用户名: 密码: 验证码:
酞菁铜单晶微纳场效应晶体管在气体传感器中的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机半导体场效应晶体管气体传感器相比于电阻式器件,由于具有灵敏度高、室温工作、易于集成以及独立的多参数等优点在气体传感器领域一直倍受人们关注。目前国际上报道的薄膜或微纳单晶场效应晶体管气体传感器都采用固体绝缘层。因此,半导体/绝缘层接触界面上不可避免的发生载流子束缚、电荷掺杂、分子(或原子)重构、偶极子的形成以及一些可能的化学相互作用,从而降低传感器的性能及稳定性。更主要的是固体绝缘层遮蔽了大部分对吸附分子最为敏感的导电沟道界面,影响了场效应晶体管气体传感器灵敏度的进一步提高。因此,如果把固态绝缘层用空气间隙来替代构筑器件,开展研究,不仅能保证半导体和绝缘层的良好的接触界面,提高器件性能、稳定性以及成功率,同时提供被测气体分子直接影响场效应晶体管最为敏感的导电沟道的通道。有望在灵敏度、响应速度和检测极限上获得突破。并且,采用微纳单晶材料有利于工作机理的探讨,为推动场效应晶体管型气体传感器的进一步发展和应用提供理论指导。
     酞菁铜不仅具有良好的化学、热稳定性,同时具有卓越的气敏特性,在有机气体传感器研究中倍受关注。本论文以酞菁铜为代表开展了酞菁铜单晶微纳场效应晶体管在气体传感器中的应用基础研究。主要内容如下:
     1.进行了酞菁铜单晶微纳场效应晶体管气体传感器在SO_2检测中的应用基础研究。成功构筑了具有高灵敏度、低检测极限、快速响应及在室温工作条件下完全恢复等优点的空气间隙为绝缘层的酞菁铜单晶微纳场效应晶体管SO_2传感器。其检测极限为0.5ppm,灵敏度和分辨率分别为119%和100ppb。对0.5ppm SO_2的响应-恢复时间分别为3min和8min。据我们所知,这是首次采用有机场效应晶体管作为SO_2气体传感器的报道,并且器件有些传感性能可与商用的化学传感器媲美;通过理论计算与实验结果相结合,研究了此类器件的响应机理。
     2.研究了空气间隙绝缘层酞菁铜单晶微纳场效应晶体管的多参数在气体甄别中的应用及其响应机理。提出了利用多参数和真值表结合,利用单个器件甄别NO_2、NO以及SO_2三种有毒有害气体的简单明了的方法。根本原理上提高了半导体气体传感器的选择性。
     3.发展了一种提高基于有机单晶场效应晶体管性能的简单、有效的“气体增强法”。通过方法调控场效应晶体管的迁移率,开关闭以及阈值电压等参数。通过实验证实该方法具有一定的普适性。
Organic field effect transistor gas sensors have attracted much attention, because ofseveral advantages over resistors, such as high sensitivity,easy to integrated and reversiblemulti-parametric, apart from the great advantage of being operated at room temperature.However, carrier trapping,charger doping, molecular reorientation,dipole formation,anda range of possible chemical interations are among the many phenomena that can occur at theorganic material/solid dielectric interface and degrade device performance and stability.Moreover, the the most sensitive conductive channel of the traditional solid dielectric FETs iscapped by the semiconductor layer and the solid dielectric, so that the performanceimprovement of the transistors gas sensors are blocked. In contrast, the gas dielectric makesthe conductive channel exposed to the detected gas, which will not only facilitates the directinteraction between the gas molecules and the conductive channel resulting in theimprovement of the sensing performance,but also provides a pristine interface to reduce theinterface defects, weaken the carrier trapping, make the intrinsic charge transport possible,and minimize the Fr hlich polaron effect at the interface and improve device stability. As aresult, we can anticipate that the sensing performance of the sensors should be improved,suchas sensitivity, response and limit of detection etc. Furthermore, sub-micro/nanometer-sizedorganic single crystals can not only futher improvement of sesnsor performance, but alsobeneficial for investigating response mechanism.
     CuPc have attracted attention in organic gas sensors not only because of its exceptionalthermal and chemical stability, but also its remarkable gas sensing properties. In thisdissertation, we fabricated an OFET based on gas dielectric and sub-micro/nanometer-sizedCuPc single crystals as novel gas sensors and investigated their gas sensing properties.Themain results are as follows:
     1. The room-temperature gas dielectric sub-micro/nanometer-sized CuPc single crystallinefield effect transistor SO_2sensors with high sensitivity, low detection limit, fast response andcomplete recovery have been fabricated. The detect limitation is down to sub ppm levels (0.5ppm) with the sensitivity of119%and high resolution of100ppb. The response and recoverytime are only3and8min in0.5ppm SO_2, respectively. To the best of our knowledge, this isthe first demonstration of SO_2gas sensing based on Organic field effect transistor. Some ofthe sensing performances of this device are comparable to the commercialized solid electrolyte sensors. The theory analysis and comparative experiments between solid and gasdielectric devices show that the exposed conductive channel by gas dielectric is responsiblefor the sensitivity to SO_2.
     2. Gas dielectric sub-micro/nanometer-sized CuPc single crystalline field effect transistoras multi-parameter sensors and their response mechanism are investigated. A combination ofmulti-parameter and ture table provides a simple toure to detect NO_2, NO and SO_2selectively.These three gases were distinguished by this method successfully.
     3. Developed a new, simple, efficient route to enhancing performance of single crystallineOrganic field effect transistor by “gas enhancing methods”. This method is universallyapplicable.
引文
[1]徐甲强.气体传感器产业发展综述[EB/OL]. http://www.cn-ghsc.org/lunwen/lvnews/20090001.htm.
    [2]Taguchi N, Japan, Patent45-38200[P](1962).
    [3]Seiyama T, Kato A, Fujiishi K, et al. A New Detector for Gaseous Components Using SemiconductiveThin Films [J]. Anal. Chem,1962,34(11):1502-1503.
    [4]Seiyama T, Kagawa S, Study on a Detector for Gaseous Components Using Semiconductive ThinFilms [J].Anal. Chem,1966,38:1069-1073.
    [5]Helland G, Homogeneous semiconducting gas sensors[J], Sensors and Actuators,1982,2:343-361.
    [6]Morrison S R. Semiconductor gas sensors[J]. Sensors and Actuators.1982,2:329-341.
    [7]Gopel W. Chemisorption and charge transfer at ionic semiconductor surfaces: implications indesigning gas sensors[J]. Progress in Surface Science.1985,20(1):9-103.
    [8]Barsan N., Kozeij D., Weimar U., Metal oxide based gas sensor research: how to?[J], Sensors andActuators B,2007,121:18-35.
    [9]Barsan N., Hubner M., Weimer U., Conduction mechanisms in SnO2based polycrystalline thick flmgas sensors exposed to CO and H2in different oxygen backgrounds[J], Sensors and Actuators B,2011,157:510-517.
    [10]Oprea A., Barsan N., Weimer U., Work function changes in gas sensitive materials: fundamentals andapplications[J], Sensors and Actuators B,2009,142:470–493.
    [11]Shouli B., Liangyuan C., Dianqing L. et al. Different morphologies of ZnO nanorods and theirsensing property[J], Sensors and Actuators B,2010:146129–137.
    [12]Morrison S.R., The Chemical Physics of Surfaces, Plenum[M], New York,1977.
    [13]Madou M J, Morrison S R. Chemical sensing with solid state devices[M]: Academic press San Diego,1989.
    [14]Broqvist P., Gronbeck H., Fridell E. NOxstorage on BaO: theory and experiment[J], CatalysisToday,2004:9671–78.
    [15Sberveglieri G. Gas Sensors: Principles, Operation, and Development[M]: Springer,1992.
    [16]Afzal A, Cioffi N, Sabbatini L, et al. NOx sensors based on semiconducting metal oxid nanostructures:Progress and perspectives[J]. Sensors and Actuators B: Chemical.2012,171-172:25-42.
    [17]J. Riu, A. Maroto, F.X. Rius, Nanosensors in environmental analysis[J], Talanta69(2006)288–301.
    [18]Lupan O., Ursaki V.V., Chai G. et al. Selective hydrogen gas sensor using individual ZnO nanowirewith fast response at room temperature[J], Sensors and Actuators B144(2010)56–66.
    [19]Yamazoe N, Kurokawa Y, Selyama T, Effects of additives on semiconductor gas sensors[J], Sensorsand Actuators,4(1983)283-289
    [20]Roy Morrison S, Selectivity in senmiconductor Gas Sensors[J]. Sensors and Actuators B,1987,12:425-440.
    [21]Quaranta F,Rella R,Siciliano P, Capone S. et al..A novel gas sensor basedon SnO2/O2thin film forthe deteetion of Methane a tlow temperature [J].Sens.Actuators B,1999,58:350-355.
    [22]Korotcenkova G., Cho B.K., Instability of metal oxide-based conductometric gas sensors andapproaches to stability improvement (short survey)[J], Sensors and Actuators B156(2011)527–538
    [23]河道清,张禾,谌海云编著.传感器与传感技术[M].第二版.北京:科学出版社,2008.378-379.
    [24]潘炼主编.传感器原理及应用[M].第一版.北京:电子工业出版社,2012.188-189.
    [25]Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection ofbiological and chemical species[J]. Science.2001,293(5533):1289-1292.
    [26]Dai Z. R., Pan Z.W., Wang Z. L., Novel nanostructures of functional oxides synthesized by thermalevaporation[J], Adv. Funct. Mater.,2003.13,9–24.
    [27]Kuno M., An overview of solution-based semiconductor nanowires:Synthesis and optical studies[J],Phys. Chem. Chem. Phys.,2008,.10,620–639.
    [28]Cao G. Z., Liu D. W., Template-based synthesis of nanorod, nanowire, and nanotube arrays[J], Adv.Colloid Interface Sci.,2008,136,45–64.
    [29]Rao C. N. R., Deepak F. L., Gundiah G. et al, Inorganic nanowires[J], Progr. Solid State Chem.2003,31,5–147.
    [30]Wang B, Zhu L, Yang Y, et al. Fabrication of a SnO2nanowire gas sensor and sensor performance forhydrogen[J]. The Journal of Physical Chemistry C.2008,112(17):6643-6647.
    [31]Zhang Y.S., Zhu Z.Q. Zinc oxide nanorod and nanowire for humidity sensor[J]. Appl. Surf. Sci.2005,242,212–217.
    [32]Kolmakov A, Zhang Y, Cheng G, et al. Detection of CO and O2using tin oxide nanowire sensors[J].Advanced Materials.2003,15(12):997-1000.
    [33]Comini E, Faglia G, Sberveglieri G, et al. Stable and highly sensitive gas sensors based onsemiconducting oxide nanobelts[J]. Applied Physics Letters.2002,81(10):1869-1871.
    [34]Fields L, Zheng J, Cheng Y, et al. Room temperature low power hydrogen sensor based on a singletin dioxide nanobelt[J]. Applied Physics Letters.2006,88(26):263102-263102-263103.
    [35]Law M, Kind H, Messer B, et al. Photochemical sensing of NO2with SnO2nanoribbon nanosensorsat room temperature[J]. Angewandte Chemie.2002,114(13):2511-2514.
    [36]Wan Q, Li Q, Chen Y, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gassensors[J]. Applied Physics Letters.2004,84(18):3654-3656.
    [37]Duan X, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscaleelectronic and optoelectronic devices[J]. Nature.2001,409(6816):66-69.
    [38]Cui Y, Lieber C M. Functional nanoscale electronic devices assembled using silicon nanowirebuilding blocks[J]. Science.2001,291(5505):851-853.
    [39]Tanase M, Bauer L A, Meyer G J. Magnetic alignment of fluorescent nanowires[J]. Nano Lett.,2001,1(3):155~158.
    [40]Bentley A K, Tretheway J S, Ellis A B. Magnetic manipulation of copper-tin nanowires capped withnickel ends[J]. Nano Lett.,2004,4(3):487~490.
    [41]Gupta S, Joshi A, Kaur M. Development of gas sensors using ZnO nanostructures[J]. Journal ofChemical Sciences.2010,122(1):57-62.
    [42]Liu H, Sun J, Tang Q, et al. Ultralow-voltage electric double-layer SnO2nanowire transistors gated bymicroporous SiO2-based solid electrolyte[J]. The Journal of Physical Chemistry C.2010,114(28):12316-12319.
    [43]Jung T H, Kwon S I, Park J H, et al. SnO2nanowires bridged across trenched electrodes and their gassensing characteristics[J]. Appl.Phy. A: Materials Science&Processing.2008,91(4):707-710.
    [44]Kim B G, Lim D G, Park J H, et al. In-situ bridging of SnO2nanowires between the electrodes andtheir NO2gas sensing characteristics [J]. Appl. Surf. Sci.2011,257(10):4715-4718.
    [45]Sberveglieri G., Baratto C., Comini E., Synthesis and characterization of semiconducting nanowiresfor gas sensing[J], Sens. Actuators B,2007,121,208–213.
    [46]Chandra Sekhar Rout, S. Hari Krishna, S.R.C. Vivekchand et al. Hydrogen and ethanol sensors basedon ZnO nanorods, nanowiresand nanotubes[J],Chem. Phy. Lett.418(2006)586–590
    [47]Fan Z, Lu J.G., Gate-refreshable nanowire chemical sensors[J], Appl. Phys. Lett.,2006,86,123510-123512
    [48]Fan Z, Wang D, Chang P-C, et al. ZnO nanowire field-effect transistor and oxygen sensingproperty[J]. Applied Physics Letters.2004,85:5923.
    [49]Meier D. C., Semancik S., Button B. et al. Coupling nanowire chemiresistors with MEMSmicrohotplate gas sensing platforms[J], Appl. Phys. Lett.2007,91,63118–63120.
    [50]Lu J. G., Chang P., Fan Z., Quasi-one-dimensional metal oxide materials-synthesis, properties andapplications[J], Mater. Sci. Eng. R.2006,52,49–91.
    [51]Comini E., Faglia G., Sberveglieri G. et al. Stable and highly sensitive gas sensors based onsemiconducting oxide nanobelts[J],Appl. Phys. Lett., Vol.81, No.10,2,1869-1871
    [52]Brunet E., Maier T., Mutinat G. C., et al. Comparison of the gas sensing performance of SnO2thinflm and SnO2nanowire sensors[J],Sens. Actuators B2012,165,110-118.
    [53]Yu C., Hao Q., Saha S. et al. Integration of metal oxide nanobelts with microsystems for nerve agentdetection[J], Appl. Phys. Lett.,2005,86,063101–063103.
    [54]Kuang Q, Lao C, Lin Z et al. High-Sensitivity Humidity Sensor Based on a Single SnO2Nanowire[J],J. Am. Chem. Soc.2007,129,6070-6071.
    [55]Kuang, Q.; Lao, C.S.; Li, Z. et al. Enhancing the photon-and gas-sensing properties of a single SnO2nanowire based nanodevice by nanoparticle surface functionalization[J]. J. Phys. Chem. C2008,112,11539–11544.
    [56]Li C., Zhang D., Liu X. et al. In2O3nanowires as chemical sensors[J], Appl. Phys. Lett.,2003,82,1613-1616.
    [57]Ryu K., Zhang D., Zhou C., High-performance metal oxide nanowire chemical sensors withintegrated micromachined hotplates[J],2008, Appl. Phys. Lett.,92,093111–093113.
    [58]Xu P., Cheng Z., Pan Q. et al. High aspect ratio In2O3nanowires: Synthesis, mechanismand NO2gas-sensing properties[J], Sens. Actuators B,2008,130,802–808.
    [59]Vomiero A., Bianchi S., Comini E., et al. In2O3nanowires for gas sensors: morphology and sensingcharacterization, Thin Solid Films[J],2007,515,8356–8359
    [60]Zhang D., Liu Z., Li C., Tang T. et al. Detection of NO2down to ppb levels using individual andmultiple In2O3nanowire devices [J]. Nano Lett.,2004,4,1919-1924,
    [61]Zeng, Z.M.; Wang, K.; Zhang, Z.X. et al. The detection of H2S at room by using individual indiumoxide nanowire transistors[J]. Nanotechnology2009,20,045503.
    [62]Kim Y S, Ha S-C, Kim K, et al. Room-temperature semiconductor gas sensor based onnonstoichiometric tungsten oxide nanorod film[J]. Applied Physics Letters.2005,86(21):213105-213105-213103.
    [63]Francioso L., Taurino A.M., Forleo A., et al. TiO2nanowires array fabrication and gas sensingproperties[J], Sens. Actuators B,2008.,130,70–76.
    [64]Wang Y., Du G., Liu H. et al. Nanostructured sheets of TiO2nanobelts for gas sensing andantibacterial applications[J]. Adv. Funct. Mater.,2008,18,1131–1137.
    [65]Bouvet M, Phthalocyanine-based feld-effect transistors as gas sensors[J], Anal Bioanal Chem [J],2006),384:366–373.
    [66]Marinelli F., Dell’Aquila A., Torsi L., et al. An organic feld effect transistor as a selective NOxsensoroperated at room temperature[J]. Sensors and Actuators B[J]2009,140,445–450.
    [67]Crone BK, Dodabalapur A, Sarpeshkar R et al. Organic oscillator and adaptive amplifier circuits forchemical vapor sensing[J]. J. Appl. Phys.2002,91:10140–10146
    [68]Du J, Liang D, Tang H, et al. InAs nanowire transistors as gas sensor and the response mechanism[J].Nano Lett.2009,9(12):4348-4351.
    [69]Yamazoe N, Kurokawa Y, Selyama T, Effects of additives on semiconductor gas sensors[J], Sensorsand Actuators,4(1983)283-289
    [70]Roy Morrison S, Selectivity in senmiconductor Gas Sensors[J]. Sensors and Actuators B,1987,12:425-440.
    [71]Lilienfeld J.E. Method and apparatus for controlling electric currents[P]. US Patents,1745175.1930-1-28.
    [72]Bardeen J., Brattain W.H., The Transistor, A SemiConductor Triode, Phys. Rev.1948,74,230-231.
    [73]Kahng D., Atalla M.M.. Silicon-Silicon Dioxide Field Induced Surface Devices. In Carnegie Instituteof Technology, IRE-AIEE Solid State Devices Research Conference, Pittsburgh,1960.
    [74]Koezuka H, Tsumura A, Ando T. Field-effect transistor with polythiophene thin film[J]. Syntheticmetals.1987,18(1):699-704.
    [75]Rogers J A, Bao Z, Baldwin K, et al. Paper-like electronic displays: Large-area rubber-stamped plasticsheets of electronics and microencapsulated electrophoretic inks[J]. Proceedings of the National Academyof Sciences.2001,98(9):4835-4840.
    [76]Gelinck G H, Huitema H E A, van Veenendaal E, et al. Flexible active-matrix displays and shiftregisters based on solution-processed organic transistors[J]. Nature Materials.2004,3(2):106-110.
    [77]Sheraw C, Zhou L, Huang J, et al. Organic thin-film transistor-driven polymer-dispersed liquid crystaldisplays on flexible polymeric substrates[J]. Applied Physics Letters.2002,80(6):1088-1090.
    [78]Zhu Z T, Mason J T, Dieckmann R, et al. Humidity sensors based on pentacene thin-film transistors[J].Applied Physics Letters.2002,81(24):4643-4645.
    [79]Crone B, Dodabalapur A, Gelperin A, et al. Electronic sensing of vapors with organic transistors[J].Applied Physics Letters.2001,78(15):2229-2231.
    [80]Voss D. Cheap and cheerful circuits[J]. Nature.2000,407(6803):442-444.
    [81]Baude P, Ender D, Haase M, et al. Pentacene-based radio-frequency identification circuitry[J].Applied Physics Letters.2003,82(22):3964-3966.
    [82]Sze. S.M. in Semiconductor Devices: Physics and Technology[M], Wiley, New York,1985.
    [83]Torsi L, Dodabalapur A, Sabbatini L, et al. Multi-parameter gas sensors based on organic thin filmtransistors[J]. Sensors and Actuators B: Chemical.2000,67(3):312-316.
    [84]汤庆鑫.酞菁单晶微纳材料与微纳光电器件的研究[D]:[博士学位论文].北京:中国科学院化学研究所,1983.
    [85]Horowitz G., Organic Field-Effect Transistors[J], Adv. Mater.1998,10,365-377.
    [86]De Boer R.W.I., Gershenson M.E., Morpurgo A.F., et al.Organic Single-Crystal Field-EffectTransistors, phys. stat. sol[J].2004,201(6),1302-1331.
    [87]Horowitz G., Garnier F., Yassar A., Hajlaoui R., Kouki F., Field-Effect Transistor Made with aSexithiophene Single Crystal[J], Adv. Mater.1996,8,52-54.
    [88]Sze S.M.. in Semiconductor Devices: Physics and Technology[M], Wiley, New York,1985.
    [89]Weimer P K. The TFT a new thin-film transistor[J]. Proceedings of the IRE.1962,50(6):1462-1469.
    [90]Tsumura A, Koezuka H, Ando T. Macromolecular electronic device: Field‐effect transistor with apolythiophene thin film[J]. Applied Physics Letters.1986,49(18):1210-1212.
    [91] Kudo K, Yamashina M, Moriizumi T. Field effect measurement of organic dye films[J]. Japanesejournal of applied physics.1984,23(1).
    [92]Clarisse C, Riou M, Gauneau M, et al. Field-effect transistor with diphthalocyanine thin film[J].Electronics Letters.1988,24(11):674-675.
    [93]Ebisawa F, Kurokawa T, Nara S. Electrical properties of polyacetylene/polysiloxane interface[J].Journal of Applied Physics.1983,54(6):3255-3259.
    [94]Wang C, Dong H, Hu W, et al. Semiconducting pi-conjugated systems in field-effect transistors: amaterial odyssey of organic electronics[J]. Chem Rev.2012,112(4):2208-2267.
    [95]Klauk H. Organic thin-film transistors[J]. Chem Soc Rev.2010,39(7):2643-2666.
    [96]Necliudov P, Shur M, Gundlach D, et al. Modeling of organic thin film transistors of differentdesigns[J]. Journal of Applied Physics.2000,88(11):6594-6597.
    [97]Shim C H, Maruoka F, Hattori R. Structural analysis on organic thin-film transistor with devicesimulation[J]. Electron Devices, IEEE Transactions on.2010,57(1):195-200.
    [98]Gundlach D, Royer J, Park S, et al. Contact-induced crystallinity for high-performance solubleacene-based transistors and circuits[J]. Nature Materials.2008,7(3):216-221.
    [99]Gundlach D, Jackson T, Schlom D, et al. Solvent-induced phase transition in thermally evaporatedpentacene films[J]. Applied Physics Letters.1999,74(22):3302-3304.
    [100]Wen Y, Liu Y. Recent Progress in n-Channel Organic Thin Film Transistors[J]. Advanced Materials.2010,22(12):1331-1345.
    [101]Klauk H, Zschieschang U, Weitz R T, et al. Organic transistors based on di (phenylvinyl) anthracene:Performance and stability[J]. Advanced Materials.2007,19(22):3882-3887.
    [102]Jiang L, Hu W, Wei Z, et al. High-Performance Organic Single-Crystal Transistors and DigitalInverters of an Anthracene Derivative[J]. Advanced Materials.2009,21(36):3649-3653.
    [103]Chen Y, Su W, Bai M, et al. High performance organic field-effect transistors based on amphiphilictris (phthalocyaninato) rare earth triple-decker complexes[J]. J Am Chem Soc.2005,127(45):15700-15701.
    [104]Gao X, Di C-a, Hu Y, et al. Core-Expanded Naphthalene Diimides Fused with2-(1,3-Dithiol-2-Ylidene) Malonitrile Groups for High-Performance, Ambient-Stable, Solution-Processedn-Channel Organic Thin Film Transistors[J]. J Am Chem Soc.2010,132(11):3697-3699.
    [105]Wang G, Swensen J, Moses D, et al. Increased mobility from regioregular poly (3-hexylthiophene)field-effect transistors[J]. Journal of Applied Physics.2003,93(10):6137-6141.
    [106]Dong H, Li H, Wang E, et al. Ordering Rigid Rod Conjugated Polymer Molecules for HighPerformance Photoswitchers[J]. Langmuir.2008,24(23):13241-13244.
    [107]Li G, Yao Y, Yang H, et al.“Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes[J]. Advanced Functional Materials.2007,17(10):1636-1644.
    [108]Rogers J A, Bao Z, Baldwin K, et al. Paper-like electronic displays: Large-area rubber-stampedplastic sheets of electronics and microencapsulated electrophoretic inks[J]. Proceedings of the NationalAcademy of Sciences.2001,98(9):4835-4840.
    [109]Sirringhaus H, Kawase T, Friend R, et al. High-resolution inkjet printing of all-polymer transistorcircuits[J]. Science.2000,290(5499):2123-2126.
    [110]Sele C W, von Werne T, Friend R H, et al. Lithography Free, Self Aligned Inkjet Printing with SubHundred Nanometer Resolution[J]. Advanced Materials.2005,17(8):997-1001.
    [111]Wang J, Gu J, Zenhausern F, et al. Low-cost fabrication of submicron all polymer field effecttransistors[J]. Applied Physics Letters.2006,88(13):133502-133502-133503.
    [112]Meitl M A, Zhu Z T, Kumar V, et al. Transfer printing by kinetic control of adhesion to anelastomeric stamp[J]. Nature Materials.2005,5(1):33-38.
    [113]Wang C, Dong H, Hu W, et al. Semiconducting pi-conjugated systems in field-effect transistors: amaterial odyssey of organic electronics[J]. Chem Rev.2012,112(4):2208-2267.
    [114]Zhang X, C téA P, Matzger A J. Synthesis and structure of fused α-oligothiophenes with up to sevenrings[J]. J Am Chem Soc.2005,127(30):10502-10503.
    [115]De Boer R, Gershenson M, Morpurgo A, et al. Organic single‐crystal field‐effect transistors[J].physica status solidi (a).2004,201(6):1302-1331.
    [116]I.H. Campbell, D.L. Smith, in Solid State Physics edited by H. Ehrenreich and F. Spaepen, Academic,New York,2001,55,1.
    [117]Reese C, Bao Z. Organic single-crystal field-effect transistors[J]. Materials Today.2007,10(3):20-27.
    [118]Briseno A L, Mannsfeld S C, Ling M M, et al. Patterning organic single-crystal transistor arrays[J].Nature.2006,444(7121):913-917.
    [119]Podzorov V, Menard E, Borissov A, et al. Intrinsic charge transport on the surface of organicsemiconductors[J]. Physical Review Letters.2004,93(8):86602.
    [120]Chua L L, Zaumseil J, Chang J F, et al. General observation of n-type field-effect behaviour inorganic semiconductors[J]. Nature.2005,434(7030):194-199.
    [121]Kloc C, Simpkins P, Siegrist T, et al. Physical vapor growth of centimeter-sized crystals ofα-hexathiophene[J]. Journal of crystal growth.1997,182(3):416-427.
    [122]Laudise R, Kloc C, Simpkins P, et al. Physical vapor growth of organic semiconductors[J]. Journalof crystal growth.1998,187(3):449-454.
    [123]Ji H X, Hu J S, Wan L J, et al. Controllable crystalline structure of fullerene nanorods and transportproperties of an individual nanorod[J]. J Mater Chem.2007,18(3):328-332.
    [124]Tang Q, Jiang L, Tong Y, et al. Micrometer-and Nanometer-Sized Organic Single-CrystallineTransistors[J]. Advanced Materials.2008,20(15):2947-2951.
    [125]Jiang H, Yang X, Cui Z, et al. Phase dependence of single crystalline transistors oftetrathiafulvalene[J]. Applied Physics Letters.2007,91(12):123505-123505-123503.
    [126]Marinkovic M, Belaineh D, Wagner V, et al. On the origin of contact resistances of organic thin filmtransistors[J]. Adv Mater.2012,24(29):4005-4009.
    [127]Kim D, Han J T, Park Y, et al. Single-Crystal Polythiophene Microwires Grown by Self-Assembly[J].Advanced Materials.2006,18(6):719-723.
    [128]Tang Q, Li H, Song Y, et al. In Situ Patterning of Organic Single-Crystalline Nanoribbons on a SiO2Surface for the Fabrication of Various Architectures and High-Quality Transistors[J]. Advanced Materials.2006,18(22):3010-3014.
    [129]Zhou Y, Liu W J, Ma Y, et al. Single microwire transistors of oligoarenes by direct solutionprocess[J]. J Am Chem Soc.2007,129(41):12386-12387.
    [130]Xiao S, Tang J, Beetz T, et al. Transferring self-assembled, nanoscale cables into electrical devices[J].J Am Chem Soc.2006,128(33):10700-10701.
    [131]Tang Q, Li H, He M, et al. Low Threshold Voltage Transistors Based on IndividualSingle-Crystalline Submicrometer-Sized Ribbons of Copper Phthalocyanine[J]. Advanced Materials.2006,18(1):65-68.
    [132]Xiao S, Tang J, Beetz T, et al. Transferring self-assembled, nanoscale cables into electrical devices[J].J Am Chem Soc.2006,128(33):10700-10701.
    [133]Tang Q, Tong Y, Li H, et al. Air/vacuum dielectric organic single crystalline transistors ofcopper-hexadecafluorophthalocyanine ribbons[J]. Applied Physics Letters.2008,92(8):083309.
    [134]Menard E, Podzorov V, Hur S H, et al. High-Performance n-and p-Type Single-Crystal OrganicTransistors with Free-Space Gate Dielectrics[J]. Advanced Materials.2004,16(23‐24):2097-2101.
    [135]Podzorov V, Menard E, Borissov A, et al. Intrinsic Charge Transport on the Surface of OrganicSemiconductors[J]. Physical Review Letters.2004,93(8).
    [136]Merlo J A, Newman C R, Gerlach C P, et al. p-Channel organic semiconductors based on hybridacene-thiophene molecules for thin-film transistor applications[J]. J Am Chem Soc.2005,127(11):3997-4009.
    [137]Facchetti A, Mushrush M, Yoon M-H, et al. Building blocks for n-type molecular and polymericelectronics. Perfluoroalkyl-versus alkyl-functionalized oligothiophenes (nT; n=2-6). Systematics of thinfilm microstructure, semiconductor performance, and modeling of majority charge injection in field-effecttransistors[J]. J Am Chem Soc.2004,126(42):13859-13874.
    [138]Miao Q, Nguyen T-Q, Someya T, et al. Synthesis, assembly, and thin film transistors ofdihydrodiazapentacene: An isostructural motif for pentacene[J]. J Am Chem Soc.2003,125(34):10284-10287.
    [139]Moon H, Zeis R, Borkent E-J, et al. Synthesis, crystal structure, and transistor performance oftetracene derivatives[J]. J Am Chem Soc.2004,126(47):15322-15323.
    [140]刘雅玲,李洪祥,胡文平等.有机单晶场效应晶体管[J],化学进展.2006,18:189-199.
    [141]Bao.Z., Lovinger A. Brown J. New air-stable n-channel organic thin film transistors[J]. J. Am.Chem. Soc.1998,120:207–208.
    [142]Garnier F, Horowitz G, Peng X, et al. An all organic" soft" thin film transistor with very high carriermobility[J]. Advanced Materials.2004,2(12):592-594.
    [143]Morana M, Bret G, Brabec C. Double-gate organic field-effect transistor[J]. Applied Physics Letters.2005,87(15):153511-153513.
    [144]Bott B, Jones T. A highly sensitive NO sensor based on electrical conductivity changes inphthalocyanine films[J]. Sensors and Actuators.1984,5(1):43-53.
    [145]Ebisawa F, Kurokawa T, Nara S. Electrical properties of polyacetylene/polysiloxane interface[J].Journal of Applied Physics.1983,54(6):3255-3259.
    [146]Kudo K, Yamashina M, Moriizumi T. Field effect measurement of organic dye films[J]. Japanesejournal of applied physics.1984,23(1).
    [147]Tsumura A, Koezuka H, Ando T. Macromolecular electronic device: Field effect transistor with apolythiophene thin film[J]. Applied Physics Letters.1986,49(18):1210-1212.
    [148]Laurs H, Heiland G. Electrical and optical properties of phthalocyanine films[J]. Thin Solid Films.1987,149(2):129-142.
    [149]Assadi A, Gustafsson G, Willander M, et al. Determination of field-effect mobility of poly(3-hexylthiophene) upon exposure to NH3gas[J]. Synthetic metals.1990,37(1):123-130.
    [150]Ohmori Y, Takahashi H, Muro K, et al. Fabrication and characteristics of Schottky gated poly(3-alkylthiophene) field effect transistors[J]. Japanese journal of applied physics.1991,30: L610-L611.
    [151]Newton M, Starke T, Willis M, et al. NO2detection at room temperature with copper phthalocyninethin film devices[J]. Sensors and Actuators B: Chemical.2000,67(3):307-311.
    [152]Ho K C, Tsou Y H. Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films[J].Sensors and Actuators B: Chemical.2001,77(1):253-259.
    [153]Torsi L, Tanese M, Cioffi N, et al. Side-chain role in chemically sensing conducting polymer fieldeffect transistors[J]. The Journal of Physical Chemistry B.2003,107(31):7589-7594.
    [154]Hu W, Liu Y, Xu Y, et al. The gas sensitivity of a metal-insulator-semiconductorfield-effect-transistor based on Langmuir–Blodgett films of a new asymmetrically substitutedphthalocyanine[J]. Thin Solid Films.2000,360(1):256-260.
    [155]Bouvet M, Leroy A, Simon J, et al. Detection and titration of ozone using metallophthalocyaninebased field effect transistors[J]. Sensors and Actuators B: Chemical.2001,72(1):86-93.
    [156]Bouvet M, Guillaud G, Leroy A, et al. Phthalocyanine-based field-effect transistor as ozone sensor[J].Sensors and Actuators B: Chemical.2001,73(1):63-70.
    [157]Torsi L, Dodabalapur A, Cioffi N, et al. NTCDA organic thin-film-transistor as humidity sensor:weaknesses and strengths[J]. Sensors and Actuators B: Chemical.2001,77(1):7-11.
    [158]Zhu ZT, Mason J T, Dieckmann R, et al. Humidity sensors based on pentacene thin-filmtransistors[J]. Applied Physics Letters.2002,81(24):4643-4645.
    [159]Qiu Y, Hu Y, Dong G, et al. H2O effect on the stability of organic thin-film field-effect transistors[J].Applied Physics Letters.2003,83(8):1644-1646.
    [160]Li D, Borkent E-J, Nortrup R, et al. Humidity effect on electrical performance of organic thin-filmtransistors[J]. Applied Physics Letters.2005,86(4):042105-042105-042103.
    [161]Crone B, Dodabalapur A, Gelperin A, et al. Electronic sensing of vapors with organic transistors[J].Applied Physics Letters.2001,78(15):2229-2231.
    [162]Torsi L. Organic Thin-Film Transistors as Plastic Analytical Sensors.pdf[J]. American ChemicalSociety.2005,77:380A-387A.
    [163]Andringa A-M, Meijboom J R, Smits E C P, et al. Gate-Bias Controlled Charge Trapping as aMechanism for NO2Detection with Field-Effect Transistors[J]. Advanced Functional Materials.2011,21(1):100-107.
    [164]Das A, Dost R, Richardson T H, et al. Low cost, portable, fast multiparameter data acquisitionsystem for organic transistor odour sensors[J]. Sensors and Actuators B: Chemical.2009,137(2):586-591.
    [165]Strelcov E, Kolmakov A. Copper Phthalocyanine Quasi-1D Nanostructures: Growth Morphologiesand Gas Sensing Properties[J]. Journal of Nanoscience and Nanotechnology.2008,8(1):212-221.
    [1]Q. X. Tang, Hongxiang Li, Meng He, et al. Low threshold voltage transistors based on individualsingle-crystalline submicrometer-sized ribbons of copper phthalocyanine, Adv. Mater.2006,18:65.
    [2]童艳红、汤庆鑫、塔力哈尔等,一种全透明管式电阻炉[P],中国专利,201210076605.X,2012.03.22.
    [3]Q. X. Tang, Yanhong Tong, Hongxiang Li et al.High performance air stable bipolar field-effecttransistors of organic single crystalline ribbons with air-gap dielectric, Adv. Mater.2008,20,1511-1515.
    [4]Q. X. Tang, Yanhong Tong, Hongxiang Li, et al. Air/vacuum dielectric organic single crystallinetransistors of copper-hexadecafluorophthalocyanine ribbons, Appl. Phys. Lett.2008,92,083309.
    [5]Kyoung Jin Choi, Ho Won Jang, One-Dimensional Oxide Nanostructures as Gas-Sensing Materials:Review and Issues,2010,10,4083-4099
    [6]Sven Barth, Francisco Hernandez-Ramirez, Justin D. Holmes, Synthesis and applications ofone-dimensional semiconductors Progress in Materials Science55(2010)563–627
    [7]Adeel Afzala, b, Nicola Cioffia, Luigia Sabbatini, et al. NOx sensors based on semiconducting metaloxide nanostructures: Progress and perspectives,2012,171:25-42.
    [8]杨颖;黄孝明;张转芳,一种低温静态气敏测试装置[P],中国专利,201120530129,2011.12.19.
    [9]Kolmakov, Andrei; Chen, Xihong; Moskovits, Martin, Functionalizing Nanowires with CatalyticNanoparticles for Gas Sensing Application,2008,8,(1):111-121.
    [10]汤庆鑫、童艳红、蔡彬等,一种半导体单晶微纳气敏传感器测试系统[P],中国专利,201210566058.3,2012.12.24.
    [1]Lee S C, Hwang B W, Lee S J, et al. A novel tin oxide-based recoverable thick film SO2gas sensorpromoted with magnesium and vanadium oxides[J]. Sensors and Actuators B: Chemical.2011,160(1):1328-1334.
    [2]Das S, Chakraborty S, Parkash O, et al. Vanadium doped tin dioxide as a novel sulfur dioxide sensor[J].Talanta.2008,75(2):385-389.
    [3]L. P. Jackson, Federal Register2012,77,20218.
    [4]Wetchakun K, Samerjai T, Tamaekong N, et al. Semiconducting metal oxides as sensors forenvironmentally hazardous gases[J]. Sensors and Actuators B: Chemical.2011,160(1):580-591.
    [5]G. F. Fine, L. M. Cavanagh, A. Afonja, R. Binions, Sensors2010,10,5469.
    [6]Bouvet M. Phthalocyanine-based field-effect transistors as gas sensors[J]. Anal Bioanal Chem.2006,384(2):366-373.
    [7]Marinelli F, Dell’Aquila A, Torsi L, et al. An organic field effect transistor as a selective NOxsensoroperated at room temperature[J]. Sensors and Actuators B: Chemical.2009,140(2):445-450.
    [8]Torsi L, Tafuri A, Cioffi N, et al. Regioregular polythiophene field-effect transistors employed aschemical sensors[J]. Sensors and Actuators B: Chemical.2003,93(1-3):257-262.
    [9]Lin P, Yan F. Organic thin-film transistors for chemical and biological sensing[J]. Adv Mater.2012,24(1):34-51.
    [10]Torsi L. Novel applications of organic based thin film transistors[J]. Microelectronics Reliability.2000,40(4):779-782.
    [11]Torsi L, Farinola G, Marinelli F, et al. Organic thin film transistors as plastic chiral sensors. Sensors,2008IEEE: IEEE,2008. p.1313-1315.
    [12]Andringa A-M, Meijboom J R, Smits E C P, et al. Gate-Bias Controlled Charge Trapping as aMechanism for NO2Detection with Field-Effect Transistors[J]. Advanced Functional Materials.2011,21(1):100-107.
    [13]Crone B, Dodabalapur A, Sarpeshkar R, et al. Organic oscillator and adaptive amplifier circuits forchemical vapor sensing[J]. Journal of Applied Physics.2002,91(12):10140-10146.
    [14]Newton M, Starke T, Willis M, et al. NO2detection at room temperature with copper phthalocyaninethin film devices[J]. Sensors and Actuators B: Chemical.2000,67(3):307-311.
    [15]Ho K-C, Tsou Y-H. Chemiresistor-type NO gas sensor based on nickel phthalocyanine thin films[J].Sensors and Actuators B: Chemical.2001,77(1):253-259.
    [16] Torsi L, Tanese M, Cioffi N, et al. Side-chain role in chemically sensing conducting polymerfield-effect transistors[J]. The Journal of Physical Chemistry B.2003,107(31):7589-7594.
    [17]Rothschild A, Komem Y. The effect of grain size on the sensitivity of nanocrystalline metal-oxide gassensors[J]. Journal of Applied Physics.2004,95(11):6374-6380.
    [18]Pilar Hidalgo R H R C, Antonio C.V.Coilho, and Douglas Gouvea. Surface Segregation andConsequent SO2Sensor Response in SnO2-NiO[J]. Chem Mater.2005,17:4149-4153.
    [19]Getino J, Gutierrez J, Ares L, et al. Integrated sensor array for gas analysis in combustionatmospheres[J]. Sensors and Actuators B-Chemical.1996,33(1-3):128-133.
    [20]Brea M, Zucol A F, Patterer N. Fossil woods from late Pleistocene sediments from El PalmarFormation, Uruguay Basin, Eastern Argentina[J]. Review of Palaeobotany and Palynology.2010,163(1):35-51.
    [21]Lan ok J, Santoni A, Penza M, et al. Tin oxide thin films prepared by laser-assisted metal–organicCVD: Structural and gas sensing properties[J]. Surface and Coatings Technology.2005,200(1-4):1057-1060.
    [22]Das S, Chakraborty S, Parkash O, et al. Vanadium doped tin dioxide as a novel sulfur dioxide sensor[J].Talanta.2008,75(2):385-389.
    [23]Brunet E, Maier T, Mutinati G C, et al. Comparison of the gas sensing performance of SnO2thin filmand SnO2nanowire sensors[J]. Sensors and Actuators B-Chemical.2012,165(1):110-118.
    [24]Lee S C, Hwang B W, Lee S J, et al. A novel tin oxide-based recoverable thick film SO2gas sensorpromoted with magnesium and vanadium oxides[J]. Sensors and Actuators B: Chemical.2011,160(1):1328-1334.
    [25]Penza M, Cassano G, Tortorella F. Gas recognition by activated WO3thin-film sensors array[J].Sensors and Actuators B: Chemical.2001,81(1):115-121.
    [26]Stankova M, Vilanova X, Calderer J, et al. Detection of SO2and H2S in CO2stream by means ofWO3-based micro-hotplate sensors[J]. Sensors and Actuators B: Chemical.2004,102(2):219-225.
    [27] Shimizu Y, Matsunaga N, Hyodo T, et al. Improvement of SO2sensing properties of WO3by noblemetal loading[J]. Sensors and Actuators B-Chemical.2001,77(1-2):35-40.
    [28]Zhang X, Zhang J, Jia Y, et al. TiO2Nanotube Array Sensor for Detecting the SF6DecompositionProduct SO2[J]. Sensors (Basel).2012,12(3):3302-3313.
    [29]Morris D, Egdell R. Application of V-doped TiO2as a sensor for detection of SO2[J]. Journal ofMaterials Chemistry.2001,11(12):3207-3210.
    [30] Gerblinger J, Perczel I, Meixner H. Study of the behaviour of CeO2in SO2containing environment[J].Sensors and Actuators B: Chemical.1995,25(1):631-635.[31]Izu N, Hagen G, Schonauer D, et al.Application of V2O5/WO3/TiO2for resistive-type SO2sensors[J]. Sensors (Basel).2011,11(3):2982-2991.
    [32]Cid C C, Jimenez-Cadena G, Riu J, et al. Selective detection of SO2at room temperature based onorganoplatinum functionalized single-walled carbon nanotube field effect transistors[J]. Sensors andActuators B: Chemical.2009,141(1):97-103.
    [33]Dua V, Surwade S P, Ammu S, et al. Chemical Vapor Detection Using Parent PolythiopheneNanofibers[J]. Macromolecules.2009,42(15):5414-5415.
    [34]Torsi L, Dodabalapur A, Sabbatini L, et al. Multi-parameter gas sensors based on organicthin-film-transistors[J]. Sensors and Actuators B: Chemical.2000,67(3):312-316.
    [35]Jiang H, Zhao H, Zhang K K, et al. High-Performance Organic Single-Crystal Field-Effect Transistorsof Indolo[3,2-b]carbazole and Their Potential Applications in Gas Controlled Organic Memory Devices[J].Adv Mater.2011,23(43):5075-5080.
    [36]Elizalde-Torres J, Hu H, Garc a-Valenzuela A. NO2-induced optical absorbance changes insemiconductor polyaniline thin films[J]. Sensors and Actuators B: Chemical.2004,98(2):218-226.
    [37]Ram M K, Yavuz O, Aldissi M. NO2gas sensing based on ordered ultrathin films of conductingpolymer and its nanocomposite[J]. Synthetic metals.2005,151(1):77-84.
    [38]Das A, Dost R, Richardson T, et al. A nitrogen dioxide sensor based on an organic transistorconstructed from amorphous semiconducting polymers[J]. Advanced Materials.2007,19(22):4018-4023.
    [39]Marinelli F, Dell’Aquila A, Torsi L, et al. An organic field effect transistor as a selective NOXsensoroperated at room temperature[J]. Sensors and Actuators B: Chemical.2009,140(2):445-450.
    [40]Du J, Liang D, Tang H, et al. InAs nanowire transistors as gas sensor and the response mechanism[J].Nano Lett.2009,9(12):4348-4351.
    [41]Chen Y, Podzorov V. Bias stress effect in "air-gap" organic field-effect transistors[J]. Adv Mater.2012,24(20):2679-2684.
    [42]S. J. Zilker, C. Detcheverry, E. Cantatore, D. M. de Leeuw, Appl. Phys. Lett.2001,79,1124.
    [43]Horowitz G. Organic thin film transistors: From theory to real devices[J]. Journal of Materials Research.2004,19(07):1946-1962.
    [44]Tang Q, Tong Y, Zheng Y, et al. Organic nanowire crystals combine excellent device performance andmechanical flexibility[J]. Small.2011,7(2):189-193.
    [45]Zeis R, Siegrist T, Kloc C. Single-crystal field-effect transistors based on copper phthalocyanine[J].Applied Physics Letters.2005,86(2):022103.
    [46]Klauk H. Organic thin-film transistors[J]. Chemical Society Reviews.2010,39(7):2643-2666.
    [47]Loiacono M J, Granstrom E L, Frisbie C D. Investigation of charge transport in thin, dopedsexithiophene crystals by conducting probe atomic force microscopy[J]. The Journal of Physical ChemistryB.1998,102(10):1679-1688.
    [1]Liao F, Chen C, Subramanian V. Organic TFTs as gas sensors for electronic nose applications[J]. Sensorsand Actuators B: Chemical.2005,107(2):849-855.
    [2]Torsi L, Tanese M, Cioffi N, et al. Side-chain role in chemically sensing conducting polymer field-effecttransistors[J]. The Journal of Physical Chemistry B.2003,107(31):7589-7594.
    [3]Wang L, Fine D, Dodabalapur A. Nanoscale chemical sensor based on organic thin-film transistors[J].Applied Physics Letters.2004,85(26):6386-6388.
    [4]Torsi L, Dodabalapur A, Sabbatini L, et al. Multi-parameter gas sensors based on organicthin-film-transistors[J]. Sensors and Actuators B: Chemical.2000,67(3):312-316.
    [5]Das A, Dost R, Richardson T, et al. A Nitrogen Dioxide Sensor Based on an Organic TransistorConstructed from Amorphous Semiconducting Polymers[J]. Advanced Materials.2007,19(22):4018-4023.
    [6]Das A, Dost R, Richardson T H, et al. Low cost, portable, fast multiparameter data acquisition systemfor organic transistor odour sensors[J]. Sensors and Actuators B: Chemical.2009,137(2):586-591.
    [7]Du J, Liang D, Tang H, et al. InAs nanowire transistors as gas sensor and the response mechanism[J].Nano Lett.2009,9(12):4348-4351.
    [8]Wetchakun K, Samerjai T, Tamaekong N, et al. Semiconducting metal oxides as sensors forenvironmentally hazardous gases[J]. Sensors and Actuators B: Chemical.2011,160(1):580-591.
    [9]Bouvet M. Phthalocyanine-based field-effect transistors as gas sensors[J]. Anal Bioanal Chem.2006,384(2):366-373.
    [10]Kolmakov A, Zhang Y, Cheng G, et al. Detection of CO and O2using tin oxide nanowire sensors[J].Advanced Materials.2003,15(12):997-1000.
    [11]Andringa A-M, Meijboom J R, Smits E C P, et al. Gate-Bias Controlled Charge Trapping as aMechanism for NO2Detection with Field-Effect Transistors[J]. Advanced Functional Materials.2011,21(1):100-107.
    [12]Jiang H, Zhao H, Zhang K K, et al. High-Performance Organic Single-Crystal Field-Effect Transistorsof Indolo[3,2-b]carbazole and Their Potential Applications in Gas Controlled Organic Memory Devices[J].Adv Mater.2011,23(43):5075-5080.
    [13]Guillaud G, Simon J, Germain J. Metallophthalocyanines: Gas sensors, resistors and field effecttransistors1In memory of Christine Maleysson.1[J]. Coordination Chemistry Reviews.1998,178:1433-1484.
    [14]Bouvet M. Phthalocyanine-based field-effect transistors as gas sensors[J]. Anal Bioanal Chem.2006,384(2):366-373.
    [15]Tang Q, Tong Y, Li H, et al. Air/vacuum dielectric organic single crystalline transistors ofcopper-hexadecafluorophthalocyanine ribbons[J]. Applied Physics Letters.2008,92(8):083309
    [16]Chen Y, Podzorov V. Bias stress effect in "air-gap" organic field-effect transistors[J]. Adv Mater.2012,24(20):2679-2684.
    [1]Tsumura A, Koezuka H, Ando T. Macromolecular electronic device: Field‐effect transistor with apolythiophene thin film[J]. Applied Physics Letters.1986,49(18):1210-1212.
    [2]Crone B, Dodabalapur A, Lin Y-Y, et al. Large-scale complementary integrated circuits based on organictransistors[J]. Nature.2000,403(6769):521-523.
    [3]Loo Y-L, Someya T, Baldwin K W, et al. Soft, conformable electrical contacts for organicsemiconductors: High-resolution plastic circuits by lamination[J]. Proceedings of the National Academy ofSciences.2002,99(16):10252-10256.
    [4]Rogers J A, Bao Z. Printed plastic electronics and paperlike displays[J]. Journal of polymer science partA: Polymer Chemistry.2002,40(20):3327-3334.
    [5]Crone B, Dodabalapur A, Gelperin A, et al. Electronic sensing of vapors with organic transistors[J].Applied Physics Letters.2001,78(15):2229-2231.
    [6]Horowitz G. Organic field-effect transistors[J]. Advanced Materials.1998,10(5):365-377.
    [7]Merlo J A, Newman C R, Gerlach C P, et al. p-Channel organic semiconductors based on hybridacene-thiophene molecules for thin-film transistor applications[J]. J Am Chem Soc.2005,127(11):3997-4009.
    [8]Facchetti A, Mushrush M, Yoon M-H, et al. Building blocks for n-type molecular and polymericelectronics. Perfluoroalkyl-versus alkyl-functionalized oligothiophenes (nT; n=2-6). Systematics of thinfilm microstructure, semiconductor performance, and modeling of majority charge injection in field-effecttransistors[J]. J Am Chem Soc.2004,126(42):13859-13874.
    [9]Miao Q, Nguyen T-Q, Someya T, et al. Synthesis, assembly, and thin film transistors ofdihydrodiazapentacene: An isostructural motif for pentacene[J]. J Am Chem Soc.2003,125(34):10284-10287.
    [10]Takimiya K, Kunugi Y, Konda Y, et al.2,6-diphenylbenzo [1,2-b:4,5-b'] dichalcogenophenes: A newclass of high-performance semiconductors for organic field-effect transistors[J]. J Am Chem Soc.2004,126(16):5084-5085.
    [11]Jiang H, Zhao H, Zhang K K, et al. High-Performance Organic Single-Crystal Field-Effect Transistorsof Indolo[3,2-b]carbazole and Their Potential Applications in Gas Controlled Organic Memory Devices[J].Adv Mater.2011,23(43):5075-5080.
    [12]Moon H, Zeis R, Borkent E-J, et al. Synthesis, crystal structure, and transistor performance of tetracenederivatives[J]. J Am Chem Soc.2004,126(47):15322-15323.
    [13]Afzali A, Dimitrakopoulos C D, Breen T L. High-performance, solution-processed organic thin filmtransistors from a novel pentacene precursor[J]. J Am Chem Soc.2002,124(30):8812-8813.
    [14]Bronstein H, Chen Z, Ashraf R S, et al. Thieno [3,2-b] thiophene Diketopyrrolopyrrole ContainingPolymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices[J]. JAm Chem Soc.2011,133(10):3272.
    [15]刘雅玲,李洪祥,胡文平等.有机单晶场效应晶体管[J],化学进展.2006,18:189-199.
    [16]Bao Z, Lovinger A J, Dodabalapur A. Organic field‐effect transistors with high mobility based oncopper phthalocyanine[J]. Applied Physics Letters.1996,69(20):3066-3068.
    [17]Bao.Z., Lovinger A. Brown J. New air-stable n-channel organic thin film transistors[J]. J. Am. Chem.Soc.1998,120:207–208.
    [18]Garnier F, Horowitz G, Peng X, et al. An all‐organic" soft" thin film transistor with very high carriermobility[J]. Advanced Materials.2004,2(12):592-594.
    [19]Podzorov V, Sysoev S, Loginova E, et al. Single-crystal organic field effect transistorswith the hole mobility~8cm2/V s[J]. Applied Physics Letters.2003,83(17):3504-3506.
    [20]Morana M, Bret G, Brabec C. Double-gate organic field-effect transistor[J]. AppliedPhysics Letters.2005,87(15):153511-153511-153513.
    [21]Zhang J, Wang J, Wang H, et al. Organic thin-film transistors in sandwichconfiguration[J]. Applied Physics Letters.2004,84(1):142-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700