用户名: 密码: 验证码:
煤粉先进再燃脱硝的试验研究与化学动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤电站锅炉产生的氮氧化物(NOx)是大气的主要污染物之一。随着环保要求的逐渐提高,燃煤电站烟气脱硝迫在眉睫,急需成本低廉、高效的脱硝技术。将再燃与SNCR结合起来的先进再燃技术具有很好的技术、经济优势,有望成为我国控制燃煤电站NOx排放的主流技术。
     本文首先通过在两段反应式一维燃烧反应器上进行了煤粉再燃、SNCR和煤粉先进再燃脱硝试验,研究再燃区化学当量比(SR)、煤粉再燃比(RFP)、再燃区温度(T1)、NH3/NO摩尔比(NSR)以及停留时间(τ)对煤粉先进再燃脱硝的影响规律,并分析再燃区出口条件对反应体系下游的NOx还原反应的影响。
     试验结果表明:综合考虑,SR=0.8左右较适合整体先进再燃脱硝;SR=0~0.6范围内时,RFP=25%的先进再燃的脱硝效率最高,SR=0.8~1.2范围内时,RFP=15%的先进再燃的脱硝效率最高;再燃燃料与氮还原剂的投入量存在一个最优配比值,T1=1250℃,T2=900℃条件下,RFP=20%,NSR=1时,先进再燃的脱硝效率最高,RFP=10%,NSR=1.5时,先进再燃的脱硝效率最高;先进再燃的T1最佳值为1100℃;再燃段出口中NO、NH3、CH4、CO、HCN是影响先进再燃脱硝效率的主要气体成分,研究表明,CH4、CO、HCN三种气体均对先进再燃脱硝反应有促进作用,其中,CH4和HCN对先进再燃的影响最大,而CO的影响相对较小。
     然后本文整合已有的再燃和SNCR反应机理,应用Chemkin软件建立化学动力学模型,模拟煤粉先进再燃同相反应过程,将试验结果与模拟结果进行对比,验证整合机理的正确性与可用性。最后通过对煤粉先进再燃的生成率分析,研究了重要基元反应、重要反应物等对脱硝效率的影响,并通过归一化的生成率系数描述了脱硝反应的进行过程,绘制先进再燃反应脱硝路径,并与已有的再燃反应、SNCR反应脱硝路径进行比较。结果表明:先进再燃脱硝反应是以氨基为主导、再燃燃料起重要作用的还原反应,三种脱硝过程中起作用的物质、重要的中间产物、重要的活性基团等都发生了变化,但NH2是三种过程中共同的重要中间产物,OH是三种反应中共同的重要活性基团。
Nitrogen oxide (NOx) from coal-fired boiler is one of the major pollutants in the atmosphere. With the gradual increase of environmental requirements, coal-fired power station flue gas denitration is imminent that low-cost and efficient denitration technology is in urgent need. Advanced reburning technology which is the combination of reburning and SNCR technology has important technical superiority and an economic advantage, and it is expected that China will adopt as a mainstream technology to control the NOx emissions from coal-fired power stations.
     First, by conducting experiments on pulverized coal reburning in a Two-staged Drop Tube Reactor, SNCR and advanced pulverized coal reburning NO reduction, a study was carried out on the effects of the stoichiometric ratio of reburn zone(SR), reburning fule proportion(RFP), reburning zone temperature(T1),NH3/NO molar ratio(NSR) and the residence time(τ) on advanced pulverized coal reburning. Afterwards, analysis was completed on the effects of reburning zone exit conditions of the reaction system on the downstream NOx reduction reaction.
     The results showed that: considering as a whole, it is more suitable for advanced reburning NO reduction total when SR=0.8 or so; when SR=0~0.6, the advanced reburning NO reduction efficiency of RFP=25% is the highest; when SR=0.8~1.2, advanced reburning NO reduction efficiency of RFP=15% is the highest. There is an optimal ratio value on reburning fuel and reductant inputs of nitrogen, under the circumstance that T1=1250℃, T2=900℃, when RFP=20%, NSR=1, the efficiency of advanced reburning NO reduction is the highest; when RFP=10%, NSR=1.5, the efficiency of advanced reburning NO reduction is the highest; the best value for T1of advanced reburning is 1100℃; NO, NH3, CH4, CO , HCN of reburning section exports are the main gas component which have effect on advanced reburning NO reduction efficiency. The research showed that, CH4, CO and HCN all help to promote NO reduction in advanced reburning process. Among the three kinds of gases, CH4 and HCN have the greatest impact on advanced reburning while the impact of CO is relatively insignificant.
     In this paper, the existing reburning and SNCR reaction mechanism are integrated and we employ the Chemkin software to build chemical kinetics model and to simulate the same phase reaction process of advanced pulverized coal reburning. The test results and simulation results were compared to verify the accuracy and availability of integrated mechanism. Finally, the impacts of important elementary reactions and important reactants on NO reduction are studied by rate of production analysis and the NO reduction processes are described by the normalized rate of production. NO reduction paths of advanced reburning reactions are given and compared with the existing NO reduction paths of reburning, SNCR reaction. The results showed that: advanced reburning NO reduction reaction is amidogen-oriented and reburning fuel plays an important role in the reduction reaction. In the three NO reduction reactions, the work substances, the important intermediate products and the important active groups all make some changes, while NH2 is a common important intermediate products, and the OH is an common important active groups in the three processes.
引文
1阎维平.洁净煤发电技术[M].北京:中国电力出版社, 2002, 1-2
    2韩才元,徐明厚,周怀春,等.煤粉燃烧[M].北京:科学出版社, 2001, 1-3
    3卢平,徐生荣,祝秀明.再燃烧条件下煤粉热解过程中C、H、N释放特性[J].热能动力工程, 2005, 20 (3):284-287
    4毛健雄,毛健全,赵树民,等.煤的清洁燃烧[M].北京:科学出版社, 1998
    5曾汉才,姚斌,程俊峰,王湘江.关于我国大型锅炉排放评价及其排放标准修订的建议[J].锅炉制造, 2001, 50(4):1-4
    6国家环境保护局.火电厂大气污染物排放标准(GB13223-2003)[S]. 2003
    7朱江涛,王晓晖,田正斌,等. SNCR脱硝技术在大型煤粉炉中应用探讨[J].能源研究与信息, 2006, 22 (1):18-21
    8 Donghee Han, M G Mungal, V.M.Zamansky, T.J.Tyson, et al. Prediction of NOx control by basic and advanced gas reburning using the two-stage lagrangian model[J]. Combustion and flame, 1999, 119:483-493
    9 Waseem A. Nazeer, Robert E. Jackson, Jacob A. et al. Detailed measurements in a pulverized coal flame with natural gas reburning[J]. Fuel, 1999, 78:689-699
    10吴双应,李友荣,卢啸风,等.再燃烧技术原理及其影响因素分析[J].冶金能源, 2002, 21(2):24-30
    11钟秦.选择性非催化还原法脱除NOx的实验研究[J].南京理工大学学报, 2000, 24(1):68-71
    12涂建华,应春华,戴豪波.火电厂脱硝技术与工程应用简述[J].浙江节能, 2003, (4):45-47
    13 M Tayyeb Javeda, Naseem Irfana, B M Gibbs. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction [J]. Journal of Environmental Management, 2007, 83(3):251-289
    14 Lodder P, Lefers J B. Effect of natural gas, C2H6 and CO on the homogeneous gas phase reduction of NOx by NH3 [J]. The Chemical Engineering Journal, 1985, 30(3):161-167
    15 Wang Z, Zhou J, Zhang y et al. Experiment and mechanism investigation on advanced reburning for NOx reduction: Influence of CO and temperature[J]. Journal of Zhejiang University Science, 2005, 6B(3):187-194
    16 Thomas E B, Chen W Y, Thomas W L et al. interaction of fuel nitrogen with nitric oxide during reburning with coal [J]. combustion and flame, 1994, 98(4): 391-401
    17 Chen W Y, Ma L. effect of heterogeneous mechanism during reburning of nitrogenoxide[J]. SAICHE Journal, 1996, 42(7):1968-1975
    18 Liu H, Hampartsoumian E, Gibbs B M. Evaluation of the Optimal Fuel Characteristics for Efficient NO Reduction by Coal Reburning[J]. Fuel, 1997, 76(11):985-993
    19钟北京,施卫伟,傅维标.煤粉再燃过程中NO异相还原机理的重要性[J].燃烧科学与技术, 2002, 8(1):6-8
    20 Zamansky V M, Lissianski V V, Maly PM et al. Reduction of Sodium Species in thePromoted SNCR process[J]. Combustion and Flame,1999,117:821-831
    21 Lee S, park K, Park J et al. Characterstics of reducing NO using urea and alkaline additives [J]. Combustion and Flame, 2005, 141:200-203
    22 Party, M. and Engel, G., Formation of HCN by the action of nitric oxide on methane at atmospheric pressure. 1. General conditions of formation. Compt. Rend., 1950, 231, 1302-1304
    23 Drummond, I. J., Shock induced reactions of methane with nitrous and nitric oxides. Bull. Chem. Soc. Japan, 1969, 42, 285
    24 Wendt J O L, Sternling C V and Matavich M A 1973 Int. Symp. On Combustion (Pittsburgh, PA, 1973) pp 897-904
    25 Chen S L, Core J A, Heap M P, Kramlich J C, McCarthy J M and Pershing D W 1988
    22nd Int. Symp. on Combustion (Pittsburgh, PA, 1988) pp 1135
    26 Folsom, B. A., Payne, R., Moyeda, D., Vladimir Zamansky and Golden, J., Advanced reburning with new process enhancements, in EPRI/EPA 1995 Joint Symposium on stationary Combustion NOx Control, Kansas City, MO, May 19(1995)
    27 Smoot, L. D., Hill, S. C. and Xu, H.. NOx control through reburning, Progress in Energy and Combustion Science, 1998, 24(5), pp:385-408
    28 Zamansky, V. M., Peter M. Maly and W. Randall Seeker, Second generation advanced reburning, Energy and Environmental Research Corporation, 18 Mason, Irvine, CA 92718
    29 Mereb, B. J. and Wendt, J. O. L., Reburning mechanisms in a pulverized coal combustor, in Twenty-Third Symposium (International) on Combustion. The Combustion Institute, Pittsburgh, PA, 1990. pp:1273-1279
    30 Zamansky V M, Maly P M, Ho Letal. Second Generation Advanced Reburning for High Efficiency NOx Control Phase I[P]. Final Report, DOE Contract No. DE-AC22-95PC95251, 1999
    31 Zamansky V M, Maly P M, Ho L et al. Second generation advanced reburning for high efficiency NOx control Phase I Final Report [R]. 1997 July 31, DOE Contract No. DE-AC22-95PC95251
    32 Folsom BAE, DA, Moyeda DK, et al. Advanced Gas Reburning Demonstration and Commercial Gas Reburning System Upgrade. Annual International Pittsburgh CoalConference. 1996:11~14 27~30
    33 Folsom BAS, Todd M Latham, Chris E, et al. Field Experience with Advanced Gas Reburning for NOx Emissions Control. American Power Conference. 1998
    34 Zamansky V M, Ho L, Maly P M, et al. Reburning promoted by nitrogen-and sodium-containing compounds[C]. Symposium (International) on Combustion, 1996, 26(2):2075-2082
    35 Hampartsoumian E, Folayan O O, Nimmo W, et al. Optimisation of NOx reduction in advanced coal reburning systems and the effect of coal type[J]. Fuel, 2003, 82(4):373-384
    36 Zamansky VM. Second Generation Advanced Reburning for High Efficiency NOx Control. in DOE Report NO.DE-AC22-95PC95251.1997
    37 Mansky VM, Maly PM, Seeker. Advanced Reburning Methods for High Efficiency NOx Control. 1998:U.S.Patent 5,756,059
    38 Maly P M, Zamansky V M, Ho L, et al. Alternative fuel reburning[J]. Fuel, 1999, 78(3):327-334
    39 Tree D, Clark A. Advanced reburning measurements of temperature and species in a pulverized coal flame[J]. Fuel, 2000, (79)1687-1695
    40 Peter M M, Vladimir M Z, Loc H, et al. Alternative fuel reburning[J]. 1999, 78:327-334
    41 Xiaohai Han, Xiaolin Wei, Uwe Schnell, et al. Detailed Modeling of Hybrid reburn/SNCR Process for NOx Reduction in Coal-fired Furnaces. Combustion and Flame. 2003, 132:374~386
    42 H Xu, LD Smoot. Computational Model for NOx Reduction by Advanced Reburning. Energy and Fuels. 1999, 13:411~420
    43 Xu H. Modeling of Nitrogen Oxides Control through Advanced Reburning, in Department of chemical engineering. Brigham Young University doctor thesis. 1999:15~17 32~34
    44 Greul UL. Experimental Study of Combustion Engineering for NOx Abatement Methods in Pulverized Coal Combustion. DI Verlag GmbH. 1998
    45 Miller, J. A. and Bowman, C. T., Mechanism and modeling of nitrogen chemistry in combustion.Prog. Energy Combust. Sci. 1989, 15, 287-338
    46 http://www.me.berkeley.edu/gri-mech/overview.html
    47 Dagaut, P., Cathonnet, M., Rouan, J. P., Foulatier, R., Quilgars, A., Boettner, J. C., Gaillard, F., James, A., J Phys E:Instrum 1985;19:207
    48 Dagaut, P., Lecomte, F., Chevailler, S., Cathonnet, M. Experimental and kinetic modeling of nitric oxide reduction by acetylene in an atmospheric pressure jet-stirred reactor, Fuel, 1999, 78(11):1245-1252
    49 Dagaut, P., Lecomte, F., Chevailler, S., Cathonnet, M. The reduction of NO byethylene in a jet-stirred reactor at 1 atm:experimental and kinetic modeling, Combustion and Flame, 1999, 119(4):494-504
    50 Dagaut, P., Luche, J. and Cathonnet, M. Experimental and kinetic modeling of the reduction of NO by propene at 1 atm, Combustion and Flame, 2000, 121(4):651-661
    51 Dagaut, P., Luche, J. and Cathonnet, M. Reduction of NO by n-butane in a JSR: Experiments and kinetic modeling, Energy & Fuels, 2000, 14:712-719
    52 Dagaut, P., Luche, J. and Cathonnet, M. The kinetics of C1 to C4 Hydrocarbons/NO interactions in relation with reburning, Proceedings of the Combustion Institute, 2000, 28, pp:2459-2465
    53 Dagaut, P., Luche, J. and Cathonnet, M. Reduction of NO by propane in a JSR at 1 atm:experimental and kinetic modeling, Fuel, 2001, 80, pp:979-986
    54 Dagaut, P.and Luche, J. Experiments and kinetic modeling study of NO-reburning by gases from biomass pyrolysis in a JSR, Energy & Fuels, 2003, 17:608-613
    55 Miller, J. A. and Bowman, C. T. Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust Sci, 1989, 15(4):287-338
    56 Alzueta, M.U., Rojel, H., Kristensen, P. G., Glarborg, P. and Kim Dam-Johansen. Laboratory study of the CO/NH3/NO/O2 system:Implications for hybrid reburn/SNCR strategies, Energy & Fuels, 1997, 11:716-723
    57 Alzueta, M. U., Glarborg, P. and Kim Dam-Johansen, Low temperature interactions between hydrocarbons and nitric oxide:An experimental study. Combustion and Flame, 1997, 109(1-2):25-36
    58 Alzueta, M. U., Bilbao, R., Millera, A., Oliva, M. and Ibanez, J. C., Interactions between Nitric oxide and urea under flow reactor conditions. Energy & Fuels, 1998, 12:1001-1007
    59 Alzueta, M. U., Bilbao, R. and Finestra, M. Methanol oxidation and its interaction with nitric oxide. Energy & Fuels, 2001, 15:724-729
    60 Alzueta, M. U., and Hernandez, J. M. Ethanol oxidation and its interaction with nitric oxide. Energy & Fuels, 2002,16:166-171
    61 Alzueta, M. U., Borruey, M, Callejas, A. Millera, A. and Bilbao, R. An experimental and modeling study of the oxidation of acetylene in a flow reactor, Combust. Flame(2007), doi:10.1016/j.combustflame.2007.10.011
    62沈伯雄,孙幸福.影响先进再燃区脱硝效率的因素分析[J].煤炭转化, 2004, 27(4):47-50
    63沈伯雄,孙幸福.天然气先进再燃区脱硝效率影响因素的实验与模拟研究[J].中国电机工程学报, 2005, 25(5):146-149, 163
    64高攀,路春美,甄天雷,等.高级再燃气体脱硝特性的研究[J].燃料化学学报, 2007, 35(5):632-636
    65高攀,路春美,韩奎华,等.天然气/液化气先进再燃脱硝特性研究[J].煤炭学报,2007, 32(11):1191-1195
    66 AL Meyerson, RF Taylor, BG Faunce. Ignition Limits and Products of the clames of Propane-nitrogen Dioxide Mixtures. Sixth Symposium (International) on Combustion. Pittsburgh, PA: The Combustion Institute. 1957:154~163
    67 Reed. Process of the Disposal of Nitrogen Dioxide. US Patent 1274637. John Zink Company. 1969
    68 LJ Drummond. Shock Induced Reactions of Methane with Nitrous and Nitric Oxide. Bull. Chem. Soc. Japan. 1969,42:285~289
    69 JOL Wendt, CV Sterling, MA Matovich. Reduction of Sulfur Trioxide and Nitrogen Oxides by Secondary Fuel Injection. Fourteenth Symposium (International) on Combustion. Pittsburgh, PA: The Combustion Institute. 1973:897~904
    70王志强.地下气化煤气再燃还原NOx的研究.哈尔滨工业大学博士学位论文. 2007
    71谢达依著,宁宝林译.火焰测量.冶金工业出版社, 1980
    72 Dieter S, Kai E. Wolfgang l. Modeling of NOx reduction by reburning[J]. Chem Eng Technol, 1998, 2(15):412-415
    73 Rafael Bibao, Angela Millera, Maria U.Alzueta and Lina Prada, Evalution of the use of different hydrocarbon fuels for gas reburning[J]. Fuel, 1997, 76(14/15):1401-1407
    74徐华东,罗永浩,王恩禄.再燃烧技术及其在我国的应用前景[J].动力工程, 2001, 21(4):1320-1323
    75曹庆喜.气体添加剂对选择性非催化还原脱硝反应过程影响的研究.哈尔滨工业大学博士学位论文. 2009:9, 50-53
    76齐永琴,李文.义马煤的流化床热解脱硫研究[J].中国矿业大学学报, 2003, 32(2):128~131
    77 Wenli D, Dam-Johanson K, Ostergaard K. The influence of additives on selective non-catalytic reduction of nitric oxide with NH3 [M]. Beijing:ACHEMASIA,1989
    78 Maria U Alzueta, Hanne R?jel, Per G Kristensen, et al. Laboratory Study of the CO/NH3/NO/O2 System:Implications for Hybrid Reburn/SNCR Strategies [J]. Energy & Fuels,, 1997, 11:716~723
    79 Robin M A I, Price H J, Squires R T. Tailoring NH3 based SNCR for installation on power plants boilers [C] Joint EPA/EPRI Symposium on Stationary Combustion NOx Control, Springfield, VA, USA, 1991:99– 118
    80 ?. Skreiberg, P. Kilpinen, P. Glarborg, Ammonia chemistry below 1400K under fuel-rich conditions in a flow reactor, Combust. Flame 136 (4) (2004), pp. 501-518
    81 P.Glarborg, M.U. Alzueta, K.Dam-johansen, J.A. Miller, Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor, Combust. Flame 115 (1-2) (1998), pp.1-27
    82刘栗,邱朋华,吴少华.煤热解挥发分还原NO的反应过程分析[J].工程热物理学报, 2010, 31(2):331-334

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700