用户名: 密码: 验证码:
K_2Ti_6O_(13)/Ti基生物医学材料的制备及生物相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对Ti基生物医学材料在临床应用中遇到的关键问题—成本和性能,本研究设计开发了一套新型的材料制备工艺以降低成本,研制了新型的K_2Ti_6O_(13)涂层/Ti基生物医学材料以提高材料的生物学性能,并对涂层的表面形貌、相组成、结合强度以及涂层的生物相容性和生物活性进行了观察、分析与评估。研究结果表明:
     氮、氧污染的临界氧分压和氮分压是一个温度的函数,并随温度的升高而急剧增大。采用多次抽真空反充惰性气体Ar的方法可有效降低氧、氮分压。本实验采用10~4Pa充Ar压强+3次抽充循环,可有效避免氮、氧对Ti合金的污染:防污染CaO基坩埚涂层的设计和制作,可有效避免石墨坩埚的C污染,为低成本Ti合金的生物学应用创造了条件。
     K_2CO_3与TiO_2的摩尔比及煅烧温度是决定钛酸钾产物的主要因素。煅烧温度和时间通过对自生氧化层的作用影响涂层质量和结合强度。原位KDC煅烧工艺的确立必须综合考虑K_2CO_3液相基质、钛的同素异构转变和自生氧化层的影响,同时兼顾煅烧温度和煅烧时间的最佳匹配。K_2Ti_6O_(13)涂层的合成过程可以用一个“包围—反包围”的反应过程来描述。本研究以1050℃煅烧0.5~1h的涂层质量为最佳。KDC煅烧产物主要是白色针状的K_2Ti_6O_(13)晶须,直径和长度分别在1μm和10μm左右。涂层厚度约为6μm,表面粗糙度为1.2μm~1.8μm,适宜表面粗糙度为骨的向内生长提供有利的位置。涂层与基体结合牢固,结合强度可达24MPa以上,是纯HA涂层结合强度的2倍,并能够经受空冷条件下的冷热冲击。膨胀系数的良好匹配、自生氧化层对合成反应的参与以及抛锚效应是高结合强度的主要原因。摩擦磨损实验表明涂层具有良好的耐磨性。
     经模拟体液浸泡,涂层表面形成了钙磷比接近人体骨骼的钙磷层。钙磷生长层是为多孔的网状结构,这种结构有利于人体新陈代谢过程中营养物质的传输和骨的生长以及废物的排泄,蜂窝框架又确保了新生骨质具有一定的强度,这表明K_2Ti_6O_(13)涂层具有良好的生物活性。
     血液相容性试验表明:与Co-Cr合金相比,K_2Ti_6O_(13)/Ti基生物医学材料的凝血时间较长;K_2Ti_6O_(13)/Ti的血小板粘附量明显少于Co-Cr合金和不锈钢,表明其血液相容性显著优于Co-Cr合金和不锈钢。
     经过7天的细胞培养,K_2Ti_6O_(13)/Ti基生物医学材料中的骨细胞繁殖到了6倍左右,与不锈钢和基体钛合金相比,K_2Ti_6O_(13)/Ti具有更优越的生物相容性和生物活性。
To solve the cost and property problems met in the clinical application of titanium matrix biomedical materials, a new set of fabrication technology has been designed and developed to reduce the production cost in this study, and a new type of K2Ti6O13 /Ti matrix biomedical material has been manufactured to improve the biomedical properties. Surface morphology, phase constitution, bonding strength, biocompatibility and bioactivity of the coating were analyzed and evaluated. The results indicate as follows:
    The critical partial pressures of oxygen and nitrogen are both functions of temperature. Oxygen and nitrogen partial pressures can be sufficiently lowered by pumping and argon inflating for many times. Oxygen and nitrogen contamination to titanium alloy is effectively avoided by three times of pump-inflation circulation with the argon inflation pressure of 104Pa. The designation and fabrication of CaO matrix coating of the crucible makes it possible to avoid the carbon contamination from graphite crucible. All above will create conditions for the biology application of the low cost titanium alloys.
    The K/T ratio and the culcination temperature are the principal factors to determine which kind of potassium titanate to form. Culcination temperature and time influence the self-generated oxide layer, and then act on the coating's quality and bonding strength. To establish the in situ KDC process, the influences of the K2CO3 liquid phase stroma, the same element-different structure transfermation of titanium, the self-generated oxide layer should be taken into consideration, and the culcination temperature and time should also match best. We can depict the synthesis process of K2Ti6O13 as a model of 'surround'-'counter-surround'. In this study, the coating gets the best quality at temperature of 1050Cculcinating for 0.5~1hour. The culcination product is mainly white spiny K2Ti6O13 crystal whisker whose diameter and length are 1 μm and 10μm respectively. The coating thickness is 6μm, and the surface roughness is 1.2μm~ 1.8μm. The suitable surface roughness provide advantages for ingrowth of bone. The bonding strength between coating and matrix is as high as 24MPa, which doubles the one of HA coating. Furthermore, the K2Ti6O13 coating can bear the cold-hot impact during air-cool process. The main reasons of the high bonding strength are as follows: the suitable match of expand coefficient, the participation to the synthetic reaction of the self-generated oxide layer, and anchor dropping effect. Friction wear experiment shows that the coating has good wear-resistance.
    
    
    After immersion in the simulate body fluid (SBF), a calcium-phosphorus layer, whose calcium-phosphorus scale is near to the human bone's, is formed on the coating. The calcium-phosphorus layer has porous reticulation structure, which is beneficial to the nourishment transmission, bone ingrowth and scrap excretion during the body metabolism. The honeycomb-like frame insures the bone certain strength. These above makes clear that K2Ti6On coating has good bioactivity.
    Haemocompatibility experiment finds that the blood clotting time of K2Ti6On/Ti matrix biomedical materials is much longer than that of Co-Cr alloy; and the platelet sticking number on K2Ti6O13/Ti alloy is obviously less than those on the Co-Cr alloy and 316L stainless steel. These indicate that the Haemocompatibility of K2Ti6O]3/Ti alloy is remarkably superior to the Co-Cr alloy and the 316L stainless steel.
    Cell cultivation experiment indicates that the cytodensity in the hole with K2Ti6O13/Ti matrix biomedical materials is as high as six times of the initial inoculation density after seven days of cultivation. The K2Ti6O13/Ti alloy has superior biocompatibility and bioactivity as compared with 316L stainless steel and Ti alloy without coating.
引文
1.王静梅,姚松年.生物材料及其仿生学的研究进展与展望.材料研究学报,2000,14 (8):337~343
    2.俞耀庭,张兴栋.生物医用材料.天津:天津大学出版社,2000.1
    3.D.F.威廉姆斯.材料科学与技术丛书:医用与口腔材料.北京:科学出版社,1999.25
    4. R. Van Noort. Titanium: the implant material of today. Journal of Materials science, 1987, 22: 3801-3811
    5.吕厚山.人工关节外科学.北京:科学出版社,1999.6
    6. Wojciech Suchanek, Masahiro Yoshimura. Processing and properties of Hydroxy-apatitebased biomaterials for use as hard tissue replacement implants, J. Mater. Res., 1998, Vol.13(1): 94-117
    7. W. Bonfield. S.Best, A. Krajewski, A. Ravaglioli. in proceedings of Fourth EurCeramics, edited by A. Racaglioli (Biomater., 1995), Vol. 8:3
    8. L. L. Hench, E. C. Ethridge. Biomaterials, An Interfacial Apporch (Academic Press, New York, 1982)
    9. L. L. Hench, J. Am. Ceram. Soc., 1991, 74:1487
    10.金自宜.钛系生物医学材料.钛工业进展,1993,5:29
    11.李德华,刘宝林.医用钛表面的微观改造.国外医学生物医学工程分册,1997,20 (1):24-27
    12.马如璋,蒋民华,徐祖雄.功能材料学概论.北京:冶金工业出版社,1999.563
    13. G. S. Leventhal, J. bone joint Surg., 1951, 33A: 473
    14. O. E. Beder and G. Eade, Surgery, 1956, 39: 470
    15.杨敏,郑昌琼,冉均国,等.钛基-TiN-TiC系梯度薄膜材料的生物摩擦磨损性能研究.功能材料,2000,31(2):209-211
    16.于思荣.金属系牙科材料的应用现状及部分元素的毒副作用.金属功能材料,2000,7(1):1-6
    17. H. Schmidt, H. E. Exner. Wear, Corrosion and Fatigue Properties of Ion Implanted Titanium Alloy Ti6A14V. Z. Metallkd, 1999, 90(8): 594-601
    18. J. Rieu, A. Pichat, L. M. Rabbe, et al. Structural modifications induced by ion implantation in metals and polymers used for orthopaedic prostheses. Materials Science and Technology, 1992, 8:589~593
    19.张亚平,高家诚,文静.钛合金表面激积光熔凝一步制备复合生物陶瓷涂层.材料研究学报,1998,12 (4):423-427
    20. M. Long, R. Crooks, H. J. Rack. High-cycle fatigue performance of solutiontreated metastable-β titanium alloys. Acta mater., 1999, 47(2): 661-669
    
    
    21. A. D. Atwood, ibid., 1984, 51: 801
    22. D. F. Williams. Systemic Aspects of Biocompatibility, CRC Press, Boca Raton, Florida, 1984
    23. Matthew Donachie. Biomedical Alloys. Advanced Materials & processes, 1998, 7:63-65
    24. Mitsuo Niinomi. Mechnical properties of biomedical titanium alloys. Materials Science and engineering, 1998, A243: 231-236
    25. J. B. Park, Biomaterials Science and Engineering, Plenum Press, New York, 1987
    26.郭亮,梁成浩,隋洪艳.模拟体液中纯钛及Ti6A14V合金的腐蚀行为.中国有色金属学报,2001,11(1):107-109
    27. Farthing T W. Application of titanium and titanium alloys. Ti and Ti Alloys Science and Technology Fifth Conference, New York, 1984:39-54
    28.王桂生,戴经一,董辉.钛人工牙根种植体和临床应用.中国有色金属学报,1996,6(4):147-149
    29.汪大林,江中明.牙科合金材料应用研究现状.特种铸造及有色合金,1998(3):42-44
    30.新藤裕一朗,张唯敏.高纯钛的制造技术与应用.国外金属加工,2000(3):25-28
    31.于思荣.生物医学钛合金的研究现状及发展趋势.材料科学与工程,2000,18(2):131-134
    32. Annual Book of ASTM Standard, Medical Devices; Emergency Medical Services, Vol. 13.01, ASTM, Philadelphia, PA, 1994
    33.王友,薛文东,戴克戎.人工关节磨损颗粒诱导钛合金植入物松动的实验研究.医用生物力学,1999,14(3):171-174
    34.刘敬肖,杨大智,王伟强,等,表面改性在生物医用材料研究中的应用.材料研究学报,2000,14(3):225-233
    35. Chu Chenglin, Zhu Jingchuan, Yin Zhongda, et al. Hydroxyapatite-Ti functionally graded biomaterial fabricated by powder metallurgy, Mater. Sci. and Tech., 1999, A271:95-100
    36.付涛,张玉梅,憨勇,等.羟基磷灰石生物涂层的复合制备与生物相容性.无机材料学报,2001,16(3):522~528
    37.唐昭,陈治清,刘卫军.聚羟基磷酸钙钠的骨细胞相容性体外研究.生物医学工程学杂志,2000,17 (2):122~128
    38.税毅,张昭.钛合金基磷酸钙涂层的制备及机理研究.现代化工,2000,20(10):34~37
    39.张孝彬,孙沿林,何基保.钛合金生长羟基磷灰石的电镜分析.杭州电子工业学院学报,2000,20 (3):8~10
    40.闫玉华,张宏泉,李世普.生物陶瓷及制品的研究现状和发展前景.中国陶瓷,1998,34(2):36~38
    41.郑学斌,丁传贤.等离子喷涂制备HA/Ti复合涂层研究—Ⅰ.结构、组成和力学性能,无机材料学报,2000,15(5):987~902
    42.郑学斌,丁传贤.等离子喷涂制备HA/Ti复合涂层研究—Ⅱ.生物学性能,无机材料学报,2000,15(5):1083~1088
    
    
    43.王欣宇,陈晓明,闫玉华,等.经皮元件用羟基磷灰石材料的组织相容性.中国有色金属学报,1999,9(1):184~189
    44.曾绍先.医用生物陶瓷及临床应用.化学进展,1997,9(1):90~98
    45.姚秀敏,谭寿洪,江东亮.多孔羟基磷灰石陶瓷的制备.无机材料学报,2000,15(3):467~472
    46.张亚平,高家诚,文静.激光熔覆生物陶瓷涂层生物相容性的研究.材料科学与工程,1999,17(3):20~22
    47. R. B. Martin, M. W. Chapman, N. A. Sharkey, et al.. Bone ingrowth and mechanical properties of corallline hydroxyapatite I yr after implantation. Biomaterials, 1993, 14(5):341~347
    48. P. Cheang, K. A. Khor. Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials, 1996, 17 (5): 537~543
    49. Jie Weng, Qing Liu, J. G. C. Wolke, et al.. Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid. 1997, 18 (15): 1027~1035
    50. D. Lamy, A. C. Pierre and R. B. Heimann. Hydroxyapatite coatings with a bond coat of biomedical implants by plasma projection. J. Mater. Res., 1996, 11(3): 680~685
    51. X. Zhang, G. H. M. Gubbels, R. A. Terpstra, et al. Toughening of calcium hydroxyapatite with silver particles. Journal of Materials Science, 1997, 32:235~243
    52. J. Li, S. Forberg, L. Hermansson. Evaluation of the mechanical properties of hot isostaticaily pressed titania and titania-calcium phosphate composites. Biomaterials, 1991, 12(5): 438~440
    53.朱明刚,李卫.钛基底HAP涂层生体活性材料的改性研究.金属功能材料,2000,7(5):32~35
    54.常程康,朱然怡,毛大立,等.等离子喷涂羟基磷灰石涂层的材料学特征.无机材料学报,2000,15(5):952~956
    55.储成林,朱景川,尹钟大,等.HA-Ti/Ti/HA-Ti轴对称生物功能梯度材料的制备及其热应力缓和特性.中国有色金属学报,1999,9(1):57~62
    56.朱明刚,邬鸿彦,孔令宜,等.Ti基表面多层超细HA涂层复合种植体的制备.材料工程,1999,7:15~17
    57.宁聪琴,周玉,雷廷权,等.纯钛表面HA/BG生物复合涂层的组织结构研究.材料科学与工艺,2000,8(3):30~33
    58.付涛,黄平,憨勇,等.碱液处理诱导钛合金基体表面沉积磷灰石层.稀有金属材料与工程,2000,29(3):168~171
    59.杨贤金.NiTi合金生物活性表面工程的研究:[博士学位论文].天津:天津大学,2000
    60.陈俊英,杨萍,冷永祥,等.掺杂氧化钛薄膜的制备与血液相容性研究.功能材料,2000,31(2):212-214
    61. Harald Schmidt, Maziar Soltani-Farshi. Effect of nitrogen implantation on the hydrogen depth distribution and fatigue properties of Ti6A14V, Mater. Sci. Eng., 1998, A248: 73-77
    
    
    62.惠松晓,张者,萧今声,等.高温钛合金热稳定性研究进展—Ⅰ组织稳定性,稀有金属,1999,23 (2):125~130
    63. R. Zwickwe, K. Buehler, R. Mueller, et al. Mechnical properties and tissue reactions of a titanium alloy for implant material, TITANIUM'80, Science and Technology Proc. 4th Int. Conf. on titanium, Kyoto. May 1980, Met. Soc. AIME: 505-514
    64. M. Semlitsch, F. Staub, H. Webber, Titanium-aluminum-niobium alloy, development for biocompatible, high strength surgical implants, Biomed. Technik, 1985, (30):334-339
    65.网冈义光.各种金属细胞适合性生体用新合金开发.1998,37(10):838-842
    66.新家光雄.生体用β型合金开发.1998,37(10):843-846
    67. Kathy Wang. The use of titanium for medical applications in the USA. Materials Science and engineering, 1996, A213:134-137
    68. Yoshimistisu Okazaki, Yoshimasa Ito, Kenj Kyo, et al. Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al. Materials Science and Engineering, 1996, A213:138-147
    69.金红.钛在民用领域中的开发应用现状及发展前景.稀有金属,1998,22(6):434-438
    70. Chu Cheng-lin, Zhu Jing-chuan, Yin Zhong-da, et al. Hot pressing of hydroxyapatite (HA)Ti material and stability of HA. Trans.Nonferrous Met. Soc.China, 2000,10(4): 505-510
    71. Congqin Ning, Qingchang Meng, Yu Zhou. Microstructure of Bioglass/ Hydroxyapatite Coatings on Ti Substrate. J. Mater. Sci. & Technol., 2001, 17(1):35-36
    72.郑学斌,丁传贤.等离子喷涂制备HA/ZrO_2复合涂层.无机材料学报,2000,15(2):341
    73.周彦邦.钛合金铸造概论.北京:航空工业出版社,2000.2
    74.常辉.日本开发的几种钛合金及其应用.钛工业进展,1998,6:31-33
    75.魏寿庸,祝瀑,何瑜,等.Ti-6.5Al-2.5Sn-4Zr-1Nb-0.7Mo-0.15Si钛合金.钛工业进展,1999,6:26-31
    76.郑明新.工程材料(第二版).北京:清华大学出版社,1991.208
    77.叶应妩,李健斋,王玉琛,等.临床实验诊断学.北京:人民卫生出版社,1980.1129
    78.郭景杰,苏彦庆,贾均.钛合金ISM熔炼过程热力学与动力学分析.哈而滨:哈尔滨工业大学出版社,1998.110
    79.程兰征,章燕豪,林轻松.物理化学(第二版).上海:上海科学技术出版社,1997.270
    80.申玉田,崔春翔,孟凡斌,等.高强度高导电率Cu-Al_2O_3复合材料的制备.金属学报,1999,35 (8):888
    81.钟鸣,陈玉文,朱知寿.一种Ti-Mo-Nb-Al钛合金的热处理制度研究.材料工程,1998,10:37-38
    82.李亚国,刘海林.TC11钛合金疲劳性能及其断口特征.稀有金属,1998,22(4):264-269
    83. Lei jiafeng, Liu yuyin, Guan shaoxuan, et al. Characteristics of fatigue initiation in Ti-5Al-4Nb-2Zr-1Mo-0.7Nb-0.25Si alloy. J. Mater. Sci.Technol, 1997, 13:238-240
    84.[日]植村益次等编,贾丽霞等译.高性能复合材料最新技术.北京:中国建筑出版社,1989.1
    
    
    85.冯新,吕家桢,陆小华,等,钛酸钾晶须在复合材料中的应用.复合材料学报,1999,16(4):1~7
    86.朱文化,柯家俊.新型无机晶须——钛酸钾晶须.化学通报,1994,4:5~10
    87.谢凯,盘毅,王秀华,等.钛酸钾短纤维的制备工艺研究.无机盐工业,1997,1:16~25
    88.卫中山,强立锋,吴申庆.钛酸钾晶须增强铝基复合材料的研究现状.特种铸造及有色合金,2000,1:54~55
    89. T. Imai, Y. Nishida, M. Yamada, et al.. K_2O·6TiO_2 whisker-reinforced aluminium composite by a powder metallurgical method. J. Mater. Sci. Letters, 1987, 6:1257-1258
    90.千千和,史郎.酸纤维.塑料,1980,31(8):106
    91. Kyo-Han Kim, X. L. Zhu and Won-Woo Son. Formation and Morphology of Anodic Oxide Film of Ti. J. Mater. Sci. Technol., 2001, 17(1):33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700