用户名: 密码: 验证码:
新型超压翼伞特性分析与控制系统初步设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超压翼伞具有气动效率高、可控性强、抗风能力好等优点,可以用于精确定点回收、可折叠飞行器等领域,因此具有良好的生存能力和应用价值。随着技术进步,这种飞行器以其远程飞行、高度高、长航时以及机动性好等方面的独特优势,将成为研究的热点并拥有巨大的发展前景。国内对相关领域的研究与国外相比还有很大差距。本文从总体设计的角度出发,采用理论分析与数值仿真相结合的方法,对超压翼伞系统的充气翼设计分析、动力学模型和控制系统概念设计等问题进行了比较系统的研究,得到了若干有意义的结论。
     探讨了经纬网络充气翼的受力分析以及其变形的特点,在此基础上给出了经纬网络充气翼的设计方法,以精确地逼近标准翼型。利用CFD计算软件,通过与标准翼型的对比,比较系统地对充气翼的气动性能进行了分析。阐明了在一般的条件下,充气翼的气动性能较之与标准翼型有所下降,但幅度不大。这为总体的设计工作提供了反馈的参考,同时也为运动特性分析创造了条件。
     建立了带动力的超压翼伞系统的六自由度动力学模型。其中的表观质量采用含义较全的矩阵形式表示,并给出了半经验的计算式;依据对目前充气翼气动力研究现状的分析,采用气动估算与工程分段处理相结合的方法来得到所需的气动力。通过仿真计算,分析了超压翼伞的主要设计参数对其系统性能的影响,得到了一些有益的结论,为系统总体方案的设计与评估、运动状态的分析等提供了有价值的参考。
     从概念设计的角度对控制系统进行了硬件和软件的设计,实现了两者的结合。并对典型的运动状态进行了姿态控制律设计,体现了控制系统总体的指导思想,为后续的详细设计打下了基础。
     本文可为新型超压翼伞的总体设计、分析,以及相关问题研究提供关键技术参考和可行性研究参考。
Overpressure Inflatable Parafoil has excellent viability and application value because of its advantage on high aerodynamic efficiency, strong controllability and the ability of standing against wind, therefore, it can be used in fields such as precise recovery and folding vehicle. Along with the technique developing, this kind of vehicle could be a hotspot and developed widely, because of its particular advantage in long distance, high altitude, long flight time and good maneuverability. There is still a large difference internal than in other countries, researching in relative field. This thesis begins at the point of view of collectivity design, being analyzed thoroughly and systematically in method of theoretical analysis and numerical simulation, including design and analysis of the inflatable wing, dynamics model and concept design of the control system of Overpressure Inflatable Parafoil. Some valuable conclusions were drawn.
     Dynamic analysis and transmutation properties of the longitudinal and latitudinal meshwork inflatable wing are discussed, and the design method is educed to approach the normal aerofoil exactly. Aerodynamic performance of the inflatable wing is analyzed thoroughly and systematically in method of comparing to the normal aerofoil, by using the CFD calculation software, clarifying that generally speaking, aerodynamic performance of the inflatable wing goes down compared to the normal aerofoil, but not observably. It could provide feedback references to the work of collectivity design and create qualification to the analysis of dynamic properties.
     6DOF dynamics model of Overpressure Inflatable Powered Parafoil is built up. Apparent mass is expressed as the meaningful matrix form, and educed half experiential calculation formula. According as the analysis of the research of inflatable wing recently, aerodynamic force is gained by the means of aerodynamic estimation combining with engineering subsection disposal. Some primary design parameters’effects on the system performance of Overpressure Inflatable Parafoil were analyzed by emulation calculation. Some valuable conclusions were drawn. It could provide valuable references of design and evaluation of the system collectivity scheme and analysis of movement state.
     At the point of view of concept design, the hardware and software of control system are designed, link the two together. The stance control law of typical movement state is designed, which incarnate the guide idea of control system collectivity, grounding the future detailed design.
     The study accomplished in this paper could provide references of key technique and feasibility research to the collectivity design, analysis and research on relative problems of the new pattern Overpressure Inflatable Parafoil.
引文
[1] Noll, T E, Brown, J M, Perez-Davis, M E, et al. Investigation of the Helios Prototype Aircraft Mishap [R].NASA. 2004.
    [2] Hiraki, K. Experimental Approach to Identify the Longitudinal and Lateral Stbility of Flexible Parafoil [C]. AIAA. 2003.
    [3] Hur, G-B. Identification of Powered Parafoil-Vehicle Dynamics from Modeling and Flight Test Data [D]. Texas A&M University(Doctor of Philosophy),2005.
    [4] Hur, G-B and Valasek, J. System Identification of Powered Parafoil-Vehicle from Flight Test Data [C]. AIAA. 2003.
    [5] Smith, J and Bennett, T. Development of the NASA X-38 Parafoil Landing System [C]. AIAA. 1999.
    [6] Prakash, O, Daftary, A and Ananthkrishnan, N. Trim and Stability Analysis of Parafoil/Payload System using Bifurcation Methods [C]. AIAA. 2005.
    [7] Goodrick, T F. Comparison of Simulation and Experimental Data for a Gliding Parachute in Dynamic Flight [C]. AIAA. 1981.
    [8] E.Mooij, Wijnands, Q G J and Schat, B. 9 dof Parafoil/Payload Simulator Development and Validation [C]. AIAA. 2003.
    [9] Slegers, N and Costello, M. Aspects of Control for a Parafoil and Payload System [J]. Journal of Guidance, Control, And Dynamics, 2003,
    [10] Jann, T. Aerodynamic Model Identification and GNC Design for the Parafoil-Load System ALEX [C]. AIAA. 2001.
    [11] Pollini, L, Giulietti, F and Innocenti, M. Modeling, Simulation and Control of a Wing Parafoil for Atmosphere to Ground Flight [C]. AIAA. 2002.
    [12] Slegers, N and Costello, M. Model Predictive Control of a Parafoil and Payload System [C]. AIAA. 2004.
    [13]熊菁.翼伞系统动力学与归航方案研究[D].国防科学技术大学(博士),2005.
    [14]贺卫亮.利用风洞试验研究冲压翼伞的升阻特性[J].航空学报, 1999,
    [15] Nicolaides, J D. Parafoil Wind Tunnel Tests [R]. 1970.
    [16]张顺玉and秦子曾.可控翼伞气动力及雀降操纵力仿真计算[J].国防科技大学学报, 1999,
    [17]李扬.冲压式翼伞后缘下拉气动特性的数值研究[D].国防科技大学(硕士),2004.
    [18] Nicolaides, J D and Tragarz, M A. Parafoil Flight Performance [C]. AIAA. 1970.
    [19] Furfaro, J, Hailey, C E and Behr, V L. An Experimental Study of Parafoil Sections[C]. AIAA. 1997.
    [20] Lee, C K and Buckley, J E. Cell Pull-Down Method for Parafoil Inflation [C]. AIAA. 1999.
    [21] Allred, R E, Hoyt, A E, Harrah, L A, et al. Light Rigidizable InflatableWings for UAVs: Resin and Manufacturing Development [C]. AIAA. 2005.
    [22]林一平.研制开发中的折叠充气翼飞机[J].飞航导弹, 2002, (8)
    [23] Suzanne Weaver Smith, J D J. A High-Altitude Test of Inflatable Wings for Low-Density Flight Applications[C] AIAA. 2007:
    [24] Johnathan M. Rowe, S W S. Development of a Finite Element Model of Warping Inflatable Wings[C] AIAA. 2008:
    [25] Haight, A E H, Allred, R E, Harrah, L A, et al. Design and Fabrication of Light Rigidizable Inflatable Wings [C]. AIAA. 2006.
    [26]吕强,叶正寅and李栋.充气结构机翼的设计和试验研究[J].飞行力学, 2007, 25 (4)
    [27] Cadogan, D, Scarborough, S, Gleeson, D, et al. Recent Development and Test of Inflatable Wings [C]. AIAA. 2006.
    [28] Brown, G, Haggard, R and Norton, B. Inflatable Structures for Deployable Wings [C]. AIAA. 2001.
    [29] Marzocca, P. Design and Shape Optimization of Inflatable Wings[C] AIAA. 2005:
    [30] Jann, T. Aerodynamic Coefficients for a Parafoil Wing with Arc Anhedral [C]. AIAA. 2003.
    [31] Mortaloni, P A, Yakimenko, O A, Dobrokhodov, V N, et al. On the Development of a Six-Degree-Of-Freedom Model of a Low-Aspect-Ratio Parafoil Delivery System [C]. AIAA. 2003.
    [32] Lyasoff, R. Modeling Small Parafoil Dynamics [R]. 2002.
    [33] Müller, S, Wagner, O and Sachs, G. High-Fidelity Nonlinear Multibody Simulation Model for Parafoil System [C]. AIAA. 2003.
    [34] Iacomini, C S and Cerimele, C. Longitudinal Aerodynamics from a Large Scale Parafoil Test Program [C]. AIAA. 1999.
    [35] Iacomini, C S and Cerimele, C. Lateral-Directional Aerodynamics from a Large Scale Parafoil Test Program [C]. AIAA. 1999.
    [36]Iacomini, C S and Madsen, C. Investigation of Large Scale Parafoil Rigging Angles: Analytical and Drop Test Results [C]. AIAA. 1999.
    [37] Heise, M and Müller, S. Dynamic Modeling and Visualization of Multi-Body Flexible Systems [C]. AIAA. 2004.
    [38] Prakash, O and Ananthkrishnan, N. Modeling and Simulation of 9-DOFParafoil-Payload System Flight Dynamics [C]. AIAA. 2006.
    [39] Strickert, G and Witte, L. Analysis of the Relative Motion in a Parafoil-Load-System [C]. AIAA. 2001.
    [40] Strickert, G and Jann, T. Determination of the Relative Motion between Parafoil Canopy and Load Using Advanced Video Image Processing Techniques [C]. AIAA. 1999.
    [41] Eaton, J A. Added Fluid Mass and the Equations of Motion of a Parachute [J]. The Aeronautical Quarterly, 1983, 34 (3):226.
    [42] Barrows, T M. Apparent mass of parafoils with spanwise camber [J]. Journal of Aircraft, 2002, 39 (3)
    [43] Zhu, Y, Moreau, M, Accorsi, M, et al. Computer Simulation of Parafoil Dynamics [C]. AIAA. 2001.
    [44]秦子曾and葛玉君.可控翼伞飞行转弯控制性能仿真初步研究[J].宇航学报, 1993,
    [45] Brown, G. Parafoil Steady Turn Response to Control Input [C]. AIAA. 1993.
    [46] Slegers, N and Costello, M. On the Use of Rigging Angle and Canopy Tilt for Control of a Parafoil and Payload System [C]. AIAA. 2003.
    [47]吴森堂,费玉华.飞行控制系统[M]. 2005.
    [48] Nelson, R C.飞行稳定性和自动控制[M].北京:国防工业出版社,2008.
    [49]吕璨朱.高空长滞空太阳能无人飞机(UAV)之飞行控制策略研究[R]. 2007.
    [50] Marino, R and Tomei, P.非线性系统设计——微分几何、自适应及鲁棒控制[M].北京:电子工业出版社,2006.
    [51] E.Slotine, J-j and Li, W.应用非线性控制[M].北京:机械工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700