Chen, Zengyuan Guo, Cha'o-Kuang Chen. A numerical study on the flow over a novel tube for heat-transfer enhancement with a linear Eddy-viscosity model.International Journal of Heat and Mass Transfer,2004, 47:3431 ~ 3439
    [77]Wen-Quan Tao,Zeng-Yuan Guo,Bu-Xuan Wang.Field synergy principle for enhancing convective heat transfer-its extension and numerical verifications. International Journal of Heat and Mass Transfer,2002,45:3849~8856
    [78]王忠会.场协同理论指导下的强化换热[M].北京:华北电力大学,2003:19-22
    [79]王瑞金PMWP强磁水处理器的阻垢试验.水处理技术,2001,27(4):239-241
    [80]Xin Xiaokai.Research on the electromagnetic anti-fouling technology for heat transfer enhancement. Applied Thermal Engineering,2008,25(28):889~894
    [81]柴天禹.高频电场处理水的试验研究.水处理技术,1997,23(4):222-224
    [82]邱振波,高富荣,郭翠.凝汽器水侧污垢对机组真空的影响及其技术对策.电力科学与工程,2009,25(7):76-77
    [83]全贞花,马重芳,陈永昌.超声波抗垢强化传热技术的研究进展.应用声学,2006,25:61-64
    [84]李锡波,张群正,林文兴,等.超声波防垢技术在孤岛油田的现场应用[J].西安石油学院学报(自然科学版),2000,15(3):14-17
    [85]路斌,张建国.超声旋笛声波发生器在防蜡降粘方面的研究[J].石油矿场机械,2004,33(1):74-76
    [86]陈先庆.超声波防垢技术在油田中的应用研究[J].钻井工艺,2000,23(3):58-61
    [87]张继锋.超声波清洗在生产线中的应用.金属制品,2005,31(1):23-25
    [88]丘泰球,姚成灿,胡松青等.超声波防除积垢节能技术.甘蔗糖业,1999,15(4):29-34
    [89]陆海勤,杨日福,丘泰球.功率超声防除换热设备的积垢原理及其工业应用的研究.清洗世界,2004,20(1):12-15
    [90]胡爱军,黄运贤,丘泰球.超声波防除积垢节能技术及设备的工业化应用.应用化工,2001,30(5):37-40
    [91]丘泰球,黄运贤,姚成灿.超声波防除积垢节能技术及设备开发.应用声学,2002,21(2):8-11
    [92]丘泰球,黄运贤,姚成灿。超声波防除积垢节能技术及设备开发(续).应用声学,2002,21(3):40-45
    [93]李杰训,胡殿启,李焕昌.超声波管道防垢技术.管道技术与设备,1994,11: 11-12
    [94]任晓光,李铁凤,宋永吉等.聚能式超声波的阻垢性能研究.工业用水与废水,2006,27(1):67-70
    [95]李贵平.空气压缩机在线防垢新技术—超声防垢.清洗世界,2004,20(7):35-37
    [96]孙冰.基于FLUENT软件的超声空化数值模拟[M].大连:大连海事大学,2008,1-30
    [97]念保义,陈金平.超声波抑制积垢的影响因素与机理的研究.天津化工,2001,(5):10-12
    [98]念保义,陈金平.超声波抑制积垢的影响因素与作用原理的研究.三明高等专科学校学报,2001,18(6):49-52,57
    [99]何国庚,罗军,黄素逸.空化初生的热力学影响研究.华中理工大学学报,1999,27(1):75-76,86
    [100]王福霞,赵丽,付显威.空化初生研究综述.中国石油大学胜利学院学报,2006,20(3):3-6
    [101]张永发,马凯,胡长华.超声波在原油中的吸收衰减.北京理工大学学报,2005,25(6):518-521
    [102]王勇,何雅玲,刘迎文等.声波衰减的格子Boltzmann方法模拟.西安交通大学学报,2007,41(1):5-8
    [103]安连锁,刘铭媛,武国红.声波除灰的管阵列声场数值模拟研究.热力发电,2009,8(10):25-28
    [104]李太宝.计算声学—声场的方程和计算方法.北京:科学出版社,2005:25-28
    [105]A. Vladisauskas, L. Jakevicius. Absorption of ultrasonic waves in air. Acoustical Physics,2009,55(3):353 ~ 358
    [106]蒙海英.基于MATLAB的超声波声场模拟及可视化研究[M].大连:大连理工大学,2008:49-52
    [107]刘增华,何存富,杨士明,等.充水管道中纵向超声导波传播特性的理论分析与试验研究.机械工程学报,2006,12(3):171-178
    [108]任晓光,李铁凤,宋永吉.聚能式超声波的阻垢性能研究.工业用水与废水,2006,37(1):67-70
    [109]白忻平,任建新,梁成浩.超声处理在阻垢方而的研究.工业水处理,2000,20(1):41-43
    [110]常巧利.超声阻垢技术的理论及应用研究进展.榆林学院学报,2006,16 (6):42-44
    [111]王光龙,张保林.超声对硫酸钙结晶过程影响的研究.应用声学,2003,22(4):21-24,10
    [112]马志梅.超声波阻垢与除垢技术研究进展.中外能源,2008,13(4):92-96
    [113]朱一星,虞建业,王亿川,等.超声波防垢的声场参数实验研究.石油天然气学报(江汉石油学院学报),2005,27(2):245-248
    [114]孙晓清.超声波防垢的流动液体运行参数和管道参数实验研究[M].西安:陕西师范大学,2007:17
    [115]周爱东,杨红晓,张志炳.超声波在防除结垢中的应用[J].应用化学,2005,34(11):659-661
    [116]王巧真,赵晓彤,程金明,等.超声波抑垢强化换热实验研究[J].电力设备,2006,7(12):38-40
    [117]余涛,傅俊萍.超声波在线防垢、除垢与强化传热的实验研究[J].湖南冶金职业技术学校学报,2005,5(3):327-329
    [118]冯若,李化茂.声化学及其应用[M].合肥:科学技术出版社,1992:95-100
    [119]余涛.功率超声防、除垢及强化传热的实验研究和工程应用[D].武汉:华中科技大学,2006
    [120]周定伟、刘登瀛.声空化场强化单相对流传热的实验研究.自然科学通报,2002,12(5):553-556
    [121]周定伟.声空化场强化沸腾传热机理.化工学报,2002,53(5):538-541
    [122]周定伟.声空化场下单相对流传热的实验研究.工程热物理学报,2002,23(1):82-84
    [123]周定伟、刘登瀛、马重芳,等.声空化场下水平圆管沸腾换热的实验研究.工程热物理学报,2002,23(增刊):177-179
    [124]孙宝芝.声空化强化沸腾传热及渗透脱水过程传质研究[D].哈尔滨:哈尔滨工程大学,2005:47-69
    [125]李林.超声场下空化气泡运动的数值模拟和超声强化传质研究[M].成都:四川大学,2006:24-27
    [126]傅俊萍,李录平,刘泽利.超声波除垢与强化传热实验研究.热能动力工程,2006,21(4):355-357
    [127]任晓光,李铁凤,宋永吉等.传热系数法评定超声波的抗垢作用.过程工程学报,2006,6(4):527-530
    [128]高明,孙泰仲,黄新元等.换热器结垢工况下换热系数变化的分析研究.热 能工程,2003,14(4):9-13
    [129]樊绍胜,王耀南.基于特征选取与多RBF神经网络的冷凝器污垢软测量.仪器仪表学报,2008,33(4):723-728
    [130]樊绍胜,王耀南.在线监测冷凝器污脏程度的新方法.仪器仪表学报,2005,26(3):292-296
    [131]樊绍胜,王旭红,王耀南.基于对角递归神经网络的冷凝器污脏测量.传感器技术,2004,23(8):58-60
    [132]邢晓凯,马重芳,陈永昌等.一种用于污垢监测的温差热阻新方法.石油大学学报,2004,5(28):70-73
    [133]吴双应,李友荣.一种监测换热器污垢的新方法.热能工程,2000,7(1):14-15
    [134]张海林,杨善让,王恭等.凝汽器污垢实时在线监测与优化管理.热力发电,2005,12(4):12-14
    [135]李勇,曹祖庆.凝汽器清洁率的概念及测试方法.汽轮机技术,1995,37(2):73-76
    [136]孙灵芳.新型污垢热阻在线监测装置的研发与应用研究[D].河北:华北电力大学,2003:56-58
    [137]H. Jian, N. F. Clen, A. M. Jenkins. The use of fouling monitoring technique. New York:Begell house Inc,1999,27(11):309 ~ 314
    [138]H. C. Flenmming, A. Tamachkiarows, J. Klahre, et al. Monitoring of fouling and biofouling in technical systems. Water Science And Technology,1998, 38(8):291~298
    [139]F. Glen, J. H. Howarth, A. M. Jenkin. Understanding heat exehanger fouling and its mitigation. New York Begell House In; 1999,46(5):256 ~ 264
    [140]Q. Z. Hua, Y.C.Chen, M. A. Chong. Experimental Study of Fouling on Heat Transfer Surface During Forced Convective Heat Transfer. Journal of Chemical Engineering,2008,16(4):535 ~ 540
    [141]徐志明,张艾萍,张仲斌等.凝汽器超声波防除垢效果在线评价方法研究.工程热物理学报,2010,31(7):1201-1204
    [142]崔凯.异形管传热与流动的数值模拟[M].天津:天津大学,2005
    [143]徐志明,张仲彬,邵天成.弧线管微粒污垢特性的实验研究.中国电机工程学报,2007,27(35):74-77
    [144]Han Zhan-zhong, Yao Zhong-peng.Numerical Simulation of Flow and Heat Translation in a Single-Start Spirally Fluted Tube.Journal of Beijing Institute of Technology Jun,2001,21(3):69-73
    [145]李虹霞.超声空化防除垢与水力空化防除垢和强化传热实验研究[M].北京:中国科学院研究生院.2009,17-26
    [146]王惠敏,孙三祥.水力空化中雷诺数与空化数关系的研究.环境工程,2008,26(6):15-16,19
    [147]Kumar P S, Kumar M S, Pandit A B. Experimental quantification of chemical effects of hydrodynamic cavitations. Chemical Engineering Science, 2001,55(9):1633-1639
    [148]龚波.波纹管传热与流动阻力的数值模拟研究[M].黑龙江:哈尔滨工业大学,2006
    [149]王亮,吕效平,韩萍芳等.圆球型声化学反应器内声场的数值模拟与实验研究.高校化学工程学报,2010,24(3):476-481
    [150]朱秀丽,牛勇.温度对超声空化声场的影响.陕西师范大学学报(自然科学版),2008,36(5):35-37
    [151]B. Bansal, H. Muller, X.D.Chen. Comparison crystallization fouling in plate and double-pipe heat exchangers. Transfer Engineering,2001, (22):13-25
    [152]刘东红,叶兴乾,周向华等.基于超声波传播特性的液态食品质量检测系统研制[J].农业工程学报,200d,20(5):182-1 85
    [153]Luo Ying,Li Hong,Xu BaiQiang,Xu Gui Dong.Spectral finite element method modeling of ultrasonic guided waves propagation in layered viscoelastic film/substrate materials.Journal of Applied Physics,2010,108 (1):123505-123505-6
    [154]Fellah Z. E. A, Sebaa N., Fellah M., etc.Ultrasonic characterization of air-saturated double-layered porous media in time domain.Journal of Applied Physics, 2010,108 (1):014909-014909-10
    [155]Qiao Wang, Xuan Feng, Qi Lu,etc.Propagation Characteristics of Joint Physical Simulation of Both Electromagnetic Wave and Ultrasonic Wave in Fractured Media Model.2012 14th International Conference on Ground Penetrating Radar (GPR),2012:933-936
    [156]XU Kailiang, TA Dean, WANG Weiqi,etc. Simulation of Propagation Characteristics of Ultrasonic Guided Waves in Fractured Long Bone.2008 IEEE International Ultrasonics Symposium Proceedings,2008:233-236

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700