用户名: 密码: 验证码:
生物质发电气化过程建模及优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
开发“绿色能源”已成为当今世界上工业化国家开源节流、化害为利和保护环境的重要手段。以煤为主的能源结构是造成环境污染严重的主要原因,化石燃料的不可再生性和使用带来的环境污染,使生物质能在可再生能源结构中占据了重要地位。生物质气化发电技术是生物质能利用的一种重要形式,其中生物质气化过程又是气化发电技术的关键,虽然目前国内外已有一些这方面的研究报道,但是针对有关生物质气化过程特性进行建模及优化的研究则非常缺乏。因此,对于生物质气化发电系统中气化过程的建模和优化研究,具有重要的理论意义和实用价值,以及环境、社会效益和经济效益。
     本文结合我国能源经济发展现状及生物质能特点,在对生物质发电热解气化过程机理分析基础上,对生物质气化过程建模和优化、焦油脱除过程建模和优化,以及生物质压缩成型过程建模和优化等作了做了系统的研究探讨。分别建立了气化过程的热化学平衡模型、最小二乘支持向量机模型、人工神经网络模型和循环流化床气化动力学模型,并依据实验数据对所建立的各模型做了仿真验证。结果表明,本文所建立的四种气化过程数学模型对实际生物质气化过程具有较好的模拟效果,能够有效地反映实际气化过程的特性。
     基于建立的模型,提出了一种气化过程的多目标优化目标函数,主要目标是解决当气化过程的主要性能指标(如燃气有效组分含量、燃气热值、气化效率、产气率等)达到最大值时,气化过程可调整参数应当满足的条件,即控制参数的优化目标值。通过寻优计算,获得了当气化指标达到最大值时控制参数的优化目标值,验证了该目标函数的合理性和有效性。
     以生物质稻秆为对象,采用石灰石作为催化剂对稻秆热解焦油进行催化裂解,由最小二乘支持向量机模型建立了生物质稻秆气化焦油催化裂解脱除过程的模型,并用遗传算法对模型参数进行了优化,得到了最佳的催化裂解温度和气相停留时间,使得焦油催化裂解率达到最高;以生物质木屑作为分析对象,对其进行热裂解脱焦,并依据最小二乘曲线拟合方法建立了生物质木屑气化焦油热裂解脱除过程的模型,用遗传算法对模型参数进行了优化,得到了最佳的热裂解温度和当量比,使得焦油含量达到最小。
     基于最小二乘支持向量机建立了生物质锯末压缩成型过程的模型,并拟合了成型过程优化目标函数,依据实验数据对模型和优化目标函数进行了验证。结果表明,该模型能够较好的模拟成型过程特性,通过寻优计算,得到了当锯末压缩成型过程主要指标为最大值时可调参数的优化值。
     本文的主要创新点有:
     1.建立了四种生物质气化过程模型,即热化学平衡模型、最小二乘支持向量机模型、人工神经网络模型、循环流化床气化动力学模型;
     2.提出一种生物质气化过程多目标优化目标函数;
     3.建立了生物质气化(催化裂解、热裂解)焦油脱除过程模型;
     4.提出了生物质气化焦油脱除过程优化目标函数;
     5.建立了一种生物质压缩成型过程模型;
     6.提出了一种生物质压缩成型过程的优化目标函数。
The development of "green energy" has become an important means in the industrialized countries of the world of cuting expenditure ,poducting new energy,converting crap to utilization and protecting the environment. The main reason for causing serious environmental pollution is the coal-dominated energy structure.The fossil fuels are non-renewable and the use of them can bring about environmental pollution,so the biomass occupied an important position in the renewable energy structure.Biomass gasification & power generation is an important form of biomass energy application,and biomass gasification process is the key of the technology of gasificaton & power generation.Although there have been some reports in this area at home and aboard,it is still very lack of the studies on modeling the characters of biomass gasification process and optimizing the parameters.So it has important theoretical and practical value, as well as environmental, social and economic benefits to study the modeling and optimization of the parameters about gasification process in the biomass gasification power generation system.
     Combined with the economic development of the energy situation and based on the analysis of the mechanism of the biomass power generation pyrolysis gasification process,we had made a systematical study to explore the modeling and optimization of the biomass gasification process, tar removal process,as well as the biomass solidification process.We also respectively establish a gasification process of the thermo-chemical balance mechanism model,the least squares support vector machine model,the artificial neural network model and dynamic model of circulating fluidized bed gasification,and do a simulation based on the experimental data on the models which we had already established.The results show that four of mathematical models of gasification process established in this paper has a good simulation effect, they also can effectively reflect the actual characteristics of the gasification process and verify the effectiveness and feasibility of the model.
     Based on the model, A multi-objective optimization objective function of gasification process had been made.The main objective is to solve that when the main performances and indexes of the gasification process (such as the gas content of effective components, gas calorific value, the efficiency of gasification, gas production rate, etc.) achieve the best value, the conditons of adjustable parameters should be meet to the gasification process,that is the optimization target of control parameters. Through the verification based on the optimization calculation,we have achieved the optimization target values when the gasification indexes reach the optimum,and we validated the the legitimacy and effectiveness of the objective function.
     Targeting the biomass rice stalk,we use linestone as catalyst and cracking catalyse the tar which was pyrolysised from the target.We build the rice straw biomass gasification tar removal catalytic cracking process model by the least squares support vector machine model and optimize the model parameters through genetic algorithm.We also has gotten the best catalytic cracking temperature and gas residence time, making the highest rate of catalytic cracking tar.We made wood biomass as a target analysis so that we can thermally crack tar,and we can use genetic algorithms to optimize the model parameters that is based on the wood biomass gasification pyrolysis tar removal process model through the least-squares fitting method,then we got the best pyrolysis temperature and equivalence ratio,so that it is possible to make the tar content reach the minianum.
     Based on the least squares support vector machine model,we had established the model of the biomass sawdust Compression molding process and fit the Optimization Parameters objective function of the molding process . On the basis of the experimental data ,we verified the model and the Optimization objective function, the results showed that the model can better simulated the molding process properties. After the Optimization Calculation,we obtained the max target value of the adjustable control Parameters when the main Indicators of the sawdust molding process reached the best value.
     The main Innovation points of the article is as following:
     1.Four biomass gasification process model had been established,such as the thermo-chemical balance mechanism model,the least squares support vector machine model,the artificial neural network model and the dynamic model of circulating fluidized bed gasification.
     2.A multi-objective optimization objective function of the biomass gasification process had been made.
     3.The tar removal model of the biomass gasification process by Catalytic Cracking or Pyrolysis Cracking had been established.
     4.The tar removal Optimization objective function of the biomass gasification process had been made.
     5.The model of the biomass Compression molding process had been established.
     6.The Optimization objective function of the biomass Compression molding process had been made.
引文
[1]肖波,周英彪等.生物质能循环经济技术[M].北京:化学工业出版社,2006.
    [2]中华人民共和国国家发展和改革委员会.可再生能源中长期发展规划[EB/OL].(2007-09-28)[2008-02-28]. http://www.ndrc.gov.cn/fzgh/ghwb/115zxgh/P020070930491947302047.pdf.
    [3]吴创之,罗增凡,阴秀丽.农业生物质气化发电技术应用分析[J].新能源,1995,17(5):5-11.
    [4]何方,王华,金会心.生物质液化制取液体燃料和化学品.能源工程,1999,5:14-17.
    [5] A.V.Bridgewater,G.V.C.Peacocke.Fast pyrolysis for biomass.Renewable & Sustainable Energy Reviews,2000,4:1-173.
    [6]王革华.生物质能开发利用.中国农村能源年鉴[M].北京:中国能源出版社,1998:34-35.
    [7]李文,李保庆.生物质的热解与液体产物的精制.新能源,1997,19(10):22-28.
    [8]赵黛青,可再生能源与我国电力的可持续发展[J].科学对社会的影响,2004,3:4-7.
    [9] Bing Guo,Dingkai Ki,etc.Simulation of biomass gasification whith a hybrid neural network model[J].Bioresource Technology 76(2001):77-83.
    [10]王智微,唐松涛等,流化床中生物质热解气化的模型研究[J].燃料化学学报,2002,30(4):342-346.
    [11]阴秀丽,固体生物质循环流化床气化炉数学模型的研究[硕士学位论文],广州:中国科学院广州能源研究所,1993.
    [12]蒋受宝,蒋绍坚等.生物质气化计算模型[J].中南林学院学报.2006,26(2):68-71.
    [13] Ruggiero M, Manfrida G. An equilibrium model for biomass gasification processes. Renew Energy 1999;16:1106-1109.
    [14] Panote Wilaipon,Chun Che Fung. A study on a corn cob gasifier enginegenerator for elctricity generation in Northern Thailand using the equilibrium model.Member.IEEE.
    [15] Andres Melgar,Juan F.Perez,Hannes Laget,Alf–onso Horillo.Thermo-chemical equilibrium modeling of a gasifying process[J].Energy Conversion and Management.2006,48:59-67
    [16] Hao Liu, Bernard M. Gibbs,Modeling NH3 and HCN emissions from biomass circulating fluidized bed gasi- fiers[J],Fuel,2003(82):1591-1604.
    [17] Samy S .Sadaka .Two phase biomass air-steam gasific -ation model for fluidized bed reactor[J].Biomass and bioenergy.2002,(22):439-487.
    [18] Chang CC, Fan LT, Walawender WP. Dynamic modeling of biomassgasification in a fluidized bed,AIChE Symp Ser 1984, p234.
    [19] Bilodeau J-F, Therien N, Proulx P, Czernik S, Chornet E. A mathematical model of fluidized bed biomass gasification. Cananian Journal of Chemical Engineering,1993(71):549-557.
    [20] Jennen T, Hiller R, Koneke D, Weinspach P-M. Modeling of gasification of woodin a circulating fluidized bed, Chemical Engineering Technology, 1999(22)10:822-826.
    [21] Raveendran K,Genesh A,Khilar K C.Pyrolysis characteristics of biomass and biomass components,Fuel,1996,75(8):987-998.
    [22]李大中韩璞张瑞祥,生物质气化发电过程建模与优化[J].节能技术,2006.5:409-414.
    [23]李大中张瑞祥,生物质发电气化过程的机理建模分析[J].可再生能源,2007.3:39-42.
    [24]王炎昌.生物质气化中焦油的催化转化[硕士学位论文].郑州:郑州大学,2005.
    [25]刘荣厚,等.生物质热化学转换技术[M].北京:化学工业出版社,2004.
    [26]孙云娟,等.生物质气化过程中焦油的去除方法综述[J].生物质化学工程,2006,40(2):31-35.
    [27]刘亚军.生物质焦油催化裂解实验及中热值气化技术应用研究[硕士学位论文].浙江:浙江大学,2004.
    [28]杨海平,等.生物质气化中焦油的转化方法[J].煤气与动力,2004,40(3):122-126.
    [29]骆仲泱,等.生物质热解焦油的热裂解与催化裂解[J].高校化学工程学报,2004,18(2):162-167.
    [30]周劲松等.生物质焦油的催化裂解研究[J].燃料化学学报,2003,31(2):144-147.
    [31]郭秀兰等,生物质焦油裂解催化剂研究进展[J] ,可再生能源,2004,1:1-5.
    [32] SESHADIR K S, SHAMSI A. Effects of temperature, pressure and carrier gas on the cracking of coal tar over a char-dolomite mixture and calcined dolomite a fixed-bed reactor [J]. Industrial and Engineering Chemistry Research, 1998,(37):3830-3837.
    [33]张晓东,等.焦油催化裂化催化剂积碳失活的实验研究[J].燃料化学报,2004,32(5):542-546.
    [34]周志军,等.气化过程中焦油催化裂解的影响因素研究[J].热力发电,2005,11:26-29.
    [35] M P Aznar, er al. Commercial steam reforming catalysts to improve biomass gasification with steam-oxygen mixture 2 catalytic tar remolve[J]. Ind eng Chem Res, 1998,37(1):2668-2680
    [36] Baker E G, Mudge L K, Brown M D. Steam gasification of biomass with nickel secondary catalysts[J]. Industrial & Engineering Chemistry Research, 1987, 26(1):1335-1339
    [37] J Arauzo,D Redlein,et a1.Catalytic pyrogasification of biomass Evaluation of modified nickel catalysts[J].Ind Eng Chem Res,1997,(36):67-69.
    [38] D N Bangala,N Abatzogolou,C Esteban-Steam reforming of naphthale on Ni—Cr/Ale 03 catalysts doped with MgO,Ti()2 and Os[J].AICHE,1998,(44):927-930.
    [39]胡冠等.生物质催化气化制氢催化剂研究进展[J].林产化学与工业,2005,25(增):162-164.
    [40]张瑞芹,等.生物质焦油的催化脱除及气化气制氢[J].郑州大学学报(理学版),2003,35(4):71-73.
    [41] T YAMAGUCHI,. K YAMASAKI, O YOSHIDA, et al. Deactivation and regeneration of catalyst for steam gasification of wood to methanol synthesis gas[J]. Ind Eng Chem Res Dev,1986,(25):239-231.
    [42]王铁军,等.生物质焦油裂解催化剂制备及其催化裂解性能[J].煤炭转化,2003,26(1):89-93.
    [43] Encinar J M, Beltran F J, Ramiro A, Pyrolysis/gasification of agricultural residues by carbon dioxide in the precence of different additives:influence of variables[J]. Fuel Process Tech.1998(55):219-233.
    [44] R T HALLEN, L T SEALOCK, R CUELLO, et al.Research in thermochemical biomass conbersion[C]. London: Elsevier Applied Science, 1998.
    [45] L K MUDGE, E G BAKER, D H MITCHELI, et al. Use of catalysts in biomass gasification[J]. Solar Energy Eng.1985,(107):89-90.
    [46]张晓东等.催化裂化生物质焦油构成变化[J].燃料化学学报,2005,33(5):582-585.
    [47] MALANIN V I,MAKSIMOV A A ,KVASHNIN.Method and apparatus for briquetting of lignin—containing materials:RU 2191799[P].2002.
    [48] MASON M,DUMBLETON,FREDERICK J.Production of compact biomass fuel:WO 2003087276[P].2003
    [49] REED,THOMAS B.Combined biomass pyrolysis and densification for manufacture of shaped biomass derived solid fuels:US 2003 221363[P],2003.
    [50] WERNER,HANS.Process and apparatus for production of fuels from compressed biomass and use of the fuels:EP 1443096 [P].2004.
    [51] DEMIRBAS,AYHAN,SAHIN-DEMIRBA. Briquetting properties of biomass waste materials[J]. Energy Sources,2004,26(1):83~91.
    [52] Demirbas A. Physical properties of briquettes from waste paper and wheatstraw mixtures[J]. Energy Conversion and Management,1999,40:437-445.
    [53] Zhang Bailiang,Li Baoqian,Zhao Chaohui. Test and Research on HPB-ⅠBiomass Briquetting Machine [J]. Transactions of the CCAE, 1999,15(3):133-136.
    [54]周成.生物质固化成型燃料的开发与应用[J].现代化农业,2005 18(12):16-17.
    [55]蒋恩臣,何光设.稻壳、锯末成型燃料低温热解特性试验研究[J].农业工程学报,2007,23(1):188-191.
    [56] O’Dogherry M J. A review of the mechanical behavior of straw when compressed to high Densities[J].J Agric Engng RES, 1989,44:241-265.
    [57] Lindley J A, Vossoughi M.Physical properties of biomass briquets[J]. Transactions of the ASAE,1989,32(2):361-366.
    [58]张晓东.生物质热解气化及热解焦油催化裂解机理研究[博士学位论文].杭州:浙江大学,2003
    [59]刘石彩,蒋剑春.生物质能源转化技术与应用(Ⅱ)[J].生物质化学工程,2007 41(4):59-63.
    [60]郭康权等.植物材料压缩成型时粒子的变形及结合形式[J].农业工程学报,1995,11(1):139-143
    [61] Husain Z,Zainac Z,Abdullah Z.Briquetting of palm fibre and shell from the processing of Palm nuts to palm oil[J].Biomass and bioenergy,2002,22:505-509.
    [62] P.M.Lv,Z.H.Xiong.An experimental study on biomass air-steam gasification in a fluidized bed[J].bioresource techology,2004,95:95-101.
    [63]盛奎川,Ahmed El-Behhery.棉杆切碎及压缩成型的试验研究[J].农业工程学报,1999,15(4):221-225.
    [64]何晓峰,雷廷宙,李在峰,等.生物质颗粒燃料冷成型技术试验研究[J].太阳能学报,2006(9):10-12.
    [65]殷春根.非线形理论在洁净煤技术研究中的应用[博士学位论文].杭州:浙江大学,1998.
    [66]阮伟.优化配煤专家系统的研究以及电厂优化配煤数学模型的建立[博士学位论文].杭州:浙江大学,2000.
    [67]蒋剑春.生物质热化学转化行为特性和工程化研究[博士学位论文].北京:中国林业科学院,2003.
    [68]杨勇平,董长青,张俊娇编著.生物质发电技术[M].北京:中国水利水电出版社2007.
    [69]刘建禹,翟国勋,陈荣耀.生物质燃料直接燃烧过程特性的分析[J].东北农业大学学报.2001,32(3):290-294.
    [70]姚向君,田宜水编著.生物质能资源清洁转化利用技术[M].北京:化学工业出版社,2005.
    [71]刘荣厚,牛卫生,张大雷编著.生物质能化学转换技术[M].北京:化学工业出版社,2005.
    [72]马隆龙,吴创之编著.生物质气化技术及其应用[M].北京:化学工业出版社,2003.
    [73] B.M.Jenkins,L.L.Baxter,T.R.Miles.Combustion properties of biomass.Fuel processing technology,1998(54):17-46.
    [74]张明,袁益超,刘聿拯.生物质直接燃烧技术的发展研究[J].能源研究与信息,2005,21(1):15-20.
    [75]张殿军,陈之航.生物质燃烧技术的应用[J].能源研究与信息,1999,15(3):16-21.
    [76]宋鸿伟.生物质气化技术及BIGCC系统性能的研究[硕士毕业论文].北京:华北电力大学2004.1
    [77]朱锡锋.生物质热解原理与技术[M].中国科学技术大学出版社, 2006.
    [78]米铁,唐汝江等.生物质气化技术及其研究进展[J].化工装备技术,2005,26(2):51~56.
    [79]马隆龙.中国生物质发电发展未来展望.中国可再生能源研究发展战略国际研讨会.北京:中国生物质能中心,2005.
    [80] P.Raman, W.P. Walawender, L.T.Fan et al. mathematical model for the fluidized bed gasification of biomass materials.Application to Feedlot Manure[J]. Ind.Eng.Chem.Process Des.Dev.,1981, 20:686-692.
    [81] Daniele Fiaschi and Marco Michelini. A two-phase one-dimensional biomass gasification kinetics model. Biomass and Bioenergy, 2001,21 (2):121-132.
    [82] Samy S. Sadaka, A. E. Ghaly and M. A. Sabbah.Two phase biomass air-steam gasification model for fluidized bed reactors: Part I-model development.Biomass and Bioenergy, Volume 22, Issue 6. June 2002. Pages 439-462.
    [83] Samy S. Sadaka, A. E. Ghaly and M. A. Sabbah.Two phase biomass air-steam gasification model for fluidized bed reactors: Part II-model sensitivity.Biomass and Bioenergy, 2002.22(6):463-477.
    [84] Samy S. Sadaka, A. E. Ghaly and M. A. Sabbah. Two-phase biomass air-steam gasification model for fluidized bed reactors: Part III-model validation.Biomass and Bioenergy, 2002, 22(6): 479-487.
    [85]阴秀丽,徐冰燕,吴创之等.生物质循环流化床气化炉的数学模型研究[J].太阳能学报,1996,17(1).
    [86] Li,X. T.et al. Biomass gasification in a circulating fluidized bed [J]. Biomass and Bioenergy,2004,26,(2),171~193.
    [87]蒋受宝,蒋绍坚,张灿.生物质气化计算平衡模型[J].中南林学院学报,2006,26(2):68-71.
    [88] Bing Guo,Dingkai Li,Congming Cheng et al.Simulation of biomass gasification with a hybrid neural network model.Bioresource Technology, 2001,76(2):77-83.
    [89]陈平.生物质流化床气化机理与工业应用研究[博士学位论文].合肥:中国科学技术大学,2003.
    [90]唐松涛,李定凯,吕子安,沈幼庭.硫化床中生物质热解过程的混沌神经网络模拟[J].化工学报,2003,54(6):783-789.
    [91]唐松涛,王智微,李定凯,沈幼庭.流化床中混沌传递现象研究[J].热力发电,2003,32(11):41-44.
    [92]王俊国.基于神经网络的建模方法与控制策略研究[博士学位论文].武汉:华中科技大学,2004.
    [93]朱清时,阎立峰等.生物质洁净能源[M].北京:化学工业出版社,2002.
    [94]金克新,赵传钧等.化工热力学[M].天津:天津大学出版社,1990.
    [95] H.B.拉夫罗夫.燃料燃烧及气化的物理化学基础[M].北京:科学出版社,1964.
    [96]刘镜远,车维新.合成气工艺技术与设计手册[M].北京:化学工业出,2002.
    [97]曾丹苓,敖越等.工程热力学[M].北京:高等教育出版社,2002.
    [98]吴创之,吴正舜等.1MW木粉气化发电系统的运行测试研究[J].太阳能学报.2003,24(4): 531-534
    [99] Carlos R.Altafini,Paulo R.Wander,etc. Prediction of the working parameters of a wood waste gasifier through an equilibrium model.Energy Conversion and Management.2003,44:2763-2777
    [100]郭兵,唐松涛等.生物质气化过程的混合神经网络模拟[J].太阳能学报.2001,22(1):78-82
    [101]钟秦,俞马宏.化工数值计算[M].北京:化学工业出版社,2003
    [102] GIL J,CORELLA J,AZNAR M P,et al.Biomass gasification in atmospheric and bubbling fluidized bed:Effect of the type of gasifying agent on the product distribution .Biomass and Bioenergy,1999,17(5):389-403
    [103]郑舜鹏,吴创之,阴秀丽等.1MW循环流化床谷壳气化发电装置的运行及经济性分析[J].太阳能学报,2000,21(2):140-144
    [104]王方,周义德等.影响生物质气化指标的主要因素分析[J].河南科学,2004,22(1):100-102
    [105] Suykens J. A. K., Vandewale J.. Least Squares Support Vector Machine Classifiers. Neural Processing Letters(S1370-4621), 1999, 9(3):293-300
    [106]杨延西,刘丁.基于小波变换和最小二乘支持向量的短期电力负荷预测[J].电网技术,2005,29(13):60-64
    [107]荣海娜,张葛祥,金伟东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿真学报,2006,18(11):3204-3208
    [108]谢军,吴创之,陈平等.中型流化床中的生物质气化实验研究[J],太阳能学报,2007,28(1):86-90
    [109]张加权.典型城市生活垃圾组分流化床热解气化特性及反应机理研究[硕士学位论文].杭州:浙江大学,2005.
    [110] Pelckmans,K.,Suykens,J.,van Gestel,T.,de Brabanter,J.,Lukas,L., Hamers,B.,de Moor,B., Vandewalle,J.,2003.LS-SVMlab:A MAT LAB/C toolbox for Least Squares Support Vector Machines. Http://www.esat.kuleuven.ac.be/sista/lssvmlab.
    [111]方瑞明.支持向量机理论及其应用分析[M].北京:中国电力出版社,2007.
    [112]飞思科技产品研发中心.神经网络理论与MATLAB7实现[M]电子工业出版社. 2005.
    [113]高蓬辉,成珂等.应用人工神经网络分析热泵型海水淡化系统产水特性[J].太阳能学报.2006,27(6):559-563.
    [114]范磊,张运陶等.基于Matlab的改进BP神经网络及其应用[J].西华师范大学学报, 2005,26(1):70-73.
    [115]吴正舜,吴创之等.1MW木粉气化发电系统的运行特性分析[J].太阳能学报. 2003,24(3):390-393.
    [116]吴学成,王勤辉,等.气化参数影响气流床煤气化的模型研究(Ⅰ)——模型建立及验[J].浙江大学学报(工学版), 2004,38(10):1361-1365,1386.
    [117] DAVID M. Mathematical models of the thermal decomposition of coal [J].Fuel, 1983, 62:534-539.
    [118] GOVIND R, SHAH J. Modeling and simulation of an entrained flow coal gasifier [J]. AIChE Journal, 1984, 30(1):79-92.
    [119]林竹,蒋绍坚.一种气化数学模型及木屑的高温气化试验[硕士学位论文].长沙:中南大学,2005.4.
    [120] RAKESH GOVIND. Modeling and simulation of an entrained flow coal gasifer[J].AIChE Journal.1984,30(1),79.
    [121]米铁,陈汉平.生物质半焦气化的反应动力学[J].太阳能学报,2005,26(6):766-771.
    [122] M. Baratieri *, P. Baggio, L. Fiori, M. Grigiante .Biomass as an energy source: Thermodynamic constraints on the performance of the conversion process[J]. Bioresource Technology.
    [123] G. Chen *, J. Andries, H. Spliethoff .Catalytic pyrolysis of biomass for hydrogen rich fuel gas production[j] Energy Conversion and Management 44 (2003) 2289-2296.
    [124] Dong Ho Lee, Haiping Yang , Rong Yan , David Tee Liang .Prediction of gaseous products from biomass pyrolysis through combined kinetic and thermodynamic simulations[J]. Fuel 86 (2007) 410-417.
    [125]孙康,等.宏观反应动力学及其解析方法[M].冶金工业出版社,1998年.
    [126]沈维道,郑佩芝,蒋淡安等.工程热力学[M].北京:高等教育出版社,1983.
    [127]杰西S杜利特尔著,王华宗,杨传福译.工程热力学[M].北京:冶金工业出版社,1992.
    [128] Pengmei Lv,* Jie Chang, Zuhong Xiong, Haitao Huang, Chuangzhi Wu, and Yong Chen. Biomass Air-Steam Gasification in a Fluidized Bed to Produce Hydrogen-Rich Gas[j]. Energy & Fuels 2003, 17, 677-682.
    [129] LigangWei, Shaoping Xu, Li Zhang, Changhou Liu, Hui Zhu, Shuqin Liu. Steam gasification of biomass for hydrogen-rich gas in a free-fall reactor[j].International Journal of Hydrogen Energy 32 (2007) 24-31.
    [130]王健.多目标决策-理想点法综合评价淮北市环境空气质量[J].云南环境科学, 2005,24(4): 58-59.
    [131]林锉云,董加礼.多目标优化的方法与理论[M].吉林教育出版社, 1992.
    [132] Yin Xiuli, Wu Chuangzhi, et al. Design and operation analysis on middle-size biomass gasification & power generation system. Acta Energiae Solaris Sinica.2007,21(3):307-312.
    [133]丁永生.计算智能[M].北京:科技出版社, 2004.
    [134]蔡自兴,徐光祐.人工智能及其应用[M].北京:清华大学出版社,2004.
    [135] M. Zlochin, M.Birattari, N. Meuleau, M. Dorigo. Model-based search for combinatorial optimization[R]. Technical Report TR/IRIDIA/2001-15, IRIDIA, Univerit'e Libre de Bruxelles.
    [136] C.Blum,and M.Sampels.When model bias is stronger than selection presure[C].In Proceedings of the 7th International Conference on Parallel Problem Solving from Nature(PPSN'02), lncs2439,pp.893-902.Springer Verlag,Berlin,Germany,2002.
    [137] Walter J,Gutjahr. A Graph一based Ant System and Its Convergenee. Journal of Future Generation ComPuter System. 2000,16:837-888
    [138] P.P.Grassé.La reconstruction du nid et les coordinations interindividuelles chez bellicositermes natalensis et cubitermes sp.La théorie de la stigmergie:essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 1959, 6:41-81.
    [139] Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro-Machine and Human Science, 1995: 39-43.
    [140] Kennedy J, Eberhart R. Particle swarm optimization. IEEE International Conference on Neural Networks, 1995, 4: 1942-1948.
    [141]曾建潮,介婧,崔志华.微粒群算法[M].科学出版社,2004.
    [142]金欣磊.基于PSO的多目标优化算法研究及应用[博士学位论文].杭州:浙江大学, 2006.
    [143] C A Coello A Comprehensive survey of evolutionary-based multi-objective optimization, techniques. Knowledge and Information Systems,1999,1 (3):269-308.
    [144] NU Yi-feng,SHEN Lin-cheng. Multiobjective Optimization for Multifocus Image Fusion Using MOPSO[J]. Acta Electronica Sinica,2006,34(9):1578-1583.
    [145] Millonas,M.M.Swarms,phase transition,and collective intelligence[C]. In C.G.Langton, (Eds.),Artificial life III.Addison-Wesley,MA,1994
    [146] Shi,Y.and Eberhart,R.A Modified Particle Swarm Optimizer[C],IEEE International Conference on Evolutionary Computation,Anchorage, Alaska,May 4-9,1998
    [147] Shi,Y.and Eberhart,R.C.Parameter selection in particle swarm optimization[C], Evolutionary Programming VII:Proceedings of the Seventh Annual Conference on Evolutionary Programming,New York, 1998,pp.591-600
    [148]Kennedy,J.The Behavior of Particles[M].In V.W.Porto,N.Saravanan,D.Waagen,and A.E.Eiben,editors,Evolutionary Programming VII,pages 581-590.Springer,1998.
    [149] Carlisle,A.,Dozier,G..An Off-The-Shelf PSO[C].In Proceedings of the Particle Swarm OptimizationWorkshop,2001,pages 1-6
    [150]陈蔚萍,陈迎伟等,生物质气化工艺技术应用与发展[J],河南大学学报(自然科学版),2007,37(1):35-41.
    [151]俞光明等.热解和气化过程焦油析出的影响因素分析[J].能源工程,2006,1:4-10.
    [152] S Hanson.The effect of coal particle size on pyrolysis and steam gasification[J].fuel ,2002,(81):531-537.
    [153]周仕学.内热式回转炉煤热解工艺的焦油产率与性质研究[J].煤炭转化,1998,21(2):25-28.
    [154] Narvaez I,Orio A,Aznar M P et al.Biomass Gasification with Air in an Atmospherie Bubbling Fluidized Bed:Effect of Six Operational Variables on the Quanlity of the Produced Raw Gas.Ind Eng Chem Res:1996,35:115
    [155] Seshedri K S,Shamsi A.Effect of Temperature,Pressure and Carrier Gas on the Cracking of Coal Tar over a Char-Dolomite Mixture and Calcined Dolomite in a Fixed-Bed Reactor. Ind Eng Chem Res:1998,37:3830-3837
    [156] Stiles H N,Kandiyoti R.Secondary Reaction of Flash Pyrolysis Tars Messured in a Fluidzed Bed Pyrolysis Reactor with Some Novel Design Feature.Fuel,1989,68:275-282
    [157] Tyler R J.Flash Pyrolysis of Coals Devolatilization of Bituminous Coals in a Small Fluidzed Bed Reactor .Fuels,1980,59:225
    [158] Wornat,Nelson.Effect of Ion-Exchanged Calcium on Brown Coal Tar.Energy and Fuels,1992,6:136-142
    [159] Li Chunzhu,Bartle K D,Kandiyoti R.Vacumn Pyrolysis of Maceral Concentrates in a Wire-Mesh Reactor.Fuel,1993,72:1459-1467
    [160] Unger P E,Suuberg E M.Molecular Weight Distributions of Tars Produced by Flash Pyrolysis of Coals,Fuels,1984,63:606
    [161] Suuberg E M,Unger P E ,Lilly W D.Experimental Study on Mass Transfer from Pyrolysis Coal Particles,Fuel,1985,64:956
    [162] Messenbock R C,Dugwell D R,Kandiyoti R.CO2 and Steam Gasification in High-Pressure Wire-Mesh Reactor:The Reactivity of Daw Mill Coal and Combustion Reactivity of its Chars.Fuel,1999,78:792
    [163] Unger P E,Suuberg E M.Molecular Weight Distributions of Tar Produced by Flash Pyrolysis of Coals.Fuel,1984,63:610-611
    [164] Sathe C,Pang Yanyuan,Li Chunzhu.Effect of Heating Rate and Ion-Exchangeable Cations on the Pyrolysis Yields from a Victorian Brown Coal.Energy and Fuels,1999,13:748-755
    [165] Katheklakis L E,Lu Shilin,Bartle K D et al.Effect of Freeboard Residence Time on the Molecular Distribution of Fluidized Bed Pyrolysis Tars.Fuel,1990,69:172-176
    [166] Willams P T,Braler S,Taulor D T.The Prolysis of Scrap Automative Tyres.Fuel,1990,69:1474-1481
    [167] Bruinsma O S L,Geertama R S,Bank P et al.Gas Phase Pyrolysis of Coal-Related Aromatic Compounds in a Coiled Tube Flow Reactor.Fuel,1988,67:329
    [168] Simell P A,Hepola J O,Krause A O.Effect of Gasification Gas Components on Tar and Ammonia Decomposition over Hot Gas Cleanup Catalysts.Fuel,1997,76:1117-1127
    [169]韩璞,李大中,王臻,生物质气化过程最小二乘支持向量机建模探讨[J],节能技术,2008,26(147):3-7.
    [170]封建湖等.数值分析原理[M].北京:科学出版社,2002.
    [171]阳明盛等.最优化原理、方法及求解软件[M].北京:科学出版社,2006.
    [172]黄红选等.数学规划[M].北京:清华大学出版社,2006.
    [173]苏一针.运筹学通论[M].北京:中国人民大学出版社,1985.
    [174]张晓东等.生物质热解煤气中焦油含量的影响因素[J].燃料科学与技术,2003,9(4):329-334.
    [175]王磊,吴创之等.热解焦对生物质焦油催化裂解的影响[J].太阳能学报,2006,27(5):514-518.
    [176] Simel P A,Leppaelahfi J,Bredenlerg J.Cataly~c purification oftarry fuel gas with carbonate rocks and ferrous materials[J],Fuel,1992,71(2):211-218.
    [177]赵俊成等.在管式炉中生物质热解的机理[J].山东理工大学学报(自然科学版),2004,18(2):33-36.
    [178]方梦祥等.反应条件对稻秆热解产物分布的影响[J].燃料化学学报,1998,26(2):180-184.
    [179]陈冠益等.生物质热解制煤气的动力学研究[J].太阳能学报,2003,24(3):380-385.
    [180] Fagbemi L,Khezami L,Capart R. Pyrolysis products from different biomasses:application to the thermal cracking of tar[J].A pplied Energy,2001,69:293-306.
    [181]李敏强.遗传算法的基本理论与应用[M].北京:科学出版社,2003.
    [182]盛奎川.生物质压缩成型燃料技术研究综述[J].能源工程,1996,3:8-11.
    [183] Limpiti S.Effect of moisture content and Stage of maturity on mechanical properties of wheat straw。Thai Journal of wheat straw。Thai Journal of AgricilturalScience,1980,13:277-283.
    [184] O’Dogherry M J. A review of the mechanical behavior of straw when compressed to high Densities[J].J Agric Engng Res,1989,44:241-265
    [185] Husain Z,Zainac Z,Abdullah Z.Briquetting of palm fibre and shell from the processing of Palm nuts to palm oil[J].Biomass and bioenergy,2002,22:505-509.
    [186] P.M.Lv,Z.H.Xiong.An experimental study on biomass air-steam gasification in a fluidized bed[J].bioresource techology,2004,95:95-101.
    [187]周密.生物质在流化床气化炉内定向转化过程的模型模拟研究[博士学位论文].合肥:中国科学技术大学,2007.
    [188]蒋剑春.生物质热化学行为特性和工程化研究[博士学位论文].南京:中国林业科学研究院,2003.
    [189]李永玲.新型生物质双床热解制气工艺中的关键技术研究[博士学位论文].北京:清华大学,2008.
    [190] Skalweit H . Krafte und Beansprachungen in stohpressen.4 konstructure-Kusus RKTL,Schrift 88,Berlin,1938.
    [191] Mewes E.Zum Verhalten von Pressguten in Prestopften(On the behavior of compressedmatter in pressure chambers).Landtechnische Forshung,1958.8(6): 158-164.
    [192] Sachat H O.Der Stand der forschung anf dem Gebit der Heuund Strophressen.Landtechn,1959,9(3):68-76.
    [193] Osobov VI.Theoretical principles of compressing fibrous plant materials.Thundy riskhom,1967,55:221-225.
    [194] Busse W.Das Verdichten von Halmguten mit hohen Normaldrucken(The compression of forage with high normal pressures).Fortschrittberiche der VDI zeitschriften,Verein Deutsche Ingenieure,Reihe 14(1),VDI-Verlag,Dusselderf,1996.
    [195] O’Dogherty MJ,Wheeler JA.Compression of straw to high densities in closed cylindrical dies.Journal of agriculture enginnering research,1984,29(1):61-72.
    [196] Faborode ,M O,O’Callaghan J R.Theoretical analysis of the compression of fibrous agricultural Materials.Journal of Agricultural Enginerrring Reasearch,1986,35(3):175-191.
    [197]杨明韶,李旭英,杨红曹.牧草压缩过程研究[J].农业工程学报,1996,12(1):60-64.
    [198]吕江南,红麻料片的压缩特性及压力与压缩密度的数学模型[J].农业机械学报,1998,29(2):83-86.
    [199]王波,李如萃,高丽吸等玉米秸秆的压缩特性及其压力与压缩密度的数学模型[J].农机化研究,2004,1:160-166.
    [200]樊峰鸣,张百良,李保谦等.大粒径生物质成型燃料物理特性研究[J].农业环境科学学报,2005,24(2):398-402.
    [201]韩璞,李大中,王臻.生物质气化过程最小二乘支持向量机探讨[J].节能技术,2008,1:3-7.
    [202]盛奎川,吴杰.生物质成型燃料的物理品质和成型机理的研究进展[J].农业工程学,2004,20(3):242-245.
    [203]李美华.生物质料致密成型参数的研究[硕士学位论文].北京:北京林业大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700