用户名: 密码: 验证码:
煤层逆向燃烧气化机理及工艺过程模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文将逆向燃烧气化方法应用到煤炭地下气化技术中,以期解决正向气化中后期高强度气化过程难以继续进行问题。通过研究逆向燃烧气化过程中气相流动状态、火焰的移动规律及其主要影响因素,提出了煤层正逆向联合燃烧气化工艺。利用该工艺获得与正向气化同样热值和品质的煤气,提高能源综合利用效率。基于逆向燃烧气化的过程特点,本论文利用高温气化反应炉研究了渗流通道逆向燃烧气化的特性;通过模型试验及数值模拟研究了富氧—水蒸气气化工艺煤层正逆向燃烧气化过程,并验证了此技术的可行性。研究结果表明:煤层逆向燃烧气化火焰工作面移动速度与氧气流量成正比。火焰移动速度与氧气流量的关系式可用一级阿累尼乌斯动力学方程来表达,通过调节汽氧比可以控制反应炉的气化温度,褐煤和烟煤适合的汽氧比分别为1.5:1-2:1和1.3:1-1.75:1,通过正逆向联合燃烧气化工艺延长气化时间25%,煤气中有效组分(CO+H2)含量超过60-70%,符合做合成气的要求。
The reverse combustion gasification method is applied to the underground coal gasificationprocess in order to solve the problem occurred in the late stage of forward gasification which thehigh intensity gasification process is difficult to be continued. The technology of reversecombustion gasification technique combined with forward combustion gasification is creativelyput forward through the study of reverse combustion phenomenon, gasification flame movementand its main influence factors. At the same time the coal gas of heat value and quality same asforward gasification can be obtained to improve the energy efficiency using reverse combustiongasification technique. The properties of reverse combustion in the seepage channel are studiedwith high temperature coal gasification reaction furnace based on the characteristics of reversecombustion gasification process in the thesis. The forward and reverse combustion gasificationtechnology of gasifying coal with oxygen-steam gasification agent is investigated through themodel tests and numerical simulation. The feasibility of technology was tested. The results showthat the relationship between the inject gas flow within certain limits and velocity of thegasification flame was linear during reverse combustion. And equation of flame speed andoxygen flow can be expressed first-order Arrhenius kinetics. The gasification temperature of thereaction furnace can control by adjusting the ratio of steam to oxygen. The optimal ranges ofgasifying lignite and bituminous coal were found to be1.5–2.0and1.3–1.75, respectively. Thegasification time was extended more than25%and using the reverse combustion approach. Theaverage effective content (H2and CO) of syngas was in the range of60–70%, meetingthe requirement of synthesis gas.
引文
1.朱铭,徐道一,孙文鹏等.21世纪煤炭地下气化技术发展新趋势.神华科技,2011,6(9):9~12
    2.刘宁宁,邱亮亮,敬毅.国内外煤炭地下气化技术发展现状.煤炭技术,2009,6(28):4~7
    3.柳少波,洪峰,梁杰.煤炭地下气化技术及其应用前景.天然气工业,2005,8(25):119~122
    4.梁杰.煤炭地下气化过程稳定性及控制技术.徐州:中国矿业大学出版社,2002.29~72
    5.梁杰,席建奋,孙加亮等.鄂庄薄煤层富氧地下气化模型试验.煤炭学报,2007,32(10):1032~1034
    6.梁杰,张彦春,魏传玉等.昔阳无烟煤地下气化模型试验研究.中国矿业大学学报,2006,23(1):26~29
    7.梁杰,吴美云婷,李文军等.新河烟煤地下气化模型.化工学报,2006,57(12):2948~2952
    8.康托劳维奇B B.固体燃料燃烧与气化导论.闻望译.北京:中国工业出版社,1965
    9.邬纫云.煤炭气化.徐州:中国矿业大学出版社,1985
    10. W en C Y, Chuang T Z. Entrained bed Gasification Modeling. Report submitted to DOE,Contract E2274:49~18
    11.刘学智,逢进.煤加压低温干馏的研究.煤气与热力,1990,10(2):14~21
    12.刘学智,逢进.煤加压干馏特性的研究.煤气与热力,1991,11(3):6~13
    13. Watkinson A P, Lucas J P, Lim C J. Aprediction of performance of commercial coal gasifiers.Fuel,1991(70):519~527
    14. Yang, L., Zhang, X., Liu, S.etc.. Field Test of Large Scale Hydrogen Manufacturing fromUnderground Coal Gasification (UCG) Int. J. Hydrogen Energy2008,33:1275~1285
    15. Khadse A, Qayyumi M, Mahajani S etc. Underground coal gasifcation: a new clean coalutilization technique for India. Energy,2007;32(11):2061~2071
    16. Untertage Umwandlung Von Steinkohle.世界煤炭地下气化概况.煤炭综合利用(译从),1991(2):96~97
    17. Evgeny, S.; Arvind, V. Underground Coal Gasification: A Brief Review of Current Status.Ind. Eng. Chem. Res.,2009,48(17):7865~7875
    18.拉夫洛夫H B.在地下气化煤气发生炉中管理CO、水蒸气转化反应的方法.矿大译丛,1958,5(2):36~38
    19.赵守国,杜金业,王阁.我国煤炭地下气化试验的进展与反应过程.煤气与热力,2000,20(3):212~213
    20. Bhutto A W, Bazmi A A, Zahedi G. Underground coal gasification: From fundamentals toapplications. Progress in Energy and Combustion Science,2013,39(1):189~214.
    21.徐永生.煤炭地下气化物理化学过程及影响因素的讨论.煤气与热力,1990,10(3):14~20
    22.张小可,陈鸿.用无形孔模型研究影响煤粉燃烧的因素.煤炭转化,1996,19(3):69~75
    23.项友谦,Hedden K.固体燃料转化过程动力学数据的确定.煤气与热力,1986,6(3):4~11
    24.项友谦.固体燃料加压气化过程的分析与模拟.煤气与热力,1995,15(1):3~11
    25. Gregg D. W., Edgar T. F. Underground Coal Gasification. AIChEJ.1978,24:753–781.
    26. Lazarenko S, Kreinin E. Underground Coal Gasification in Kuzbass: Present and Future;Institute of Coal, Siberian Branch of the Russian Academy of Sciences, Nauka:Novosibirsk, Russia,1994
    27. Lazarenko S. N, Kreinin E. V. Underground Coal Gasification in Kuzbass: NewOpportunities; Institute of Coal and Geochemistry, Siberian Branch of the Russian Academyof Sciences: Kemerovo, Russia,2006
    28. Dvornikova E. V. Role of Sorption Properties of GZh~Grade Coal in Self-Purification ofGroundwaters. Ugol′1996,5:45~47
    29. Review of the feasibility of underground coal Gasification in the UK. DTI, Great Britain;2005
    30.柴兆喜.我国矿井气化采煤技术的试验及其产业化研究.中国煤炭,2004,(11):11~13
    31. Hill, R. W. Review of the CRIP Process. In Proceedings of the12th Annual UndergroundCoal Gasification Symposium; DOE:Washington, DC,1986(Report DOE/FE/60922-H1)
    32. Seif M, Chen Z, Abedi J. Numerical simulation of underground coal gasifcation using theCRIP method. The Canadian Journal of Chemical Engineering2011
    33. Burton E, SJ Friedmann, RA Upadhye, in press, Best Practices in Underground CoalGasification, Lawrence Livermore National Laboratory Report#UCRL-TR-225331-DRAFT,119~132
    34. Green M B. Underground Coal GasificationsA Joint European Trial in Spain; Report CoalR196; DTI Pub URN99/1093; Department of Trade and Industry Technology (DTI):London,1999
    35. Pirard J P,Brasseur A, Coeme A. Results of the Tracer Tests during the El TremedalUnderground Coal Gasification at Great Depth. Fuel,2000,79:471~478
    36.梁杰,余力.―长通道,大断面‖煤炭地下气化新工艺.中国煤炭,2002,28(12):8~10
    37.梁杰,余力.反向两阶段煤炭地下气化方法的研究.煤炭学报,1996,21(1):68~72
    38.杨兰和,梁杰.煤炭地下气化技术工艺模型试验研究.中国矿业大学学报,1999,28(4):314~317
    39.杨兰和,刘裕国.倾斜煤层煤炭地下气化模型试验研究.中国矿业大学学报,2002,31(1):10~13
    40.杨兰和,梁杰,尹雪峰.煤炭地下气化制氢技术理论与实践[J].煤炭科学技术,2000,28(6):37~39
    41.杨兰和.煤炭地下气化双火源两阶段方法现场试验研究[J].燃料化学学报,2002,2:119~122
    42.杨兰和,梁杰.煤炭地下气化工业性试验[J].中国矿业大学学报,1998,27(3):254~256
    43.杨兰和,余力.煤炭地下气化高温区探测的新手段——测氡技术[J].煤炭科学技术,1997,25(12):12~14
    44. Skafa P. Underground coal gasification. Moscow: Gosgortechizdat;1960
    45. Blinderman MS, Klimenko AY. Theory of Reverse Combustion Linking. Combustion andFlame,2007,150:232~245
    46. Blinderman MS, Saulov DN, Klimenko AY. Exergy Optimisation of Reverse CombustionLinking in Underground Coal Gasification. J. Energy Inst.,2008,81:7~13
    47. Blinderman MS, Saulov DN, Klimenko AY. Forward and Reverse Combustion Linking inUnderground Coal Gasification. Energy,2008,33:446~454
    48. Kuyper RA, van der Meer T, Hoogendoorn CJ. Turbulent Natural Convection Flow due toCombined Buoyancy Forces during Underground Coal Gasification of Thin Seams. Chem.Eng. Sci.,1994,49:851~861
    49. Van Batenburg DW, Biezen E, Bruining J. A New Channel Model for UndergroundGasification of Thin, Deep Coal Seams. In Situ,1994,18:419~451
    50. Britten JA, Kzantz WB, Gunn R.D. Modeling studies of reverse combustion linking at highpressures. Proc.8th Underground Coal Conversion Symposium, Sandia NationalLaboratories Report. Sand82-2355,1982:515~523
    51. Glaser RR, Gunn RD, Kzantz WB. Unexpected aspects of reverse combustion: effects ofpressure, volatility and chemical reactivity. Proc.9th Underground Coal Conversion Symp.U.S. DOE Report. DOE/METC/84-71983:219~226
    52. Hommert PJ and Beard SG..Description of reverse combustion linking and forwardgasification during Underground Coal Gasification. Proc3rd Underground Coal ConversionSymposium. Lawrence Livermore Laboratories Report. CONF-770652,1977:267~279
    53. Kreinin EV and Shifrin EI. Mathematical Model of Coal Combustion and Gasification in aPassage of an Underground Gas Generator.Combust., Explos., Shock Wa es1993,29:148~154
    54. Britten JA, Activation energy-asymptotic modeling of reverse combustion instabilities inporous media: application to in-situ coal gasification. Ph.D. thesis, University of ColoradoDenver, CO (1984)
    55. Gumm RD, Krantz WB.Reverse combustion instabilities in tar sands and coal. Soc. Pet. Eng.J.1980,20:267~277
    56. Du Plessis D. Gasification: AKey Technology Platform for Western Canada’s Coal and OilSands Industries. Presented at the Twenty-Fifth Annual International Pittsburgh CoalConference, Pittsburgh, PA, Sep29Oct2,2008, Plenary Lecture
    57. Gregg DW, Hill RW, Olness DU.An overview of the Soviet effort in undergroundgasification of coal. Lawrence Livermore Laboratories1976; Report No.UCR-50024
    58. Dmitry N, Ovid A, Klimenko A. Flame propagation in a gasification channel. Energy,2010,35:1264~1273
    59.蔡T H,埃德加T F.煤地下气化中干燥和热解的模型化.现场技术,1983,7(3):25~29
    60. Beyer L G.大尺度煤炭地下气化模拟装置.余锋译.矿业译丛,1988,9(3):1~5
    61. Klaus Guntermann.地下煤气化综合实验模型和数学模型.矿业译丛,1988,9(3):6~10
    62. Glaser RP.美国东部烟煤地下气化的物理模拟.矿业译丛,1988,9(3):11~14
    63. Liang J, Liu S, Yu L. Trial study on underground coal gasification of abandoned coalresource. Xie H P, Golosinski T S. Mining Science and Technology’99. Rotterdam:Balkema,1999:271~274
    64.杨兰和.煤炭地下气化‖三带‖特征及影响变量的研究.南京理工大学学报,2001,25(5):533~537
    65.傅维标,余卫航.在变环境温度条件下煤粉热解通用模型的应用.工程热物理学报,1991,12(1):91~95
    66.蔡榕,张鹤声.煤的热解动力学研究.工程热物理学报,1991,12(2):216~219
    67.孙学信.煤粉燃烧物理化学基础.武汉:华中理工大学出版社,1991
    68. Kreinin EV. Nontraditional Thermal Technologies for Production of Heay-Extractable Fuels:Coal, Hydrocarbons; OAO Gazprom: Moscow Russia,2004
    69. Kuyper R A, Van der Meer TH, Bruining J. Simulation of Underground Gasification of ThinCoal Seams. In Situ,1996,20:311~346
    70. Coeme A, Pirard JP, Mostade M. Modeling of the Chemical Processes in a Longwall FaceUnderground Gasifier at Great Depth. In Situ,1993,17:83~104
    71. Mathy B, Pirlot P, Pirard JP. Flow Modeling in an Underground Gasifier at Great Depth bythe Boundary Element Method. In Situ,1994,18:399~418
    72. Pirlot P, Pirard JP, Coeme A. A Coupling of Chemical Processes and Flow in View of theCavity Growth Simulation of an Underground Coal Gasifier at Great Depth. In Situ,1998,22:141~156
    73. Hongtao L, Feng C, Xia P. Method of oxygen-enriched two-stage underground coalgasification. Min.Sci. Techno (China),2011;21:191~196
    74. K. Stanczyk, N. Howaniec, A. Smolinski etc.. Gasification of lignite and hard coal with airand oxygen enriched air in a pilot scale ex situ reactor for underground Gasification.Fuel,2011,90:1953~1962
    75. Krzysztof S, Krzysztof K, Marian W etc. Experimental simulation of hard coal undergroundgasification for hydrogen production. Fuel,2012,91(1):40~50
    76. Perkins G., Sahajwalla V. A Mathematical Model for the Chemical Reaction of aSemi-infnite Block of Coal in Underground Coal Gasification. Energy Fuels,2005,19:1679~1692
    77. Perkins G, Sahajwalla V. A Numerical Study of the Effects of Operating Conditions and CoalProperties on Cavity Growth in Underground Coal Gasification. Energy Fuels,2006,20:596~608
    78. Perkins G, Sahajwalla V. Modelling of Heat and Mass Transport Phenomena and ChemicalReaction in Underground Coal Gasification. Chem. Eng. Res. Des.,2007,85(A3):329~343
    79. Sateesh D, Ramesh N M. Laboratory studies on combustion cavity growth in lignite coalblocks in the context of underground coal Gasification. Energy,2010,35:2374~2386
    80. Yang LH, Liu SQ, Yu L. Experimental study of shaftless underground gasification in thinhigh angle coal seam. Energy Fuels,2007,21:2390~2397
    81. Perkins G, Sahajwalla V. Modelling of heat and mass transport phenomena and chemicalreaction in underground coal gasification. Chem Eng Res Des,2007,85:329~343
    82. Yang L, Liu S. Numerical simulation on heat and mass transfer in the process ofunderground coal gasification. Numer Heat Tr A-Appl,2003,44:537~557
    83. Shu-gin L, Yuan-yuaon W, Ke Z. Enhanced-hydrogen gas production through undergroundgasification of lignite. Min. Sci. Tech.,2009,19:384~394
    84. Viability of Underground Coal Gasification in the―Deep Coals‖of the Powder Ri er Basin,Wyoming; Prepared for the Wyoming Business Council Business and Industry DivisionState Energy Office; GasTech, Inc.:Casper, WY,2007
    85. Thorsness CB, Grens EA. A One-dimensional Model for In Situ Coal Gasification.Lawrence Livermore National Laboratory, Report UCRL-52523,1978:1~55
    86. Thorsness CB,Wang SW.Further Development of A General-Purpose, Packed-Bed Model forAnalysis of Underground Coal Gasification Processes[R], Lawrence Livermore NationalLaboratory, Report UCRL-92489,1985:1~19
    87. Britten JA, Thorsness C B. A Model for Cavity Growth and Resource Recovery duringUnderground Coal Gasifcation[J]. In Situ,1989,(13):1~53
    88. Wilks IHC. The Cavity Produced by Gasifying Thin Deep Seams[R]. In Proceedings of the9th Annual Underground Coal Gasifcation Symposium; DOE: Washington, DC,1983:314~322
    89. Van Batenburg DW, Biezen ENJ, Bruining J. A New Channel Model for UndergroundGasifcation of Thin, Deep Coal Seams. In Situ,1994,(18):419~451
    90. Kuyper RA, van der Meer T H, Hoogendoorn CJ. Turbulent Natural Convection Flow due toCombined Buoyancy Forces during Underground Coal Gasifcation of Thin Seams. Chem.Eng. Sci.,1994,(49):851~861
    91. Kuyper R A, Meer TH, Bruining J. Simulation of Underground Gasifcation of Thin CoalSeams. In Situ,1996,(20):311~346
    92. Coeme A, Pirard JP, Mostade M. Modeling of the Chemical Processes in a Longwall FaceUnderground Gasifer at Great Depth. In Situ,1993(17):83~104
    93. Mathy B, Pirard JP, Coeme A. Flow Modeling in an Underground Gasifer at Great Depth bythe Boundary Element Method. In Situ,1994,(18):399~418
    94. Pirlot P, Pirard JP, Coeme A.A Coupling of Chemical Processes and Flow in View of theCavity Growth Simulation of an Underground Coal Gasifer at Great Depth. In Situ,1998,(22):141~156
    95. Biezen ENJ. Modeling Underground Coal Gasification. PhD thesis. Delft University ofTechnology. The Netherlands,1996:20~37
    96. Gunn RD, Whitman DL. An In Situ Coal Gasification Model for Feasibility Studies andDesign; Laramie Energy Research Center, Report of Investigations76/2, Laramie, WY,1976:10~34
    97. Jennings JW,Strickland RF, Gotten WD.Texas A&M Project Status: Underground LigniteGasification[C]3rd Annual Underground Coal Conversion Symposium, Fallen Leaf Lake,NV,1977:176~184
    98. Robert DG, George EJ, Fred EK. Simple Field Test Model for Underground CoalGasification. Ind. Eng. Cham. Process Des,1983,(22):538~544
    99. Park KY, Edgar TF. Modeling of early cavity growth for Underground Coal Gasificaton. Ind.Eng.Chem. Res,1987,(26):237~246
    100. Yang Lan he. Study on the model experiment and numerical simulation for undergroundcoal gasification. Fuel,2004,(83):573~584
    101. Yang Lan he. Three-dimensional non-linear numerical analysis on the oxygen concentrationfield in underground coal gasification. Fuel Processing Technology,2004,(85):1605~1622
    102. Yang Lan he. Numerical simulation on three-dimensional nonlinear and unstable seepage offluid in underground coal gasification. Fuel Processing Technology,2003,(84):79~93
    103.梁杰,刘淑琴.煤炭地下气化过程稳定控制方法的研究.中国矿业大学学报.2002,31(5):359~361
    104. Shimada S, Tarmari A, Ishii E. Feasibility Study on Underground Coal Gasification in Japan.Shigen-to-Sozai (J. Min. Mater. Process. Inst. Jpn.)1994,110:64~68
    105. Friedmann SJ, Upadhye R, Kong F-M. Prospects for underground coal gasifcation incarbon-constrained world. Energy Procedia,2009,1(1):4551~4557
    106. Yang LH. A review of the factors infuencing the physicochemical characteristics ofunderground coal gasifcation. Energy Sources, Part A: Recovery,Utilization, andEnvironmental Effects,2008,30(11):1038~1049
    107.郑琼娇.燃烧工程.北京:煤炭工业出版社,1988
    108.斯穆特L D,史密斯P J.煤的燃烧和气化..北京:科学出版社,1992
    109.傅维标,胀永廉,王德安.燃烧学.北京:高等教育出版社,1989
    110. Rogut J,Steen M. Hydrogen Oriented Underground Coal Gasification of Coal. Presented atthe Twenty-Fifth Annual International Pittsburgh Coal Conference, Pittsburgh, PA, Sep29Oct2,2008:20~23
    111. Nourozieh H, Kariznovi M, Abedi J. Simulation study of underground coal gasifcation inAlberta reservoirs: geological structure and process modeling. Energy&Fuels,2010,24(6):3540~3550
    112. Perkins G. Mathematical modelling of underground coal gasifcation. The University ofNew South Wales;2005
    113. Takarada T, Tamai Y, Tomita A. Reactivities of34coals under steam gasification. Fuel,1985,64(10):1438~1442
    114. Alejandro M, Fanor M. Reactivity of coal gasification with steam and CO2. Fuel,1998,77(15):1831~1839
    115. Jacob B. Dynamic of Fluid in Porous Media. American Elsevier PublishingCompany,INC.1972:47~86
    116. Brown B. Measurement and prediction of entrained-flow gasification processes. AIChEJournal,1988,34(3):435~446
    117. Essenhigh RH, Froberg R, Howard JB. Combustion behavior of small particles. Ind EngChem Res,1965,57(9):32~43
    118. Smoot LD, Smith P J. Coal combustion and gasification. U. S. Plenum Press,1985
    119. Cogoli JG, Gray D, Essenhigh RH. Flame stabilization of low volatile fuels. Combust SciTechnol,1977,16(3-6):165~176
    120. Nettleton MA, Stirling R. The combustion of clouds of coal particles in shock-heatedmixtures of oxygen and nitrogen. Proceedings of the Royal Society of London. A.Mathematical and Physical Sciences,1971,322(1549):207~221
    121. Rao Y, Jalan B. A study of the rates of carbon-carbon dioxide reaction in the temperaturerange839to1050C. Metallurgical and Materials Transactions,1972,3(9):2465~2477
    122. Batchelder HR, Busche RM, Armstrong WP. Kinetics of coal gasifcation: proposedmechanism of gasifcation; development of reaction rate equations; development of heattransfer equations and method of calculation; calculated relation between gasifer yields andprocess variables. Industrial&Engineering Chemistry,1953,45(9):1856~1878
    123. Chen C, Wang J, Liu W, et al. Effect of pyrolysis conditions on the char gasification withmixtures of CO2and H2O[J]. Proceedings of the Combustion Institute,2013,34(2):2453~2460
    124.陈超,王静,刘伟,等.热解条件对煤焦-CO2和煤焦-H2O气化的影响[J].工程热物理学报,2012,33(6):1056~1060
    125. Hurloff G. Underground coal gasification cavity growth model. Journal of Energy,1983,7:410~415
    126. Yang L. Study on the model experiment and numerical simulation for underground coalgasification. Fuel,2004,83:573~584
    127.丁广骧,邸志乾.二维采空区非线性渗流流函数方程及有限元解法[J].煤炭学报,1993,18(2):19~25
    128.丁广骧,杨胜强,张吉禄.采场复杂流场的流体力学相似与模块化问题.中国矿业大学学报,1995,24(1):23~51
    129.吴诗勇,李莉,顾菁等.高碳转化率下慢速和快速热解神府煤焦-CO2高温气化反应性.燃料化学学报,2006,34(4):399~403
    130. Shiyong Wu, Jing Gu, Li Li etc.. The reactivity and kinetics of Yanzhou coal chars fromelevated pyrolysis temperatures during gasification in steam at900-1200℃. Trans.IChemE, Part B,2006,84(B6):420~428
    131. J. Ochoa MC, Cassanello,. Bonelli, et al. CO2gasification of Argentinean coal chars: akinetic characterization. Fuel Processing Technology,2001,74(12):161~176
    132. Muhlen, Van Heek, Juntgen. Kinetic studies of steam gasification of char in the presence ofH2, CO2and CO. Fuel,1985,64(7):944~949
    133.吴秀峰,顾永达,陈诵英.焦炭的比表面积与CO2气化反应性的关系.燃料与化工,1996,27(3):122~127
    134. Hans V, Jeroen V, Philip D. Reverse combustion: Kinetically controlled and mass transfercontrolled conversion front structures. Combust Flame,2008,153:417~433
    135. Solomon PR, Serio MA, Suuberg EM. Coal pyrolysis: experiments, kineticrates andmechanisms. Progress in Energy and Combustion Science,1992,18(2):133~220
    136. Winslow A M. Numerical model of coal gasification in a packed bed. LLC PreprintUCRL-77626,1976
    137. Yang LH, Zhang X, Liu S. Underground coal gasifcation using oxygen and steam. EnergySources, Part A: Recovery, Utilization, and Environmental Effects,2009,31(20):1883~1892
    138.谢克昌.煤的结构与反应性.科学出版社,2002
    139. S.julio F, Ravi U, FUNG-MING K. Prospects for underground coal gasification incarbon-constrained world. Energy Procedia,2009,2(274):4551~4557
    140. Yoon H, Wei J. A model for moving bed gasification reactor. AIChE J.1978(2):885~891
    141.彭国伦. Fortran95程序设计.北京:中国电力出版社,2002:10~15
    142. Alan C. Hindmarsh. ODEPACK, A Systematized Collection of ODE Solvers. in ScientificComputing, R. S. Stepleman, et al., Eds.(North-Holland, Amsterdam,).1983:55~64
    143.鞠剑平.C语言程序设计教程.武汉:华中科技大学出版社,2009
    144.彭军,向毅.数据结构与算法.北京:人民邮电出版社,2013
    145. R. Byron Bird, Warren E. Stewar, Edwin N. Lightfoot. transport phenomena. John Wiley&Sons, Inc.2001:487~512
    146. Govind R and Shah J. Modeling and Simulation of an Entrained Flow Coal Gasifier. AIChEJournal,1984,30(1):79~92
    147. Jones W P and Lindstedt R P. Global reaction schemes for hydrocarbon combustion.Combustion and Flame,1988,73(3):233~249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700