用户名: 密码: 验证码:
自制串联流化床系统中生物质制氢及双固定床中粗生物油制氢的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是人类生存和社会经济可持续发展的重要物质基础。随着能源需求和环境保护的压力迅速增长,利用可再生的生物质能受到人们极大的关注。氢气是目前最理想的高热值清洁能源之一,生物质以其资源丰富、环境友好、可再生等优点而成为一种很有前途的氢源。生物质制氢尚处于研发阶段,提高氢气产率、降低制氢成本以及减少催化剂失活等是生物质制氢研发过程中尚需解决的关键问题。本论文针对上述生物质制氢仍存在的问题,提出一种以生物质为原料制取氢气的新方法以及一种以生物质快速热裂解油为原料制取氢气的新方法。本论文研究内容如下:
     1.串联流化床装置系统中以生物质为原料制取氢气
     实验室在以前相关工作的基础上,独立研制出用于生物质制氢的串联流化床装置系统。该系统主要由四部分组成,即上游生物质热裂解流化床系统,中间产物收集和分析系统,下游有机物蒸汽催化重整流化床系统以及尾气分析与净化系统。利用该系统进行生物质制氢的过程中,高温水蒸气作为整个反应系统的载气以及下游重整流化床的反应物。生物质首先进入热裂解流化床进行热裂解反应,生成的有机物蒸汽在不经过冷凝和保温的条件下直接进入重整流化床进行水蒸气重整反应和水煤气变换反应生成富氢气体。
     实验研究了上游生物质裂解温度(Tp)和气相滞留时间(τ)对各种裂解产物(生物油,裂解气和生物质焦炭)的产率和的影响以及Tp对各种产物性质的影响,并研究了下游有机物蒸汽重整温度(Tr),水蒸气/有机物碳(S/C)摩尔比率对有机物蒸汽制氢性能的影响。结果表明,在Tp = 430 ~ 630 oC的温度范围内,生物油产率随温度的升高先升高后降低。裂解气产率随温度的升高而升高,生物质焦炭的趋势则与之相反。气相滞留时间对各种裂解产物产率的影响不显著。在Tp = 480 oC,τ= 0.62 s的生物质裂解条件下,可以得到最高的生物油产率(45.1%)。同时,在研究的范围内,尾端氢气产率随Tr和S/C的升高而增加。利用该串联流化床装置系统,氢气产率可达79.1 g H2/kg dry-biomass,产物气的主要组成为H2 (68.4%),CO2 (25.8%), CO (7.2%), CH4 (0.1%)等。通过生物质焦炭的气化,可进一步提高氢气产率。
     2.双固定床系统中以生物质快速热裂解油为原料制取氢气
     以粗生物油为原料进行高效产氢的过程在双固定系统中进行。双固定系统主要包括上游的生物油气化床和下游的催化重整床。实验室近期发明的电催化重整(ECR)制氢方法被应用于下游的NiCuZn-Al2O3催化剂重整床以提高氢产率。实验分别研究了粗生物油的单独气化过程和集成的气化-电催化重整过程中的整体产氢性能。结果表明,单独气化过程的产氢率很低(< 30 %);集成的气化-电催化重整过程中,在气化温度为800 oC,生物油进量为14.4 g/h,S/C为10.6,空速为7810 h-1,重整温度为700 oC以及电流为3.0 A的条件下,氢气产率可达81.4 %,生物油的碳转化率为87.6 %。最终的产物气主要包括H2 (~ 73 vol%)和CO2 (~ 26 vol%),以及极少含量的CO和CH4 (< 1 vol%)。此外,通过XRD、XPS、TGA等表征手段对催化剂的结构性能以及在反应前后和有无电流的情况下的变化进行了初步分析。与生物油在催化剂上的直接水蒸气重整制氢相比,集成的气化-电催化重整制氢方法极大降低了催化剂的失活速率,并显著提高了氢产率。
Energy is an important material basis for the survival and continuable development of the human beings. With the rapid increases in the energy demand and the pressure from the environment protection, the application of renewable bio-energy is receiving great attention globally. Hydrogen is recognized as a clean fuel and energy carrier with very high heating value and will play an important role in the future global economy. Biomass is rich and friendly environmentally renewable resource, hydrogen production from biomass is one of the most promising options and it is still in development. The improvement of hydrogen yield and energy efficiency as well as the decrease in hydrogen production cost and the catalyst deactivation, etc., are the key problems existing in the investigation of hydrogen production from biomass. In view of these problems, novel approaches for hydrogen production from biomass and biomas pyrolysis oil (i.e., bio-oil) were proposed in our research. The main content of present thesis was focused on the items as follows.
     1. Hydrogen Production from Biomass through the Integrative Tandem Fluidized Beds Reaction System
     Basing on the previous work, an integrative tandem fluidized beds reaction system for hydrogen production from biomas was firstly designed and manufactured. This reaction system was mainly made of four main units, i.e., the unit of the biomass pyrolysis, the unit of the intermediate products’collection and sampling, the unit of the steam reforming of bio-oil vapor, and the unit of final product purification and measuring. In this work, hydrogen was produced from biomass by a three stepwise process. In the first step, the biomass was converted into the oxygenated organic compounds vapor (i.e., the bio-oil vapor) by the fast pyrolysis of biomass in the pyrolysis reactor with a capacity of 2-20 kg moisture-free biomass/h. In the second step, the bio-oil vapor without cooling was then fed into the reforming rector and converted the oxygenated organic compounds into the rich-hydrogen mixture gas (i.e, H2, CO2, CO, etc.) via the catalytic steam reforming of the bio-oil vapor. Finally, the mixture gas was purified to produce pure hydrogen with a lower impurity by removing ash and CO2, etc. The most important parameters, such as biomass pyrolysis temperature (Tp), vapor residence time (τ) in the pyrolysis reactor and reforming temperature (Tr) in the reforming reactor, steam/bio-oil carbon molar ratio (S/C) was investigated. The results indicated that, in the pyrolysis temperature range of 430 ~ 630 oC, the bio-oil yield initially increased with temperature and then decreased. The yield of pyrolysis gas increased with temperature, accompanied by the opposite trend of the char yield. The effect of vapor residence time on the products’yields was not so obvious. Meanwhile, in the reforming reactor, the final hydrogen yield increased with incresing the reforming temperature and S/C. A hydrogen yield of 79.1 gH2/kg moisture-free biomass was obtained under the conditions of Tp = 480 oC,τ= 0.62 s and Tr =700 oC, S/C= 4.8, GHSV= 47,000 h-1 with the product gas’s composition of H2 (68.4%),CO2 (25.8%), CO (7.2%) and CH4 (0.1%). The hydrogen yield can be further improved through the steam gasification of the biomass char.
     2. Hydrogen Production from Crude Bio-oil through the Integrative Dual Fixed Beds Reaction System
     High efficient production of hydrogen from the crude bio-oil was performed in the gasification-reforming dual beds. A recently developed electrochemical catalytic reforming method was applied in the downstream reforming bed using NiCuZnAl catalyst. Production of hydrogen from the crude bio-oil through both the single gasification and integrative gasification-reforming processes was investigated. Results showed that the hydrogen yield in the single gasification was very low (< 30 %).The maximum hydrogen yield of 81.4 % with carbon conversion of 87.6 % was obtained through the integrative process under the conditions of Tg = 800 oC, f (bio-oil fed rate) = 14.4 g/h, S/C = 10.6, GHSV = 7810 h-1 and Tr = 700 oC. Hydrogen is a major product (~ 73 vol%) together with by-products of CO2 (~ 26 vol%) as well as very low content of CO (< 1 %) and a trace amount of CH4 through the integrative route. In particular, the deactivation of the catalyst was significantly depressed by using the integrative gasification-reforming method, comparing to the direct reforming of the crude bio-oil. XRD, XPS and TGA, etc., were employed to characterize the catalysts before and after reaction.
引文
[1]江亿,我国的建筑能源消耗现状,“2005年绿色节能建筑与可持续能源技术”研讨会,2005.
    [2]世界能源理事会,阎季惠译,新的可再生能源末来发展指南[M]。北京:海洋出版社,1998:314-379.
    [3] Tillman D A, Prinzing D E .Fundamental bioful characteristics impacting coal-biomass cofiring. EPRI Technical Report (TR-104982),1995:2-19.
    [4]阴秀丽,吴创之,徐冰燕等,生物质气化对减少CO2排放的作用.太阳能学报,2000,21(1)40-44.
    [5]闫有枉.世纪绿色可再生能源———生物质.贵州化工, 2003,28( 5) : 1- 3.
    [6]张无敌,董锦艳,宋洪川,等.生物质能利用.太阳能, 2000, 1 : 6- 7.
    [7] BOYLE, GODFREY. Renewable Energy, Power for a Sustainable Future[M]. Oxford: Oxford University Press, 1996:1- 480.
    [8]刘荣厚.生物质快速热裂解制取生物油技术的研究进展.沈阳农业大学学报, 2007- 02, 38(1): 3-7.
    [9]郭艳.生物质快速裂解液化技术的研究进展.技术进展,2001(8):13-17.
    [10]陶朴良,张无敌等.沼气发酵综合利用的现状与发展趋势[J].能源工程,2001。(1):9-11.
    [11]袁传敏,颜涌捷,曹建勤.生物质制氢气的研究.煤炭转化.2002(25)1:18-22.
    [12]蒋剑春.生物质能源应用研究现状与发展前景.林产化学与工业,2002,22(2):75-80.
    [13] A review on gasification of biomass. V. Kirubakaran, V. Sivaramakrishnan, R. Nalini, T. Sekar, M. Premalatha, P. Subramanian Renewable and Sustainable Energy Reviews 13 (2009) 179–186.
    [14] McKendry, P. Bioresour. Technol. 2002, 83, 55–63.
    [15]Bridgwater AV, Peacocke GVC. Fast pyrolysis processes for biomass. Renewable Sustainable Energy ReV 2000;4:1–73.
    [16] Vaidya PD, Rodrigues AE. Insight into steam reforming of ethanol to producehydrogen for fuel cells. Chem Eng J 2006;117:3949.
    [17] Haryanto A, Fernando S, Murali N, Adhikari S. Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review. Energy Fuels 2005;19:2098–2106.
    [18] Rapagna` , S.; Jand, N.; Foscolo, P. U. Int. J. Hydrogen Energy 1998, 23, 551-557.
    [19] Rapagna` , S.; Provendier, H.; Petit, C.; Kiennemann, A.; Foscolo, P. U. Biomass Bioenergy 2002, 22, 377-388.
    [20] Turn, S.; Kinoshita, C.; Zhang, Z.; Ishimura, D.; Zhou, J. Int. J. Hydrogen Energy 1998, 23, 641-648.
    [21] Garc?′a, L.; Salvador, M. L.; Arauzo, J.; Bilbao, R. Energy Fuels 1999, 13, 851-859.
    [22] Garc?′a, L.; Benedicto, A.; Romeo, E.; Salvador, M. L.; Arauzo, J.; Bilbao, R. Energy Fuels 2002, 16, 1222-1230.
    [23] Antal, M. J., Jr.; Allen, S. G.; Schulman, D.; Xu, X.; Divilio, R. J. Ind. Eng. Chem. Res. 2000, 39, 4040-4053.
    [24] Watanabe, M.; Inomata, H.; Arai, K. Biomass Bioenergy 2002, 22, 405-410.
    [25] Asadullah, M.; Ito, S.; Kunimori, K.; Yamada, M.; Tomishige, K. J. Catal. 2002, 208, 255-259.
    [26] Matsumura, Y.; Minowa, T. Int. J. Hydrogen Energy 2004, 29, 701-707.
    [27] Garc?′a, L.; Salvador, M. L.; Arauzo, J.; Bilbao, R. J. Anal. Appl. Pyrol. 2001, 58-59, 491-501.
    [28] Dermirbasü, A. Energy Convers. Manage. 2002, 43, 897-909.
    [29] Chen, G.; Andries, J.; Spliethoff, H. Energy Convers. Manage. 2003, 44, 2289-2296.
    [30] Wang D, Czernik S, MontanéD, Mann M, Chornet E. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions. Ind Eng Chem Res 1997;36:1507?18.
    [31] Wang, D.; Czernik, S.; Chornet, E. Energy Fuels 1998, 12, 19- 24.
    [32] Marquevich M, Czernik S, Chornet E, MontanéD. Hydrogen frombiomass: steam reforming of model compounds of fast-pyrolysis oil. Energy Fuels 1999;13:1160?6.
    [33] Marquevich, M.; Coll, R.; Montane′, D. Ind. Eng. Chem. Res. 2000, 39, 2140-2147.
    [34] Marquevich, M.; Medina, F.; Montane′, D. Catal. Commun. 2001, 2, 119-124.
    [35] Garc?′a, L.; French, R.; Czernik; S.; Chornet, E. Appl. Catal., A 2000, 201, 225-239.
    [36] Czernik, S.; French, R.; Feik, C.; Chornet, E. Ind. Eng. Chem. Res. 2002, 41, 4209-4215.
    [37] Fatsikostas, A.; Kondarides, D. I.; Verykios, X. E. Catal. Today 2002, 75, 145-155.
    [38] Altanfini, C. R.; Wander, P. R.; Barreto, R. M. Energy ConVers. Manage. 2003, 44, 2763–2777.
    [39] Air-Steam Gasification of Biomass in a Fluidized Bed under Simulated Autothermal and Adiabatic Conditions. Manuel Campoy, Alberto Go′mez-Barea, Angel L. Villanueva, and Pedro Ollero. Ind. Eng. Chem. Res. 2008, 47, 5957–5965.
    [40]吕鹏梅,熊祖鸿,王铁军.生物质流化床气化制取富氢燃气的研究.太阳能学报,2003,24(6):758-764.
    [41]李冬敏,陈洪章,李佐虎.生物制氢技术的研究进展.生物技术通报,2003,4:4
    [42] J. Arauzo, D. Radlein, J. Piskorz, D.S. Scott, Energy Fuels 8 (1994) 1192.
    [43] J. Arauzo, D. Radlein, J. Piskorz, D.S. Scott, Ind. Eng. Chem. Res. 36 (1997) 67.
    [44] L. Garcia, M.L. Salvador, R. Bilbao, J. Arauzo, Energy Fuels 12 (1998) 139.
    [45] E Chornet, S Czernik, D Wang, C Gregoire, M Mann. Proceedings of 1994 US DOE hydrogen program review. NREL/CP-470-6431;CONF-9404194: pp 407.
    [46] E Chornet, D Wang, S Montane, S Czemik, D Johnson, M Mann. Proceedings of the 1995 U.S. DOE Hydrogen Program Review, Coral Gables, Florida, NREL/CP-430-20036 707
    [47] E Chomet, D Wang, D Montane, S Czernik. Proceedings of the 2nd EU-Canada Workshop on Thermal Biomass Processing 246.
    [48] E Chomet, M Mann, D Wang, D Montane, S. Czemik, D. Johnson. EPA-600/R-96-072 4-116 to 4-127.
    [49] S Czemik, R Franch, C Feik, E Chomet. Process in thermochemical biomass conversion. NREL/CP-570-30535, 2000, 130.
    [50]董治国,王述洋,生物质快速裂解液化技术的研究.林业劳动安全,2004, 17 (1): 12-14.
    [51] S. Czernik, and A. V. Bridgwater. Overview of Applications of Biomass Fast Pyrolysis Oil. Energy & Fuels 2004, 18, 590-598.
    [52] Serdar Yaman. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Conversion and Management 45 (2004) 651–671.
    [53] Dinesh Mohan, Charles U. Pittman, Jr., and Philip H. Steele. Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review. Energy & Fuels 2006, 20, 848-889.
    [54] Knight J.A. Pyrolysis of pine sawdust.Thermal Uses and Properties of Carbohydrates and Lignins.New York:Academic Press,1976,159—173.
    [55]Scott DS,Piskorz J. The Continuous–Ash Pyrolysis of Biomass.Can J Chem Eng,1984(62):404-411.
    [56]廖艳芳,王树荣,洪军,等.生物质热裂解制取液体燃料的实验研究[J].能源工程, 2002, 93): 1- 3.
    [57] Piskorz, J.; Majerski, P.; Radlein, D.; Scott, D. S.; Bridgwater, A.V. J. Anal. Appl. Pyrol. 1998, 46, 15–29.
    [58] Scott, D. S.; Majerski, P.; Piskorz, J.; Radlein, D. J. Anal. Appl. Pyrolysis 1999, 51, 23-37.
    [59]LIU RONGHOU, NIU WEISHENG, YU XIAOFANG, et el. Effect of biomass fast pyrolysis key parameters on yields and distributionsof products.农业工程学报, 2003, 19(5): 204- 207.
    [60] Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion & Management, 2000, 41:633-646.
    [61] Orfao J, Antunes F, Figueiredo J, et al. Pyrolysis kinetics of lignocellulose materials: three independent reaction model. Fuel, 1999, 78:349-358.
    [62]刘乃安,范维澄,林其钊,等.一种新的生物质热分解失重动力学模型.科学通报, 2001,46(10):876-880.
    [63]孔晓英,武书彬,唐爱民,等.农林废弃物热解液化机理及其影响因素.造纸科学与技术,2001, 20(5):22-26.
    [64]Milne TA, Agblevor F, Davis M, Deutch S, Johnson D. A review of the chemical composition of fast-pyrolysis oils. In: Bridgwater AV, Boocock DGB, editors. Proceedings of Developments in Thermochemical Conversion of Biomass. London: Blackie Academic & Professional; 1997. p. 409?24.
    [65]彭卫民,吴庆余.生物质热解燃料的生产.新能源,2000,22(11):39—44.
    [66]Maggi R,Delmon B.Comparison between slow and flash pyrolysis oils from biomass.Fuel,1994,73(5):671-676.
    [67]C. Rioche, S. Kulkarni, F.C. Meunier, J.P. Breen and R. Burch, Applied Catalysis B-Environmental, 61 (2005) 130.
    [68] Kechagiopoulos PN, Voutetakis SS, Lemonidou AA, Vasalos IA. Hydrogen production via steam reforming of the aqueous phase of bio-oil in a fixed bed reactor. Energy Fuels 2006;20:2155–63.
    [69] Kechagiopoulos PN, Voutetakis SS, Lemonidou AA, Vasalos IA. Hydrogen production via reforming of the aqueous phase of bio-oil over Ni/Olivine catalysts in a spouted bed reactor. Ind Eng Chem Res 2009;48:1400–8.
    [70] Wang ZX, Pan Y, Dong T, Zhu XF, Kan T, Yuan LX, et al. Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O--based catalysts. Appl Catal A Gen 2007;320:24–34.
    [71] Iordanidisa AA, Kechagiopoulos PN, Voutetakisa SS, Lemonidoub AA, Vasalosb IA. Autothermal sorptionenhanced steam reforming of bio-oil/biogas mixture and energy generation by fuel cells: concept analysis and process simulation. Int J Hydrogen Energy 2006;31:1058–65.
    [72] Fatsikostas AN, Kondarides DI, Verykios XE. Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catal Today 2002;75:145?55.
    [73] Basagiannis AC, Verykios XE. Catalytic steam reforming of acetic acid for hydrogen production. Int J Hydrogen Energy 2007;32:3343–55.
    [74] Vagia EC, Lemonidou AA. Thermodynamic analysis of hydrogen production via steam reforming of selected components of aqueous bio-oil fraction. Int J Hydrogen Energy 2007;32:212–23.
    [75] Vagia EC, Lemonidou AA. Thermodynamic analysis of hydrogen production via autothermal steam reforming of selected components of aqueous bio-oil fraction. Int J Hydrogen Energy 2008;33:2489–2500.
    [76] Iulianelli A, Longo T, Basile A. CO-free hydrogen production by steam reforming of acetic acid carried out in a Pd–Ag membrane reactor: the effect of co-current and counter-current mode. Int J Hydrogen Energy 2008;33:4091–6.
    [77] Kechagiopoulos PN, Voutetakis SS. Lemonidou A A, Vasalos IA. Sustainable hydrogen production via reforming of ethylene glycol using a novel spouted bed reactor. Catalysis Today 2007;127:246–55.
    [78] Dong T, Wang ZX, Yuan LX, Torimoto Y, Sadakata M, Li QX. Hydrogen production by steam reforming of ethanol on potassium-doped 12CaO·7Al2O3 catalyst. Catal Lett 2007;119:29–39.
    [79] Resini C, Arrighi L, Delgado MCH, Vargas MAL, Alemany LJ, Riani P, et al. Production of hydrogen by steam reforming of C3 organics over Pd–Cu/γ-Al2O3 catalyst. Int J Hydrogen Energy 2006;31:13–9.
    [80] Adhikari S, Fernando S, Gwaltney SR, Filip To SD, Bricka RM, Steele PH, et al. A thermodynamic analysis of hydrogen production by steam reforming of glycerol. Int J Hydrogen Energy 2007;32:2875–80.
    [81] Ni M, Leung DYC, Leung MKH. A review on reforming bio-ethanol for hydrogen production. Int J Hydrogen Energy 2007;32:3238–47.
    [82] Davidian T, Guilhaume N, Iojoiu E, Provendier H, Mirodatos C. Hydrogen production from crude pyrolysis oil by a sequential catalytic process. Appl Catal B Environ 2007;73:116–27.
    [83] Panigrahi S, Chaudhari ST, Bakhshi NN, Dalai AK. Production of synthesis gas/high-btu gaseous fuel from pyrolysis of biomass-derived oil. Energy Fuels 2002;16:1392–7.
    [84] Panigrahi S, Dalai AK, Chaudhari ST, Bakhshi NN. Synthesis gas productionfrom steam gasification of biomass-derived oil. Energy Fuels 2003;17:637–42.
    [85] Zheng JL, Zhu XF, Guo QX, Zhu QS. Thermal conversion of rice husks and sawdust to liquid fuel. Waste Management 2006; 26:1430–5.
    [86] Zhu XF. China, Pat. 00241135.0, 2001.
    [87] Zhu XF, Zheng JL, Guo QX, Zhu QS. Pyrolysis of rice husk and sawdust for liquid fuel. J Environ Sci 2006;18:392–6.
    [88] Wang ZX, Dong T, Yuan LX, Kan T, Zhu XF, Torimoto Y, et al. Characteristics of bio-oil–syngas and its utilization in Fischer–Tropsch synthesis. Energy Fuels 2007;21:2421–32.
    [89] Yuan LX, Chen YQ, Song CF, Ye TQ, Guo QX, Zhu QS, Torimoto Y, Li QX. Electrochemical catalytic reforming of oxygenated-organic compounds: a highly efficient method for production of hydrogen from bio-oil. Chem Commun 2008:5215–7.
    [90] Yuan LX, Ye TQ, Gong FY, Guo QX, Torimoto Y, Yamamoto M, Li QX. Hydrogen production from the current-enhanced reforming and decomposition of ethanol. Energy Fuels 2009;23:3103–12.
    [91] Chen YQ, Yuan LX, Ye TQ, Qiu SB, Zhu XF, Torimoto Y, Sadakata M, Li QX. Effects of current upon hydrogen production from electrochemical catalytic reforming of acetic acid. Int J Hydrogen Energy 2009;34:1760–70.
    [1]王建华.化学反应工程.成都科技大学出版社,1992,3.
    [2] Ayse E. Pu¨tu¨n , Esin Apaydin, Ersan Pu¨tu¨n. Bio-oil production from pyrolysis and steam pyrolysis of soybean-cake: product yields and composition. Energy 27 (2002) 703–713.
    [3] Ersan Pu¨tu¨n, Funda Ates, Ayse Eren Pu¨tu¨n. Catalytic pyrolysis of biomass in inert and steam atmospheres. Fuel 87 (2008) 815–824.
    [4] Ersan Pu¨tu¨n, Basak Burcu Uzunb, Ays-e Eren Pu¨tu¨n. Production of bio-fuels from cottonseed cake by catalytic pyrolysis under steam atmosphere. Biomass and Bioenergy 30 (2006) 592–598.
    [5] Ayse E. Pu¨tu¨n, Esin Apayd?n, Ersan Pu¨tu¨n. Rice straw as a bio-oil source via pyrolysis and steam pyrolysis. Energy 29 (2004) 2171–2180.
    [6] A.V. Bridgwater, G.V.C. Peacocke. Renewable and Sustainable Energy Reviews, 2000,4:1-73.
    [7] Stefan Czernik , Richard French , Calvin Feik , and Esteban Chornet. Ind.Eng.Chem.Res., 2002, 41:4209-4215.
    [8]流态化. [英]J.F.戴维森,D.哈里森.科学出版社,1981: 1-175.
    [1] Pütün, E.; Ates, F.; Pütün, A. E. Fuel 2008, 87, 815–824.
    [2] Pütün, A. E.; Apaydin, E.; Pütün, E. Energy 2004, 29, 2171–2180.
    [3] Li, S. G.; Xu, S. P.; Liu S. Q.; Yang, C.; Lu, Q. H. Fuel Process. Technol. 2004, 85, 1201–1211.
    [4] Mohan, D.; Jr. Pittman, C. U.; Steele, P. H. Energy Fuels 2006, 20, 848-889.
    [5] Boroson, M. L.; Howard, J. B.; Longwell, J. P.; Peters, W. A. AIChE Journal 1989, 35, 120–128.
    [6] Luo, Z. Y.; Wang, S. R.; Liao, Y. F.; Zhou, J. S.; Gu, Y. L.; Cen K. F. Biomass and Bioenergy 2004, 26, 455– 462.
    [7] Li, J. F.; Yan, R.; Xiao, B.; Wang, X. L.; Yang H. P. Energy Fuels 2007, 21, 2398–2407.
    [8] Kechagiopoulos, P. N.; Voutetakis, S. S.; Lemonidou, A. A.; Vasalos, I. A. Energy Fuels 2006, 20, 2155–2163.
    [9] Zhaoxiang Wang, Yue Pan, Ting Dong, Xifeng Zhu, Tao Kan, Lixia Yuan,Youshifumi Torimoto, Masayoshi Sadakata, Quanxin Li. Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O--based catalysts. APPLIED CATALYSIS A-GENERAL, 2007(320), 24-34.
    [10] S. T. Chaudhari, A. K. Dalai, N. N. Bakhshi. Production of Hydrogen and/or Syngas (H2 +CO) via Steam Gasification of Biomass-Derived Chars. Energy & Fuels 2003, 17, 1062-1067.
    [11] S. T. Chaudhari, S. K. Bej, N. N. Bakhshi, and A. K. Dalai. Steam Gasification of Biomass-Derived Char for theProduction of Carbon Monoxide-Rich Synthesis Gas. Energy & Fuels 2001, 15, 736-742.
    [1] Zhu XiFeng, Zheng JL, Guo QingXiang, Zhu QingShi. Journal of Environment Sciences-China, 2006, 18 (2) 392.
    [2] Zhu XF, Venderbosch R,Fuel, 2005, 84, 1007.
    [3] Marquevich, M.; Czernik, S.; Chornet, E.; Montane, D. Energy & Fuels ,1999, 13, 1160.
    [4] Li JF, Yan R, Xiao B, Wang XL, Yang HP. Influence of temperature on the formation of oil from pyrolyzing palm oil wastes in a fixed bed reactor. Energy Fuels 2007;21:2398–2407.
    [5] Zhaoxiang Wang, Yue Pan, Ting Dong, Xifeng Zhu, Tao Kan, Lixia Yuan,Youshifumi Torimoto, Masayoshi Sadakata, Quanxin Li. Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O--based catalysts. APPLIED CATALYSIS A-GENERAL, 2007(320), 24-34.
    [6] Yuan LX, Ye TQ, Gong FY, Guo QX, Torimoto Y, Yamamoto M, Li QX. Hydrogen production from the current-enhanced reforming and decomposition of ethanol. Energy Fuels 2009;23:3103–12.
    [7] Chen YQ, Yuan LX, Ye TQ, Qiu SB, Zhu XF, Torimoto Y, Sadakata M, Li QX. Effects of current upon hydrogen production from electrochemical catalytic reforming of acetic acid. Int J Hydrogen Energy 2009;34:1760–70.
    [8] Domine ME, Iojoiu EE, Davidian T, Guilhaume N, Mirodatos C. Hydrogen production from biomass-derived oil over monolithic Pt- and Rh-based catalysts using steam reforming and sequential cracking processes. Catalysis Today 2008; 133–135:565–73.
    [9] Panigrahi S, Chaudhari ST, Bakhshi NN, Dalai AK. Production of synthesis gas/high-btu gaseous fuel from pyrolysis of biomass-derived oil. Energy Fuels 2002;16:1392–7.
    [10] Panigrahi S, Dalai AK, Chaudhari ST, Bakhshi NN. Synthesis gas production from steam gasification of biomass-derived oil. Energy Fuels 2003;17:637–42.
    [11] Van Rossum G, Kersten SRA, Van Swaaij WPM. Catalytic and noncatalytic gasification of pyrolysis oil. Ind Eng Chem Res 2007;46:3959–67.
    [12] Rioche C, Kulkarni S, Meunier FC, Breen JP, Burch R. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts. Appl Catal B Environ 2005;61:130–9.
    [1] Levenspiel O. What will come after petroleum. Ind Eng Chem Res 2005;44:5073.
    [2] Caballero JA, Font R, Marcilla A. Pyrolysis of Kraft lignin: yields and correlations. J Anal Appl Pyrol 1997;39:161–83.
    [3] Panigrahi S, Dalai AK, Chaudhari ST, Bakhshi NN. Synthesis gas production from steam gasification of biomass-derived oil. Energy Fuels 2003;17:637–42.
    [4] Panigrahi S, Dalai AK, Chaudhari ST, Bakhshi NN. Synthesis gas production from steam gasification of biomass-derived oil. Energy Fuels 2003;17:637–42.
    [5] Yuan LX, Chen YQ, Song CF, Ye TQ, Guo QX, Zhu QS, Torimoto Y, Li QX. Electrochemical catalytic reforming of oxygenated-organic compounds: a highly efficient method for production of hydrogen from bio-oil. Chem Commun 2008:5215–7.
    [6] Yuan LX, Ye TQ, Gong FY, Guo QX, Torimoto Y, Yamamoto M, Li QX. Hydrogen production from the current-enhanced reforming and decomposition of ethanol. Energy Fuels 2009;23:3103–12.
    [7] Velu S, Suzuki K, Vijayaraj M, Barman S, Gopinath CS. In situ XPS investigations of Cu1-xNixZnAl-mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol. Appl Catal B Environ 2005;55:287–99.
    [8] Srinivas D, Satyanarayana CVV, Potdar HS, Ratnasamy P. Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol. Appl Catal A Gen 2003;246:323–34.
    [9] Rives V, Kannan S. Layered double hydroxides with the hydrotalcite-type structure containing Cu2+, Ni2+ and Al3+. J Mater Chem 2000;10:489-95.
    [10] Velu S, Suzuki K, Kapoor MP, Tomura S, Ohashi F, Osaki T. Effect of Sn incorporation on the thermal transformation and reducibility of M(II)Al-layered double hydroxides [M(II) = Ni or Co]. Chem Mater 2000;12:719-30.
    [11] Velu S, Suzuki K, Vijayaraj M, Barman S, Gopinath CS. In situ XPS investigations of Cu1-xNixZnAl-mixed metal oxide catalysts used in theoxidative steam reforming of bio-ethanol. Appl Catal B Environ 2005;55:287–99.
    [12] Barroso MN, Gomez MF, Arrua LA, Abello MC. Hydrogen production by ethanol reforming over NiZnAl catalysts. Appl Catal A Gen 2006;304:116–23.
    [13] Zhang LF, Liu J, Li W, Guo CL, Zhang JL. Ethanol steam reforming over Ni-Cu/Al2O3-MyOz (M = Si, La, Mg and Zn) catalysts. Journal of Natural Gas Chemistry 2009;18:55–65.
    [14] Zhaoxiang Wang, Yue Pan, Ting Dong, Xifeng Zhu, Tao Kan, Lixia Yuan,Youshifumi Torimoto, Masayoshi Sadakata, Quanxin Li. Production of hydrogen from catalytic steam reforming of bio-oil using C12A7-O--based catalysts. APPLIED CATALYSIS A-GENERAL, 2007(320), 24-34.
    [15] Maiya PS, Anderson TJ, Mieville RL, Dusek JT, Picciolo JJ, Balachandran U. Maximizing H2 production by combined partial oxidation of CH4 and water gas shift reaction. Appl Catal A Gen 2000;196:65–72.
    [16] Chen YQ, Yuan LX, Ye TQ, Qiu SB, Zhu XF, Torimoto Y, Sadakata M, Li QX. Effects of current upon hydrogen production from electrochemical catalytic reforming of acetic acid. Int J Hydrogen Energy 2009;34:1760–70.
    [17] Somorjai GA. Introduction to surface chemistry and catalysis. New York: Wiley-Interscience; 1994. p. 362.
    [18] Jamsak W, Assabumrungrat S, Laosiripojana N, Suwanwarangkul R, Charojrochkul S, Croiset E. Performance of ethanol-fuelled solid oxide fuel cells: Proton and oxygen ion conductors. Chem Eng J 2007;133:187–94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700