用户名: 密码: 验证码:
气候变化背景下我国农业水热资源时空演变格局研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业水热资源是开展农业区划、种植制度、作物布局和作物品种配置的重要依据,其数量及配置影响一个地区的农业生产基本格局。在全球气候变化的背景下,我国的农业水热资源已发生显著的变化,导致我国农业种植结构和作物布局也发生相应的改变。系统地分析50年来中国农业水热资源的时空演变格局,对合理高效利用农业资源,适应和减缓气候变化对农业生产的影响具有重要的理论和现实意义。
     本文以我国及其十大农业种植区为研究对象,以逐日地面气象观测资料为数据源,结合土地覆盖数据、数字高程数据等空间数据,探讨地面气象观测资料缺失情况及其对气候变化趋势分析的影响,设计和编译了一套关于气象观测资料数据缺失的空间插补方法和程序,通过插补试验,提出了最优插补方案。在此基础上,阐明了全国及十大农业种植区作物生长季期间农业水热资源、农业界限温度与霜期的时空演变规律,在时间尺度上评估50年来在不同积温段下农业用地的空间动态变化,分析我国干湿气候演变趋势,从气象干旱角度估算50年来全国干旱发生的面积和强度。主要的研究结论如下:
     (1)采用NN、IDW、IDWE、GIDW、MRLAD、GWR等6种空间插补方法进行插补试验,表明幂指数为2-3时IDW、IDWE、GIDW插补效果最优;最优的搜索半径和插补台站数分别为250km~500km和6~20个;较传统方法,基于高程的插补方法可显著提高气温的插补精度,但对其他气象要素插补效果的改善不明显;各气象要素的插补误差在年内存在明显的差异;最优的插补方案为降水量、日照时数、平均风速、相对湿度适宜采用IDW法,日平均气温、日最低气温、日最高气温更适宜采用GIDW或GWR。
     (2)50年来,作物生长季期间全国积温和日平均气温都显著增加,而日较差、日照时数和太阳辐射量都显著减少,而期间的全国平均降水量和潜在蒸散量变化不明显,且在区域上存在差异。在“西南—东北”一线降水量、有效降水量和有效降水次数明显较少,而在“东南—西北”一线呈增加的趋势。影响生长季期间农业水热资源量的主要因素是年内气候资源的多寡,其次是生长季持续时间的长短,但这种影响存在区域不一致性。
     (3)全国稳定通过0℃、10℃的初日显著提前,终日延后,持续日数增加,积温提高50~90℃/10a,突变时间主要集中在20世纪80年代后期至90年代中期;同时,初霜日显著延后,终霜日提前,无霜期增加2.5~5d/10a。
     (4)低积温段内的耕地面积、林地和草地面积在减少,高积温段内的面积在增加。较20世纪60年代,20世纪初期我国≥0℃积温段Ⅰ、≥0℃积温段Ⅱ、≥0℃积温段Ⅳ耕地面积分别减少了7.74%、32.42%、8.39%,≥0℃积温段Ⅴ耕地面积增加43.66%;≥10℃积温段Ⅱ、≥10℃积温段Ⅳ耕地面积分别减少35.14%和20.80%,≥10℃积温段Ⅴ耕地增加21.05%。
     (5)在“西南—东北”一带趋于干旱,在“东南—西北”一带趋于湿润化。21世纪初期较1960年我国极干旱区、半干旱区面积分别增加了56.92%和28.13%,干旱区和半湿润区面积分布减少了12.30%和11.43%。全国干旱面积整体上呈弱的下降趋势,但区域上存在不一致性。东北、华北、西南和华南干旱面积都显著增加,东南沿海、西北内陆和青藏高原干旱面积有所减少。
     论文主要创新点:
     (1)提出针对气象资料数据缺失的空间插补方法和最优插补方案。结合空间插值方法和理论,设计和编译一套关于气象观测资料数据缺失问题的空间插补方法和程序,通过插补试验,探讨幂指数大小、搜索半径、插补点数、是否考虑高程等因素对气象要素插补精度的影响,提出针对不同气象要素的最优插补方案。
     (2)揭示我国作物生长季期间农业水热资源的时空演变格局。以稳定通过5℃界限温度的时间段作为作物生长季划分的标准,较系统地揭示全国及十大农业种植区域热量(积温、日平均气温、日较差、日照时数、太阳辐射)、水分(降水量、有效降水量、降水次数、潜在蒸散量)的时空演变格局。
     (3)估算不同积温段下农业用地和干湿气候类型的空间动态变化。将积温和干湿气候类型的动态变化与土地覆盖数据集相结合,在时间尺度上估算不同积温段下耕地和干湿气候类型区域的空间动态变化。
The agricultural water and thermal resources is an important basis of agricultural zoning, croppingsystems, crop distribution and crop varieties configuration, and its number and allocation determines thebasic agricultural production conditions in a region. China's agricultural water geothermal resources hasbeen a significant change with global warming in last50years, resulting in the significant change ofChina's agricultural planting structure and crop distribution. Systematic analysis of the spatial andtemporal variability and trends of the China Agricultural water and thermal resources in the past50years has an important practical significance to the efficient use of agricultural resource, and adaptationand mitigation of climate change on agricultural production.
     The paper illustrates the effects of the data gaps of china’s surface climatological observationaldata on climate change trends, and then a set of interpolation programs for meteorological missing datais designed and compiled with spatial interpolation methods. Through interpolation trial, we put forwardthe optimal interpolation scheme. On this basis, we analyze the spatial and temporal variability andtrends of agriculture water and thermal resources, agricultural critical temperature and frost period.Dynamic change of agricultural land area in different accumulated temperature sections is analyzedfrom the time scale. Further, we analyze the wetness and dryness change in China, and estimate thedrought area and intensity. The major conclusions are as follows:
     (1) The different spatial interpolation algorithms are compiled and evaluated to bridge the missinggaps of meteorological observational dataset. The algorithms used are deterministic methods such asNN, IDW, IDWE, GIDW, MRLAD, GWR. The cross validation of the results indicates that the optimalexponent of the IDW, IDWE, GIDW is2-3, and the optimal search radius is250km to500km, and theoptimal interpolation number of station is6-20. When temperature is interpolated, the elevation-aidedinterpolations (EAI) are significantly better than bivariate interpolations. However, the EAIimprovement isn't significant when other climate resources are interpolated. Furthermore, theinterpolation errors of various meteorological elements are obvious differences in the calendar months.Precipitation, sunshine hours, average wind speed, relative humidity is suitable to the IDW algorithm,and temperature is preferable to the GIDW or GWR algorithm.
     (2) The national average accumulated temperature and daily average temperature are significantlyincreasing in the past50years in crop growing season, and however diurnal, sunshine hours and solarradiation are significantly decreasing. At the same time, the national average precipitation and potentialevapotranspiration don't change on the whole, and however the changes differ from region to region.The precipitation and the amount and number of effective precipitation has fell in the southwest andnortheast China, and also has rose in the southeast and northeast China. The primary factor determiningthe amount of agricultural resources is the amount of climatic resources in calendar year, and thesecondary is the duration of growing season. However, the primary factor also can vary from regions.
     (3) The trends of agricultural critical temperature (0℃,10℃) present the characteristics of first daybecoming earlier, terminal day postponing, duration prolonging, and the accumulated temperatureincreasing by50-90℃/10a, and mutations occurring mainly in the late1980s to the mid-1990s.Similarly, the first frost date significantly delayed, the last frost date became earlier, and the frost-freeperiod increased by2.5-5d/10a.
     (4) The areas of arable land, woodland and grassland in the section of low accumulatedtemperature were decreasing, and those in the section of high accumulated temperature were increasing.Compared with the1960s, the arable land areas in the section Ⅰ, section Ⅱ, and section Ⅳ ofaccumulated temperature over0℃(AT0℃) respectively decreased by7.74%,32.42%,8.39%, and theareas in the section Ⅴ increased by43.66%. Likewise, the arable land areas in the section Ⅱ, andsection Ⅳ of AT10℃also fell by35.14%and20.80%, and the areas in the section Ⅴ rose by21.05%.
     (5) The climate in the southwest and northeast China became drought, and however the climate inthe southeast and northwest China became wet over past50years. Compared to1960s, the extremelyarid area and the semi-arid area respectively expanded by56.92%and28.13%. The arid area andsemi-humid area fell by12.30%and11.43%at the same time. The weak downward trend of droughtareas is detected, but trends differ from region to region. The drought areas in the northeast, southeast,and southern China have significantly rose, and the areas in the southeast coast, the northwest inlandhave declined.
     The innovations of the research are as follows:
     (1) A set of interpolation programs for meteorological missing data is designed and compiled withspatial interpolation methods and theories. The effect of the exponent size, search radius, the number ofinterpolation points, and the elevation on the interpolation accuracy is evaluated through interpolationtrials. The optimal interpolation scheme for the different meteorological elements is given.
     (2) The first date and terminal date stably above5℃are regarded as the indicators of the first dateand terminal date of crop growing season. The spatial and temporal variability of agricultural water andthermal resources in the growing season is analyzed.
     (3) The spatial dynamic change of the arable land areas in the different sections of accumulatedtemperature and the dryness&wetness climate are estimated on the decadal time scale.
引文
1.安刚,廉毅.近九十年吉林省松辽平原作物生长季气温变化的小波分析[J].气象学报,1998,56(4):458-466.
    2.曹雯,申双和,段春锋.西北地区生长季参考作物蒸散变化成因的定量分析[J].地理学报,2011(3):407-415.
    3.曾燕,邱新法,刘昌明等.起伏地形下黄河流域太阳直接辐射分布式模拟[J].地理学报,2005,60(4):680-688.
    4.陈莉,方丽娟,李帅.东北地区生长季潜在蒸散量的变化特征分析[J].灾害学,2010(2):92-96.
    5.程炳岩,钱晓燕.近50年河南干旱过程频率时空分布特征[J].河南气象,1999(1):24.
    6.代姝玮,杨晓光,赵孟等.气候变化背景下中国农业气候资源变化Ⅱ.西南地区农业气候资源时空变化特征[J].应用生态学报,2011(2):442-452.
    7.杜军,向毓意.近40年拉萨霜期变化的气候特征分析[J].应用气象学报,1999(3):123-127.
    8.方丽娟,陈莉,覃雪等.近50年黑龙江省作物生长季农业气候资源的变化分析[J].中国农业气象,2012,33(3):340-347.
    9.封志明,杨艳昭,丁晓强等.气象要素空间插值方法优化[J].地理研究,2004(3):357-364.
    10.冯平.干旱灾害的识别途径[J].自然灾害学报,1997,6(3):41-47.
    11.冯平,李绍飞,等.干旱识别与分析指标综述[J].中国农村水利水电,2002(7):13-15.
    12.冯玉香,何维勋,孙忠富等.我国冬小麦霜冻害的气候分析[J].作物学报,1999(3):335-340.
    13.高文义,郭海华.用频率分析方法对年降水量系列插补延长的探讨[J].吉林水利,2008(3):3-4.
    14.高晓容,王春乙,张继权等.近50年东北玉米生育阶段需水量及旱涝时空变化[J].农业工程学报,2012(12):101-109.
    15.顾红,杜春英,高永刚等.黑龙江省近48年积温和降水的变化及其对作物种植带的影响[J].安徽农业科学,2010(34):19602-19603.
    16.郭建平.气候变化背景下中国农业气候资源演变趋势[M].北京:气象出版社,2010.
    17.国家发展与改革委员会.中国应对气候变化国家方案及试点省份应对气候变化方案建议报告汇编[R].2007.
    18.国家气候变化对策协调小组办公室.中华人民共和国气候变化初始国家信息通报[EB/OL].[2011/3/15]. http://nc.ccchina.gov.cn/web/NewsInfo.asp?NewsId=344.
    19.国家气候中心. GB/T20481-2006气象干旱等级[S].2006.
    20.韩荣青,李维京,艾婉秀等.中国北方初霜冻日期变化及其对农业的影响[J].地理学报,2010(5):525-532.
    21.郝志新,陶向新,等.气候增暖背景下的冬小麦种植北界研究——以辽宁省为例[J].地理科学进展,2001,20(3):254-261.
    22.黄家龙.贵州省干旱灾害时空分布及其变化趋势的初步分析[J].贵州气象,1996,20(6):14-18.
    23.黄晚华,杨晓光,李茂松等.基于标准化降水指数的中国南方季节性干旱近58a演变特征[J].农业工程学报,2010(7):50-59.
    24.江滢,罗勇,赵宗慈等.近50年中国风速变化及原因分析:中国气象学会2007年年会,中国广东广州,2007[C].
    25.江志红,丁裕国.近40年我国降水量年际变化的区域性特征[J].南京气象学院学报,1994(01):73-78.
    26.蒋冲,王飞,穆兴民等.近52年渭河流域气候变化及极端干湿事件演变特征分析[J].灌溉排水学报,2012,31(4):32-36.
    27.李华,王艳君,孟军等.气候变化对中国酿酒葡萄气候区划的影响[J].园艺学报,2009,36(3):313-320.
    28.李继由.农业气候资源理论及其充分利用[J].自然资源,1995(01):1-9.
    29.李剑锋,张强,陈晓宏等.基于标准降水指标的新疆干旱特征演变[J].应用气象学报,2012,23(3):322-330.
    30.李军,高苹,陈艳春等.华东地区耕作制度对积温变化的响应[J].生态学杂志,2008(3):361-368.
    31.李茂松,李森,等.中国近50年旱灾灾情分析[J].中国农业气象,2003,24(1):7-10.
    32.李庆祥,彭嘉栋,沈艳.1900-2009年中国均一化逐月降水数据集研制[J].地理学报,2012(3):301-311.
    33.李小泉.关于气象资料的延伸和插补的一些问题[J].气象,1981(9):35-36.
    34.李晓文,李维亮,周秀骥.中国近30年太阳辐射状况研究[J].应用气象学报,1998(1).
    35.李新,程国栋,卢玲.空间内插方法比较[J].地球科学进展,2000(3):260-265.
    36.李祎君,王春乙.气候变化对我国农作物种植结构的影响[J].气候变化研究进展,2010,6(2):123-129.
    37.梁丽乔,李丽娟,张丽等.松嫩平原西部生长季参考作物蒸散发的敏感性分析[J].农业工程学报,2008(5):1-5.
    38.廖顺宝,李泽辉.积温数据栅格化方法的实验[J].地理研究,2004(5):633-640.
    39.廖顺宝,李泽辉.气温数据栅格化中的几个具体问题[J].气象科技,2004(5):352-356.
    40.林忠辉,莫兴国,李宏轩等.中国陆地区域气象要素的空间插值[J].地理学报,2002(1):47-56.
    41.刘昌明.华北平原农业水文及水资源[M].北京:科学出版社,1989.
    42.刘昌明,张丹.中国地表潜在蒸散发敏感性的时空变化特征分析[J].地理学报,2011(5):579-588.
    43.刘光孟,汪云甲,张海荣等.空间分析中几种插值方法的比较研究[J].地理信息世界,2011(3):41-45.
    44.刘勤,严昌荣,何文清等.黄河流域近40a积温动态变化研究[J].自然资源学报,2009(1):147-153.
    45.刘宇,陈泮勤,张稳等.一种地面气温的空间插值方法及其误差分析[J].大气科学,2006(1):146-152.
    46.刘志娟,杨晓光,王文峰等.气候变化背景下我国东北三省农业气候资源变化特征[J].应用生态学报,2009(9):2199-2206.
    47.刘巽浩,韩湘玲.中国耕作制度区划[M].北京:北京农业大学出版社,1987.
    48.马柱国,黄刚,甘文强等.近代中国北方干湿变化趋势的多时段特征[J].大气科学,2005,29(5):671-681.
    49.马柱国,任小波.1951-2006年中国区域干旱化特征[J].气候变化研究进展,2007(4):195-201.
    50.么枕生.中国境内农业指标温度的出现日期、持续日数与积算温度[J].地理学报,1957(2):183-203.
    51.梅方权,吴宪章,姚长溪等.中国水稻种植区划[J].中国水稻科学,1988,3(3):97-110.
    52.孟猛,倪健,张治国.地理生态学的干燥度指数及其应用评述[J].植物生态学报,2004(6):853-861.
    53.缪启龙,丁园圆,王勇等.气候变暖对中国热量资源分布的影响分析[J].自然资源学报,2009(5):934-944.
    54.潘耀忠,龚道溢,邓磊等.基于DEM的中国陆地多年平均温度插值方法[J].地理学报,2004(3):366-374.
    55.彭思岭.气象要素时空插值方法研究[D].中南大学,2010.
    56.钱锦霞,张霞,张建新等.近40年山西省初终霜日的变化特征[J].地理学报,2010(7):801-808.
    57.任国玉,郭军,徐铭志等.近50年中国地面气候变化基本特征[J].气象学报,2005(6):942-956.
    58.申双和,张方敏,盛琼.1975-2004年中国湿润指数时空变化特征[J].农业工程学报,2009(1):11-15.
    59.申双和,张方敏,盛琼.1975-2004年中国湿润指数时空变化特征[J].农业工程学报,2009(1):11-15.
    60.宋帮英,苏方林.我国省域碳排放量与经济发展的GWR实证研究[J].财经科学,2010(4):41-49.
    61.宋宏利,张晓楠,王雨等.多尺度高分辨率全球土地覆被遥感产品相对一致性比较[J].农业工程学报,2012(15):118-124.
    62.孙自武,任岗,周君等.1956~2006年玛纳斯河流域棉花生长季气候变化分析[J].石河子大学学报:自然科学版,2008,26(5):552-556.
    63.覃文忠.地理加权回归基本理论与应用研究[D].同济大学,2007.
    64.唐小萍,旦增顿珠,格桑等.近46年西藏农区作物生长季气候变化特征及突变分析[J].干旱地区农业研究,2008,26(5):249-254.
    65.陶炳炎,汤志成,张定琪等.积温对冬小麦茎、叶及生物学产量形成的影响[J].南京气象学院学报,1987(3):321-330.
    66.佟屏亚.中国玉米种植区划[M].中国农业科技出版社,1992.
    67.屠其璞.气温序列的延长和插补[J].气象,1980(5):14-16.
    68.屠其璞.一种气温场序列的延长插补方法[J].南京气象学院学报,1986(1):19-30.
    69.王德瀚.上海地区农业界限温度和干燥指数的长期变化[J].科技通报,1989(1):22-24.
    70.王馥棠.近百年我国积温的变化与作物产量[J].地理学报,1982(3):272-280.
    71.王海军,涂诗玉,陈正洪.日气温数据缺测的插补方法试验与误差分析[J].气象,2008(7):83-91.
    72.王鹤龄,王润元,张强等.甘肃省作物布局演变及其对区域气候变暖的响应[J].自然资源学报,2012(3):413-421.
    73.王劲廷.湿润指数在我国江淮流域的适应性评估[D].南京信息工程大学,2012.
    74.王静安,孙恒,等.近50年中国旱灾的时空变化[J].自然灾害学报,2002,11(2):1-6.
    75.王绍武,叶瑾琳,龚道溢等.近百年中国年气温序列的建立[J].应用气象学报,1998(4).
    76.王树廷.关于日平均气温稳定通过各级界限温度初终日期的统计方法[J].气象,1982(6):29-30.
    77.王文举,崔鹏,刘敏等.近50年湖北省多时间尺度干旱演变特征[J].中国农学通报,2012,28(29):279-284.
    78.王艳君,姜彤,刘波.长江流域实际蒸发量的变化趋势[J].地理学报,2010(9):1079-1088.
    79.王志伟,翟盘茂.中国北方近50年干旱变化特征[J].地理学报,2003(S1):61-68.
    80.王遵娅,丁一汇,何金海等.近50年来中国气候变化特征的再分析[J].气象学报,2004(2):228-236.
    81.魏凤英.现代气候统计诊断与预测技术[M].北京:气象出版社,2007.
    82.中华人民共和国国务院.中国应对气候变化国家方案[J].中华人民共和国国务院公报,2007(20):14-32.
    83.吴文斌,杨鹏,张莉等.四类全球土地覆盖数据在中国区域的精度评价[J].农业工程学报,2009(12):167-173.
    84.吴香华,秦伟良,王新蕾等.用最小绝对偏差方法(LAD)估计极值分布参数的探讨[J].气象科学,2006,26(3):3260-3264.
    85.辛渝,陈洪武,刘兴旺等.新疆博州地区作物生长季降水变化特征[J].气候变化研究进展,2007,3(4):234-238.
    86.徐成东.基于线性加权回归模型的降水量空间插值方法研究[D].河南大学,2008.
    87.徐成忠,董兴玉,杨洪宾等.积温变迁对夏玉米冬小麦两熟制播期的影响[J].山东农业科学,2009(2):34-37.
    88.徐凤琴.有效降水量浅析[J].气象水文海洋仪器,2009(01):96-100.
    89.徐宗学,孟翠玲,赵芳芳.山东省近40a来的气温和降水变化趋势分析[J].气象科学,2007(4):387-393.
    90.杨飞,姚作芳,宋佳等.松嫩平原作物生长季气候和作物生育期的时空变化特征[J].中国农业气象,2012,33(1):18-26.
    91.杨洪宾,李春光,徐成忠等.济宁市秋冬积温变迁及其对冬小麦生长的影响[J].中国农业气象,2008(1):20-22.
    92.杨晓光,刘志娟,陈阜.全球气候变暖对中国种植制度可能影响Ⅰ.气候变暖对中国种植制度北界和粮食产量可能影响的分析[J].中国农业科学,2010(2):329-336.
    93.杨旭,袁国恩.用非线性方法实现气象历史资料的插补[J].辽宁气象,1991(4):22-23.
    94.姚玉璧,肖国举,王润元等.近50年来西北半干旱区气候变化特征[J].干旱区地理,2009,32(2):159-165.
    95.叶殿秀,张勇.1961-2007年我国霜冻变化特征[J].应用气象学报,2008(6):661-665.
    96.翟禄新,冯起.基于SPI的西北地区气候干湿变化[J].自然资源学报,2011(5):847-857.
    97.翟盘茂,任福民,张强.中国降水极值变化趋势检测[J].气象学报,1999(2).
    98.张伯宇.近50年台湾东部台风强降雨事件的强度与频率变化特征[J].地理科学进展,2012(1):46-55.
    99.张方敏,申双和.湿润指数时空变化及与降水量线对比研究:中国气象学会2007年年会,中国广东广州,2007[C].
    100.张厚瑄.中国种植制度对全球气候变化响应的有关问题Ⅰ.气候变化对我国种植制度的影响[J].中国农业气象,2000(1).
    101.张厚瑄,张翼.中国活动积温对气候变暖的响应[J].地理学报,1994(1):27-36.
    102.张俊,陈桂亚,杨文发.国内外干旱研究进展综述[J].人民长江,2011,42(10):65-69.
    103.张丽娟.三种插值方法的应用与比较[J].赤峰学院学报(自然科学版),2010(3):1-3.
    104.张凌云,李家文,吴炫柯.柳州市农业界限温度与生产季节分析[J].安徽农业科学,2009(30):14802-14805.
    105.张强.华北地区干旱指数的确定及其应用[J].灾害学,1998,13(4):34-38.
    106.张伟,闫敏华,陈泮勤等.吉林省农作物生长季降水资源的时空分布特征[J].中国农业气象,2007(4):359-363.
    107.张养才,何维勋,李世奎.中国农业气象灾害概论[M].北京:气象出版社,1991.
    108.赵俊芳,郭建平,徐精文等.基于湿润指数的中国干湿状况变化趋势[J].农业工程学报,2010(8):18-24.
    109.赵兰兰,王恺,赵兵.农业气象资料中连续性数据缺失插补方法研究[J].水电能源科学,2010(5):4-6.
    110.郑晓东,鲁帆,马静等.基于标准化降水指数的淮河流域干旱演变特征分析[J].水利水电技术,2012,43(4):102-106.
    111.中国农业科学院中国种植业区划编写组.中国种植业区划[M].北京:农业出版社,1984.
    112.中国气象科学数据共享服务网.中国地面气候资料日值数据集[EB/OL].[2013/2/16].http://cdc.cma.gov.cn/.
    113.周园园,师长兴,范小黎等.国内水文序列变异点分析方法及在各流域应用研究进展[J].地理科学进展,2011(11):1361-1369.
    114.邹旭恺,任国玉,张强.基于综合气象干旱指数的中国干旱变化趋势研究[J].气候与环境研究,2010(4):371-378.
    115.左德鹏,徐宗学,程磊等.渭河流域潜在蒸散量时空变化及其突变特征[J].资源科学,2011(5):975-982.
    116. Bartier P M, Keller C P. Multivariate interpolation to incorporate thematic surface datausing inverse distance weighting (IDW)[J]. Computers&Geosciences,1996,22(7):795-799.
    117. Bonsal B R, Zhang X, Vincent L A, et al. Characteristics of daily and extreme temperaturesover Canada[J]. Journal of Climate,2001,14(9):1959-1976.
    118. Bontemps S, Defourny P, Van Bogaert E, et al. GlobCover2009: products description andvalidation report[EB/OL].(2011-01-01)http://dup.esrin.esa.it/globcover/LandCover2009/GLOBCOVER2009_Validation_Report_1.0.pdf.
    119. Brunsdon C. Estimating probability surfaces for geographical point data: an adaptive kernelalgorithm[J]. Computers&Geosciences,1995,21(7):877-894.
    120. Brunsdon C, Fotheringham A S, Charlton M E. Geographically weighted regression: amethod for exploring spatial nonstationarity[J]. Geographical analysis,1996,28(4):281-298.
    121. Cutforth H, O'Brien E G, Tuchelt J, et al. Long-term changes in the frost-free season on theCanadian prairies[J]. Canadian journal of plant science,2004,84(4):1085-1091.
    122. Dai A, Trenberth K E, Qian T. A global dataset of Palmer Drought Severity Index for1870-2002: Relationship with soil moisture and effects of surface warming[J]. Journal ofHydrometeorology,2004,5(6):1117-1130.
    123. Di Piazza A, Conti F L, Noto L V, et al. Comparative analysis of different techniques forspatial interpolation of rainfall data to create a serially complete monthly time series ofprecipitation for Sicily, Italy[J]. International Journal of Applied Earth Observation andGeoinformation,2011,13(3):396-408.
    124. Douglas E M, Vogel R M, Kroll C N. Trends in floods and low flows in the United States:impact of spatial correlation[J]. Journal of Hydrology,2000,240(1):90-105.
    125. Edwards D C. Characteristics of20th Century drought in the United States at multiple timescales., Climatology Report Number97-2[R]. Fort Collins: Colorado State University,1997.
    126. Erxleben J, Elder K, Davis R. Comparison of spatial interpolation methods for estimatingsnow distribution in the Colorado Rocky Mountains[J]. Hydrological Processes,2002,16(18):3627-3649.
    127. FAO. Crop evapotranspiration-Guidelines for computing crop water requirements[M].1998.
    128. Friedman D G. The prediction of long-continuing drought in south and southwestTexas[M]. Travelers Insurance Company,1957.
    129. Guttman N B. Accepting the Standardized Precipitation Index: A calculation algorithm[J].Journal of the American Water Resources Association,1999,35(2):311-322.
    130. Hamed K H. Trend detection in hydrologic data: The Mann–Kendall trend test under thescaling hypothesis[J]. Journal of Hydrology,2008,349(3):350-363.
    131. Hamed K H, Ramachandra Rao A. A modified Mann-Kendall trend test for autocorrelateddata[J]. Journal of Hydrology,1998,204(1):182-196.
    132. Heino R, Brázdil R, F?rland E, et al. Progress in the study of climatic extremes in Northernand Central Europe[J].1999:151-181.
    133. Husak G J, Michaelsen J, Funk C. Use of the gamma distribution to represent monthlyrainfall in Africa for drought monitoring applications[J]. International Journal ofClimatology,2007,27(7):935-944.
    134. IPCC. Climate change2007: The AR4Synthesis Report [R]. Geneva: IntergovernmentalPanel On Climate Change,2007.
    135. IPCC. Climate change2007: Working Group I Report "The Physical Science Basis"[R].2007.
    136. Jones P D, Hulme M. Calculating regional climatic time series for temperature andprecipitation: methods and illustrations[J]. International Journal of Climatology,1996,16(4):361-377.
    137. Karl T R, Knight R W, Easterling D R, et al. Indices of climate change for the UnitedStates[J]. Bulletin of the American Meteorological Society,1996,77(2):279-292.
    138. Kendall M G. Rank correlation methods.: Rank correlation methods.[M].1948.
    139. Knotters M, Brus D J, Oude Voshaar J H. A comparison of kriging, co-kriging and krigingcombined with regression for spatial interpolation of horizon depth with censoredobservations[J]. Geoderma,1995,67(3):227-246.
    140. Kumar S, Merwade V, Kam J, et al. Streamflow trends in Indiana: Effects of long termpersistence, precipitation and subsurface drains[J]. Journal of Hydrology,2009,374(1):171-183.
    141. Kunkel K E, Easterling D R, Hubbard K, et al. Temporal variations in frost-free season inthe United States:1895–2000[J]. Geophysical Research Letters,2004,31(3):L3201.
    142.?ab?dzki L. Estimation of local drought frequency in central Poland using the standardizedprecipitation index SPI[J]. Irrigation and Drainage,2007,56(1):67-77.
    143. Li X, Cheng G, Lu L. Comparison of spatial interpolation methods[J]. Advance in EarthSciences,2000,3.
    144. Livada I, Assimakopoulos V D. Spatial and temporal analysis of drought in Greece usingthe Standardized Precipitation Index (SPI)[J]. Theoretical and applied climatology,2007,89(3-4):143-153.
    145. Mann H B. Nonparametric tests against trend[J]. Econometrica,1945,13(3):245-259.
    146. McGrath D, Zhang C. Spatial distribution of soil organic carbon concentrations ingrassland of Ireland[J]. Applied Geochemistry,2003,18(10):1629-1639.
    147. McKee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration totime scales: Proceedings of the8th Conference on Applied Climatology,1993[C].American Meteorological Society Boston, MA.
    148. Mennis J. Mapping the results of geographically weighted regression[J]. The CartographicJournal,2006,43(2):171-179.
    149. Nalder I A, Wein R W. Spatial interpolation of climatic Normals: test of a new method inthe Canadian boreal forest[J]. Agricultural and forest meteorology,1998,92(4):211-225.
    150. Paulhus J L H, Kohler M A. Interpolation of missing precipitation records[J]. MonthlyWeather Review,1952,80:129-133.
    151. Price D T, McKenney D W, Nalder I A, et al. A comparison of two statistical methods forspatial interpolation of Canadian monthly mean climate data[J]. Agricultural and ForestMeteorology,2000,101(2-3):81-94.
    152. Sen P K. Estimates of the regression coefficient based on Kendall's tau[J]. Journal of theAmerican Statistical Association,1968,63(324):1379-1389.
    153. Skaggs K E, Irmak S. Long-term trends in air temperature distribution and extremes,growing degree days, and spring and fall frosts for climate impact assessments onagricultural practices in Nebraska, USA[J]. Journal of Applied Meteorology andClimatology,2012.
    154. Stooksbury D E, Idso C D, Hubbard K G. The effects of data gaps on the calculatedmonthly mean maximum and minimum temperatures in the continental United States: Aspatial and temporal study[J]. Journal of Climate,1999,12(5):1524-1533.
    155. Tabari H, Somee B S, Zadeh M R. Testing for long-term trends in climatic variables inIran[J]. Atmospheric Research,2011,100(1):132-140.
    156. Theil H. A rank-invariant method of linear and polynomial regression analysis[M]//HenriTheil's Contributions to Economics and Econometrics. Netherlands: Springer Netherlands,1992:345-381.
    157. Van Kuilenburg J, Gruijter J J, Marsman B A, et al. Accuracy of spatial interpolationbetween point data on soil moisture supply capacity, compared with estimates frommapping units[J]. Geoderma,1982,27(4):311-325.
    158. von Storch H, Navarra A. Analysis of climate variability: applications of statisticaltechniques[M]. Berlin: Springer-Verlag,1995.
    159. Wu H, Hayes M J, Weiss A, et al. An evaluation of the Standardized Precipitation Index,the China‐Z Index and the statistical Z‐Score[J]. International journal of climatology,2001,21(6):745-758.
    160. Xia Y, Fabian P, Stohl A, et al. Forest climatology: estimation of missing values forBavaria, Germany[J]. Agricultural and forest meteorology,1999,96(1):131-144.
    161. Xu Z X, Takeuchi K, Ishidaira H. Monotonic trend and step changes in Japaneseprecipitation[J]. Journal of hydrology,2003,279(1):144-150.
    162. Young K C. A three-way model for interpolating for monthly precipitation values[J].Monthly weather review,1992,120(11):2561-2569.
    163. Yue S, Hashino M. Long Term Trends of Annual and Monthly Precipitation in Japan[J].Journal of the American Water Resources Association,2003,39(3):587-596.
    164. Yue S, Wang C Y. Applicability of prewhitening to eliminate the influence of serialcorrelation on the Mann-Kendall test[J]. Water Resources Research,2002,38(6):1068.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700