用户名: 密码: 验证码:
鼓泡塔内液相多尺度循环流动结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液体循环流动是鼓泡塔内一种重要的基本流动现象,它是由气含率沿塔径向的不均匀分布引起,此循环现象对塔内液相的混合、传质和传热有着非常重要的作用。在过去的40年中,文献中已有大量对鼓泡塔内液体循环现象研究的报道,其中大多数研究是在处于均匀鼓泡流和湍流流型下的高鼓泡塔内进行。这些研究主要考虑了鼓泡塔内的平均流动,此平均流动主要以一个总循环圈的形式存在,包括在鼓泡塔中心区域的向上流动和器壁附近的向下流动。但遗憾的是,由于鼓泡塔内流体力学特征的复杂性和实验手段的限制,人们至今仍没能搞清楚鼓泡塔内液体循环流动的确切结构。
     到目前为止,对鼓泡塔内液体循环流动结构的研究报道多是基于液体的速度分布,很少有研究是基于跟踪液体的流动轨迹。本文尝试从跟踪液体流动轨迹的角度实验确定一中试规模鼓泡塔内液体的多尺度循环流动结构,这种尝试在以前尚无报道。由于循环流动意味着周期性,因此如果塔内仅存在贯穿全塔的大尺度循环涡结构或者仅存在涡尺寸约为鼓泡塔直径的多级循环结构,则在沿塔内某点加入的示踪剂一定会在下一时刻被检测到,而且呈周期性。根据这个思路,本研究发展了一套示踪剂多点注入与多点检测装置,该装置可以沿塔内不同的位置注入示踪剂,也可以在不同的鼓泡塔位置跟踪液体示踪剂在塔内的流动轨迹。借用这套装置,本论文详细考察了示踪剂分别从鼓泡塔顶部、底部和中间不同位置注入时液体的流动行为。为了消除采样液体中的气泡对浓度测量信号的不良影响,实验中使用了四个小型气液分离器。
     为进一步阐明液体循环流动结构的多尺度特性,本论文在鼓泡塔的中心引入几个不同长度的导流筒结构,从另外一个角度证实鼓泡塔内液相多尺度循环涡结构的存在性,其中导流筒的直径约为鼓泡塔直径的0.7倍。由于实验测得的电极响应信号在局部表现出很强的周期性和振荡性,论文尝试对这种局部的非平稳信号进行小波变换分解,从获得不同层次上的近似信号和细节信号进一步理解鼓泡塔内液体的多尺度循环流动结构。
     实验结果表明,鼓泡塔内的液体具有多尺度的循环涡结构,这些涡结构包括横跨整个反应器的大尺度规则循环涡,流体混合可发生在微观水平上的小尺度脉动循环涡和尺寸介于二者之间的各中等尺度循环涡结构。换句话说,鼓泡塔内充满着大大小小的涡结构,其中大尺度循环涡结构在一段时间内会表现出一定的规则性,对应液相主体的对流运动。从时间平均角度考虑,此液体涡结构在鼓泡塔的中心区域随气泡向上运动,而在器壁附近的环形区域向下流动,其推动力是因气含率分布不均而引起的密度差,它对液体间的传递起主要作用,是鼓泡塔内液相返混严重的主要原因。液体的小尺度涡结构在鼓泡塔内是无处不在,其尺寸可达微观水平,是导致示踪实验中响应信号长拖尾现象的主要原因之一。这些小尺度涡结构在塔内以一种无序的方式不停地摇摆和转动,是系统能量消失的原因,而且这种高频的,小尺度脉动循环涡影响着相间的微观混合,传质和传热过程。各中等尺度的循环涡结构尺寸介于大尺度涡与小尺度涡之间,没有规则的形状,也没有固定的尺寸,而是一直处于变化之中。这些小尺度的脉动循环涡和不规则的中等尺度循环涡动态地叠加于大尺度规则循环涡结构之上,大尺度涡包含小尺度涡,小尺度涡包含更小尺度的涡,各种尺度涡之间存在着相互作用,使得鼓泡塔内的气液流动结构相当复杂。
As one of the most fundamental and important fluid dynamics properties of a bubble column, liquid circulation has been considered only as a phenomenon caused by the nonuniform gas holdup radial profile. It is primarily responsible for liquid phase mixing, heat and mass transfer. During the last 40 years, a large number of investigations on liquid circulation in bubble columns have been reported which involve mostly tall columns under both bubbly and churn turbulent flow regimes. These studies have mainly considered the average flow pattern practically in the form of a global circulation cell which comprises an upward flow in the column core and a downward flow near the wall. Unfortunately, the precise circulation flow structure of liquid in a bubble column is still not fully understood, mainly due to the complexity of flow characteristic in the column and the difficulties encountered in performing of experimental investigations.
     The liquid circulation flow structures developed so far are mostly based on liquid velocity profiles, very few studies have been reported based upon tracing the liquid flowing trajectory. The present study attempts to identify the liquid multiscale circulation structure in a bubble column of 600 cm in height and 50 cm in diameter by tracing the liquid flowing trajectory, which has not been reported up to now. Since circulation flow means periodicity, so if there is only a macroscale circulation vortex which encompasses nearly the whole column or only mesoscale circulation vortexes with the size of each circulation vortex being equal to the column diameter, the liquid tracer injected into the system at some position along the column will be detected next time in a periodic manner. According to this train of thought, we develop a multiple-point tracer injection and detection device which can help us to inject the liquid tracer into the system at the various positions along the axis of the column and to track the tracer flowing trajectory at different positions along the column. With the aid of this equipment, a series of experiments will be conducted in detail to investigate the liquid flow behavior with the tracer injected at the top, middle and bottom of the column. Four small gas-liquid separators are used to eliminate the bad effect of gas bubbles in the sampling liquid on the measuring concentration signals.
     In order to interpret the multiscale characteristic of liquid circulation structure from the reverse side, we introduce several draft tubes with different length into the column center whose diameter is about 0.7 times of the main column diameter. In consideration of the local periodic and oscillating characteristics of response signals obtained in the experiments, a wavelet multiresolution decomposition on the signals will be employed to help us to further understand the liquid multiscale circulation structure in the column from time and frequency domains.
     The experimental results indicate that the liquid has multiscale circulation vortexes structure in the column. The vortexes structure comprises of macroscale circulation vortex which encompasses the whole column, microscale circulation vortex in which fluid mixing occurs on the microscopic level, and mesoscale circulation vortex whose size distribution is between the above two. In other words, the bubble column is filled with various circulation vortexes large and small. The macroscale circulation vortex corresponding to the bulk motion of liquid phase may demonstrate certain regularity over a period of time. From the viewpoint of time averaging, such macroscale circulation flow structure generally comprises an upward flow in the core and a downward flow near the walls of the column where the driving force for the flow is the density difference caused by maldistribution of gas holdups. This kind of vortex structure is significant in the global convective motion of liquid phase and is responsible for the high level of backmixing in the liquid phase. The microscale circulation vortexes are everywhere in the column, with the size up to microscopic level. They are the major cause of long tail of response signals in tracer experiments. They have the characteristics of certain randomness and fluctuation due to the agitation of gas bubbles and entrainment of liquid in the wakes of bubbles. In addition, these microscale circulation vortexes swing and rotate all the time in the column in a chaotic manner and are responsible for energy dissipation of the system. Moreover, these high frequency microscale fluctuation circulation vortexes make a great contribution to the micro-mixing process and also play a vital part in interphase mass and heat transfer processes. The structures in the form of mesoscale circulation vortexes have no constant shape and dimensions but have been in a state of change. Furthermore, the infinite microscale fluctuation vortexes and the irregular mesoscale circulation vortexes are dynamically superimposed on the macroscale regular circulation vortex structure. The large scale circulation vortexes contain small scale circulation vortexes which also include smaller scale vortexes, and there are interactions between these circulation vortexes of different scales which make the gas liquid flow structure in the bubble column rather complex.
引文
[1]Kantarci N, Borak F, Ulgen KO. Bubble column reactors. Process Biochemistry.2005; 40(7):2263-2283
    [2]Shah YT, Kelkar BG, Godbole SP, Deckwer WD. Design parameters estimations for bubble column reactors. AIChE Journal.1982; 28(3):353-379
    [3]Deckwer W. Bubble Column Reactors. Chichester:John Wiley & Sons,1992.
    [4]程振民,朱开宏,袁渭康.高等反应工程教程.上海:华东理工大学出版社,2010.
    [5]Prakash A, Margaritis A, Li H, Bergougnou MA. Hydrodynamics and local heat transfer measurements in a bubble column with suspension of yeast. Biochemical Engineering Journal. 2001; 9(2):155-163
    [6]Rados N, Al-Dahhan MH, Dudukovic MP. Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors. Catalysis Today.2003; 79-80:211-218
    [7]Wang Y, Fan W, Liu Y, Zeng Z, Hao X, Chang M, Zhang C, Xu Y, Xiang H, Li Y. Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors. Chemical Engineering and Processing:Process Intensification.2008; 47(2):222-228
    [8]Kolbel H, Ralek M. The Fischer-Tropsch synthesis in the liquid phase. Catalysis Reviews: Science & Engineering.1980; 21(2):225-274
    [9]Withers HP, Eliezer KF, Mitchell JW. Slurry-phase Fischer-Tropsch synthesis and kinetic studies over supported cobalt carbonyl derived catalysts. Industrial & Engineering Chemistry Research.1990; 29(9):1807-1814
    [10]Krishna R, Sie ST. Design and scale-up of the Fischer-Tropsch bubble column slurry reactor. Fuel Processing Technology.2000; 64(1-3):73-105
    [11]Dautzenberg FM, De Deken JC. Reactor developments in hydrotreating and conversion of residues. Catalysis Reviews:Science & Engineering.1984; 26(3&4):421-444
    [12]Palaskar SN, De JK, Pandit AB. Liquid phase RTD studies in sectionalized bubble column. Chemical Engineering & Technology.2000; 23(1):61-69
    [13]Bergault I, Joly-Vuillemin C, Fouilloux P, Delmas H. Modeling of acetophenone hydrogenation over a Rh/C catalyst in a slurry airlift reactor. Catalysis Today.1999; 48(1-4): 161-174
    [14]Jin H, Yang S, He G, Guo Z, Tong Z. An experimental study of holdups in large-scale p-xylene oxidation reactors using the y-ray attenuation approach. Chemical Engineering Science.2005; 60(22):5955-5961
    [15]Liang L, Zheng Y, Shen Y. Optimization of (3-alanine production from β-aminopropionitrile by resting cells of Rhodococcus sp. G20 in a bubble column reactor using response surface methodology. Process Biochemistry.2008; 43(7):758-764
    [16]Fregapane G, Rubio-Fernandez H, Nieto J, Salvador MD. Wine vinegar production using a noncommercial 100-litre bubble column reactor equipped with a novel type of dynamic sparger. Biotechnology and Bioengineering.1999; 63(2):141-146
    [17]Siedenberg D, Gerlach SR, Czwalinna A, Schugerl K, Giuseppin MLF, Hunik J. Production of xylanase by aspergillus awamori on complex medium in stirred tank and airlift tower loop reactors. Journal of Biotechnology.1997; 56(3):205-216
    [18]Zheng Y, Wang Z, Chen X. a-Amylase production by bacillus subtilis with dregs in an external-loop airlift bioreactor. Biochemical Engineering Journal.2000; 5(2):115-121
    [19]Loh K, Liu J. External loop inversed fluidized bed airlift bioreactor (EIFBAB) for treating high strength phenolic wastewater. Chemical Engineering Science.2001; 56(21-22):6171-6176
    [20]Hosaka Y, Kaihou M, Hirata A. Biological treatment of phenolic wastewater in a three-phase fluidized bed. Water Science and Technology.1985; 17(8):1437-1439
    [21]Smith JS, Burns LF, Valsaraj KT, Thibodeaux LJ. Bubble column reactors for wastewater treatment.2. The effect of sparger design on sublation column hydrodynamics in the homogeneous flow regime. Industrial & Engineering Chemistry Research.1996; 35(5): 1700-1710
    [22]戴干策,陈敏恒.化工流体力学.第二版;北京:化学工业出版社,2005.
    [23]Iliuta I, Larachi F, Anfray J, Dromard N, Schweich D. Multicomponent multicompartment model for Fischer-Tropsch SCBR. AIChE Journal.2007; 53(8):2062-2083
    [24]Wu C, Suddard K, Al-dahhan MH. Bubble dynamics investigation in a slurry bubble column. AIChE Journal.2008; 54(5):1203-1212
    [25]Chilekar VP, van der Schaaf J, Kuster BFM, Tinge JT, Schouten JC. Influence of elevated pressure and particle lyophobicity on hydrodynamics and gas-liquid mass transfer in slurry bubble columns. AIChE Journal.2010; 56(3):584-596
    [26]De Nevers N. Bubble driven fluid circulations. AIChE Journal.1968; 14(2):222-226
    [27]Rice RG, Geary NW. Prediction of liquid circulation in viscous bubble columns. AIChE Journal.1990; 36(9):1339-1348
    [28]Joshi JB. Computational flow modelling and design of bubble column reactors. Chemical Engineering Science.2001; 56(21-22):5893-5933
    [29]Crabtree JR, Bridgwater J. Chain bubbling in viscous liquids. Chemical Engineering Science.1969; 24(12):1755-1768
    [30]Miyahara T, Kaseno S, Takahashi T. Studies on chains of bubbles rising through quiescent liquid. The Canadian Journal of Chemical Engineering.1984; 62(2):186-193
    [31]Freedman W, Davidson JF. Hold-up and liquid circulation in bubble columns. Transactions of the Institution of Chemical Engineers.1969; 47:T251-T262
    [32]Geary NW, Rice RG. Circulation and scale-up in bubble columns. AIChE Journal.1992; 38(1):76-82
    [33]Chilekar VP, Singh C, van der Schaaf J, Kuster BFM, Schouten JC. A Gas hold-up model for slurry bubble columns. AIChE Journal.2007; 53(7):1687-1702
    [34]Anderson KG, Rice RG. Local turbulence model for predicting circulation rates in bubble columns. AIChE Journal.1989; 35(3):514-518
    [35]Burns LF, Rice RG. Circulation in bubble columns. AIChE Journal.1997; 43(6): 1390-1402
    [36]Rietema K, Ottengraf PP. Laminar liquid circulation and bubble street formation in a gas-liquid system. Transactions of the Institution of Chemical Engineers.1970; 48:T54-T62
    [37]Jakobsen HA, Grevskott S, Svendsen HF. Modeling of vertical bubble-driven flows. Industrial & Engineering Chemistry Research.1997; 36(10):4052-4074
    [38]Liu H, Zhang Z, Qiu C. Buoyancy-driven circulation in bubble columns:Alternative analysis. AIChE Journal.1998; 44(11):2561-2564
    [39]Joshi JB, Sharma MM. A circulation cell model for bubble columns. Transactions of the Institution of Chemical Engineers.1979; 57:244-251
    [40]Joshi JB. Axial mixing in multiphase contactors-a unified correlation. Transactions of the Institution of Chemical Engineers.1980; 58:155-165
    [41]Joshi JB. Comments on flow mapping in bubble columns using CARPT. Chemical Engineering Science.1992; 47(2):508-509
    [42]Dudukovic MP, Devanathan N, Moslemian D. Authors' reply to comments by J. B. Joshi. Chemical Engineering Science.1992; 47(2):509-510
    [43]Zehner P. Momentum, mass and heat transfer in bubble columns. International Chemical Engineering.1986; 26(1):22-35
    [44]Millies M, Mewes D. Calculation of circulating flows in bubble columns. Chemical Engineering Science.1995; 50(13):2093-2106
    [45]Chen JJJ, Jamialahmadi M, Li SM. Effect of liquid depth on circulation in bubble columns: a visual study. Transactions of the Institution of Chemical Engineers.1989; 67:203-207
    [46]Devanathan N, Moslemian D, Dudukovic MP. Flow mapping in bubble columns using CARPT. Chemical Engineering Science.1990; 45(8):2285-2291
    [47]Clark NN, Atkinson CM, Flemmer RLC. Turbulent circulation in bubble columns. AIChE Journal.1987; 33(3):515-518
    [48]Lin JS, Chen MM, Chao BT. A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds. AIChE Journal.1985; 31(3):465-473
    [49]Tzeng JW, Chen RC, Fan LS. Visualization of flow characteristics in a 2-D bubble column and three-phase fluidized bed. AIChE Journal.1993; 39(5):733-744
    [50]Chen RC, Reese J, Fan LS. Flow structure in a three-dimensional bubble column and three-phase fluidized bed. AIChE Journal.1994; 40(7):1093-1104
    [51]Franz K, Borner T, Kantorek HJ, Buchholz R. Flow structures in bubble columns. German Chemical Engineering.1984; 7:365-374
    [52]Ulbrecht JJ, Kawase Y, Auyeung KF. More on mixing of viscous liquids in bubble columns. Chemical Engineering Communications.1985; 35(1):175-191
    [53]Groen JS, Mudde RF, Van Den Akker HEA. Time dependent behaviour of the flow in a bubble column. Transactions of the Institution of Chemical Engineers.1995; 73:615-621
    [54]Buwa VV, Ranade VV. Characterization of dynamics of gas-liquid flows in rectangular bubble columns. AIChE Journal.2004; 50(10):2394-2407
    [55]Buwa VV, Ranade VV. Mixing in bubble column reactors:Role of unsteady flow structures. The Canadian Journal of Chemical Engineering.2003; 81(3-4):402-411
    [56]Lin TJ, Reese J, Hong T, Fan LS. Quantitative analysis and computation of two-dimensional bubble columns. AIChE Journal.1996; 42(2):301-318
    [57]Mudde RF, Lee DJ, Reese J, Fan LS. Role of coherent structures on reynolds stresses in a 2-D bubble column. AIChE Journal.1997; 43(4):913-926
    [58]Schweitzer J, Kressmann S. Ebullated bed reactor modeling for residue conversion. Chemical Engineering Science.2004; 59(22-23):5637-5645
    [59]Riquarts HP. A physical model for axial mixing of the liquid phase for heterogeneous flow regime in bubble columns. German Chemical Engineering.1981; 4:18-23
    [60]Ohki Y, Inoue H. Longitudinal mixing of the liquid phase in bubble columns. Chemical Engineering Science.1970; 25(1):1-16
    [61]Ueyama K, Miyauchi T. Properties of recirculating turbulent two phase flow in gas bubble columns. AIChE Journal.1979; 25(2):258-266
    [62]Zehner P. Impuls-, Stoff- und Warmetransport in Blasensaulen Teil 1:Stromungsmodell der Blasensaule und Flussigkeitsgeschwindigkeiten. Verfahrenstechnik.1982; 16:347-351
    [63]Nottenkamper R, Steiff A, Weinspach PM. Experimental investigation of hydrodynamics of bubble columns. German Chemical Engineering.1983; 6:147-155
    [64]Kawase Y, Moo-Young M. Liquid phase mixing in bubble columns with Newtonian and non-Newtonian fluids. Chemical Engineering Science.1986; 41(8):1969-1977
    [65]Hills JH. Radial non-uniformity of velocity and voidage in a bubble column. Transactions of the Institution of Chemical Engineers.1974; 52:1-8
    [66]Krishna R, Urseanu MI, van Baten JM, Ellenberger J. Influence of scale on the hydrodynamics of bubble columns operating in the churn-turbulent regime:experiments vs. Eulerian simulations. Chemical Engineering Science.1999; 54(21):4903-4911
    [67]Frret A, Schweitzer J, Gauthier T, Krishna R, Schweich D. Influence of scale on the hydrodynamics of bubble column reactors:an experimental study in columns of 0.1,0.4 and 1 m diameters. Chemical Engineering Science.2003; 58(3-6):719-724
    [68]Menzel T, In der Weide T, Staudacher O, Wein O, Onken U. Reynolds shear stress for modeling of bubble column reactors. Industrial & Engineering Chemistry Research.1990; 29(6):988-994
    [69]Bhole MR, Roy S, Joshi JB. Laser Doppler Anemometer Measurements in Bubble Column: Effect of Sparger. Industrial & Engineering Chemistry Research.2006; 45(26):9201-9207
    [70]李海青.两相流参数检测及应用.杭州:浙江大学出版社,1991.
    [71]Chen J, Kemoun A, Al-Dahhan MH, Dudukovic MP, Lee DJ, Fan L. Comparative hydrodynamics study in a bubble column using computer-automated radioactive particle tracking (CARPT)/computed tomography (CT) and particle image velocimetry (PIV). Chemical Engineering Science.1999; 54(13-14):2199-2207
    [72]Funfschilling D, Li HZ. Flow of non-Newtonian fluids around bubbles:PIV measurements and birefringence visualisation. Chemical Engineering Science.2001; 56(3):1137-1141
    [73]Keane RD, Adrian RJ. Optimization of particle image velocimeters. I. Double pulsed systems. Measurement Science and Technology.1990; 1(11):1202
    [74]Moslemian D, Devanathan N, Dudukovic MP. Radioactive particle tracking technique for investigation of phase recirculation and turbulence in multiphase systems. Review of Scientific Instruments.1992; 63(10):4361
    [75]Wallis GB. One-Dimensional Two-Phase Flow. New York:McGraw-Hill,1969.
    [76]Hyndman CL, Larachi F, Guy C. Understanding gas-phase hydrodynamics in bubble columns:a convective model based on kinetic theory. Chemical Engineering Science.1997; 52(1):63-77
    [77]Ruzicka MC, Zahradnik J, Drahos J, Thomas NH. Homogeneous-heterogeneous regime transition in bubble columns. Chemical Engineering Science.2001; 56(15):4609-4626
    [78]Schumpe A, Grund G. The gas disengagement technique for studying gas holdup structure in bubble columns. The Canadian Journal of Chemical Engineering.1986; 64(6):891-896
    [79]Zahradnik J, Fialov M, Ruzicka M, Drahos J, Katanek F, Thomas NH. Duality of the gas-liquid flow regimes in bubble column reactors. Chemical Engineering Science.1997; 52(21-22):3811-3826
    [80]Krishna R, Ellenberger J, Maretto C. Flow regime transition in bubble columns. International Communications in Heat and Mass Transfer.1999; 26(4):467-475
    [81]Matsuura A, Fan L. Distribution of bubble properties in a gas-liquid-solid fluidized bed. AIChE Journal.1984; 30(6):894-903
    [82]Bukur DB, Daly JG. Gas hold-up in bubble columns for Fischer-Tropsch synthesis. Chemical Engineering Science.1987; 42(12):2967-2969
    [83]张濂,许志美,袁向前.化学反应工程原理.上海:华东理工大学出版社,2000.
    [84]Hills JH. The operation of a bubble column at high throughputs:I. Gas holdup measurements. The Chemical Engineering Journal.1976; 12(2):89-99
    [85]Miller DN. Gas holdup and pressure drop in bubble column reactors. Industrial & Engineering Chemistry Process Design and Development.1980; 19(3):371-377
    [86]Bouaifi M, Hebrard G, Bastoul D, Roustan M. A comparative study of gas hold-up, bubble size, interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns. Chemical Engineering and Processing.2001; 40(2):97-111
    [87]Thorat BN, Joshi JB. Regime transition in bubble columns:experimental and predictions. Experimental Thermal and Fluid Science.2004; 28(5):423-430
    [88]Deckwer W, Louisi Y, Zaidi A, Ralek M. Hydrodynamic properties of the Fischer-Tropsch slurry process. Industrial & Engineering Chemistry Process Design and Development.1980; 19(4):699-708
    [89]Fan L. Gas-Liquid-Solid Fluidization Engineering. Boston:Butterworths,1989.
    [90]Keitel G, Onken U. Inhibition of bubble coalescence by solutes in air/water dispersions. Chemical Engineering Science.1982; 37(11):1635-1638
    [91]Krishna R, De Swart JWA, Hennephof DE, Ellenberger J, Hoefsloot HCJ. Influence of increased gas density on hydrodynamics of bubble-column reactors. AIChE Journal.1994; 40(1):112-119
    [92]姜信真.气液反应理论与应用基础.北京:烃加工出版社,1989.
    [93]Krishna R, De Swart JWA, Ellenberger J, Martina GB, Maretto C. Gas holdup in slurry bubble columns:Effect of column diameter and slurry concentrations. AIChE Journal.1997; 43(2):311-316
    [94]Akita K, Yoshida F. Gas holdup and volumetric mass transfer coefficient in bubble columns, effects of liquid properties. Industrial & Engineering Chemistry Process Design and Development.1973; 12(1):76-80
    [95]Luo X, Lee DJ, Lau R, Yang G, Fan L. Maximum stable bubble size and gas holdup in high-pressure slurry bubble columns. AIChE Journal.1999; 45(4):665-680
    [96]Zou R, Jiang X, Li B, Zu Y, Zhang L. Studies on gas holdup in a bubble column operated at elevated temperatures. Industrial & Engineering Chemistry Research.1988; 27(10): 1910-1916
    [97]Hebrard G, Bastoul D, Roustan M. Influence of the gas sparger on the hydrodynamic behaviour of bubble column. Transactions of the Institution of Chemical Engineers.1996; 74: 406-414
    [98]Krishna R, Ellenberger J. Gas holdup in bubble column reactors operating in the churn-turbulent flow regime. AIChE Journal.1996; 42(9):2627-2634
    [99]Ueyama K, Morooka S, Koide K, Kaji H, Miyauchi T. Behavior of gas bubbles in bubble columns. Industrial & Engineering Chemistry Process Design and Development 1980; 19(4): 592-599
    [100]Pino LRZ, Yepe MM, Saez AE. Hydrodynamics of a semibatch slurry bubble column with a foaming liquid. AIChE Journal.1990; 36(11):1758-1762
    [101]Krishna R, Urseanu MI, De Swart JWA, Ellenberger J. Gas hold-up in bubble columns: Operation with concentrated slurries versus high viscosity liquid. The Canadian Journal of Chemical Engineering.2000; 78(3):442-448
    [102]Fan LS, Yang GQ, Lee DJ, Tsuchiya K, Luo X. Some aspects of high-pressure phenomena of bubbles in liquids and liquid-solid suspensions. Chemical Engineering Science. 1999; 54(21):4681-4709
    [103]Drahos J, Zahradnik J, Puncochar M, Fialova M, Bradka F. Effect of operating conditions on the characteristics of pressure fluctuations in a bubble column. Chemical Engineering and Processing:Process Intensification.1991; 29(2):107-115
    [104]Ozturk SS, Schumpe A, Deckwer WD. Organic liquids in a bubble column:Holdups and mass transfer coefficients. AIChE Journal.1987; 33(9):1473-1480
    [105]Saxena SC, Rao NS, Saxena AC. Heat-transfer and gas-holdup studies in a bubble column:Air-water-glass bead system. Chemical Engineering Communications.1990; 96(1):31-55
    [106]Gandhi B, Prakash A, Bergougnou MA. Hydrodynamic behavior of slurry bubble column at high solids concentrations. Powder Technology.1999; 103(2):80-94
    [107]Khare AS, Joshi JB. Effect of fine particles on gas hold-up in three-phase sparged reactors. The Chemical Engineering Journal.1990; 44(1):11-25
    [108]Sriram K, Mann R. Dynamic gas disengagement:A new technique for assessing the behaviour of bubble columns. Chemical Engineering Science.1977; 32(6):571-580
    [109]Li H, Prakash A. Influence of slurry concentrations on bubble population and their rise velocities in a three-phase slurry bubble column. Powder Technology.2000; 113(1-2):158-167
    [110]Cartellier A, Achard JL. Local phase detection probes in fluid/fluid two-phase flows. Review of Scientific Instruments.1991; 62(2):279
    [111]Shoukri M, Hassan I, Gerges I. Two-phase bubbly flow structure in large-diameter vertical pipes. The Canadian Journal of Chemical Engineering.2003; 81(2):205-211
    [112]Chen W, Tsutsumi A, Otawara K, Shigaki Y. Local bubble dynamics and macroscopic flow structure in bubble columns with different scales. The Canadian Journal of Chemical Engineering.2003; 81(6):1139-1148
    [113]Xue J, Al-Dahhan M, Dudukovic MP, Mudde RF. Bubble velocity, size, and interfacial area measurements in a bubble column by four-point optical probe. AIChE Journal.2008; 54(2): 350-363
    [114]Kalaga DV, Kulkarni AV, Acharya R, Kumar U, Singh G, Joshi JB. Some industrial applications of gamma-ray tomography. Journal of the Taiwan Institute of Chemical Engineers. 2009; 40(6):602-612
    [115]Shollenberger KA, Torczynski JR, Adkins DR, O'Hern TJ, Jackson NB. Gamma-densitometry tomography of gas holdup spatial distribution in industrial-scale bubble columns. Chemical Engineering Science.1997; 52(13):2037-2048
    [116]Warsito MO, Maezawa A, Uchida S. Flow structure and phase distributions in a slurry bubble column. Chemical Engineering Science.1997; 52(21-22):3941-3947
    [117]Warsito, Ohkawa M, Kawata N, Uchida S. Cross-sectional distributions of gas and solid holdups in slurry bubble column investigated by ultrasonic computed tomography. Chemical Engineering Science.1999; 54(21):4711-4728
    [118]Kulkarni AA, Joshi JB, Kumar VR, Kulkarni BD. Application of multiresolution analysis for simultaneous measurement of gas and liquid velocities and fractional gas hold-up in bubble column using LDA. Chemical Engineering Science.2001; 56(17):5037-5048
    [119]Hubers JL, Striegel AC, Heindel TJ, Gray JN, Jensen TC. X-ray computed tomography in large bubble columns. Chemical Engineering Science.2005; 60(22):6124-6133
    [120]Lockkett MJ, Kirkpatrick RD. Ideal bubbly flow and actual flow in bubble columns. Transactions of the Institution of Chemical Engineers.1975; 53:267-273
    [121]Koide K, Morooka S, Ueyama K, Matsuura A, Yamashita F, Iwamoto S, Kato Y, Inoue H, Akehata T. Behavior of bubbles in large scale bubble column. Journal of Chemical Engineering of Japan.1979; 12(2):98-104
    [122]Sada E, Katoh S, Yoshii H, Yamanishi T, Nakanishi A. Performance of the gas bubble column in molten salt systems. Industrial & Engineering Chemistry Process Design and Development.1984; 23(1):151-154
    [123]Kumar A, Degaleesan TE, Laddha GS, Hoelscher HE. Bubble swarm characteristics in bubble columns. The Canadian Journal of Chemical Engineering.1976; 54(5):503-508
    [124]Grover GS, Rode CV, Chaudhari RV. Effect of temperature on flow regimes and gas hold-up in a bubble column. The Canadian Journal of Chemical Engineering.1986; 64(3): 501-504
    [125]Hughmark GA. Holdup and mass transfer in bubble columns. Industrial & Engineering Chemistry Process Design and Development.1967; 6(2):218-220
    [126]Kawase Y, Moo-Young M. Heat transfer in bubble column reactors with newtonian and non-newtonian fluids. Transactions of the Institution of Chemical Engineers.1987; 65:121-126
    [127]Akita K, Yoshida F. Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns. Industrial & Engineering Chemistry Process Design and Development.1974; 13(1):84-91
    [128]Kawase Y, Umeno S, Kumagai T. The prediction of gas hold-up in bubble column reactors:Newtonian and non-newtonian fluids. The Chemical Engineering Journal.1992; 50(1): 1-7
    [129]Hikita H, Kikukawa H. Liquid-phase mixing in bubble columns:Effect of liquid properties. The Chemical Engineering Journal.1974; 8(3):191-197
    [130]Hikita H, Asai S, Tanigawa K, Segawa K, Kitao M. Gas hold-up in bubble columns. The Chemical Engineering Journal.1980; 20(1):59-67
    [131]Reilly IG, Scott DS, De Bruijn T, Jain A, Piskorz J. A correlation for gas holdup in turbulent coalescing bubble columns. The Canadian Journal of Chemical Engineering.1986; 64(5):705-717
    [132]Godbole SP, Honath MF, Shah YT. Holdup structure in highly viscous newtonian and non-newtonian liquids in bubble columns. Chemical Engineering Communications.1982; 16(1): 119-134
    [133]Schumpe A, Deckwer W. Viscous media in tower bioreactors:Hydrodynamic characteristics and mass transfer properties. Bioprocess Engineering.1987; 2:79-94
    [134]Koide K, Takazawa A, Komura M, Matsunaga H. Gas Holdup and volumetric liquid-phase mass transfer coefficient in solid-suspended bubble columns. Journal of Chemical Engineering of Japan.1984; 17(5):459-466
    [135]Kulkarni AV. Design of a pipe/ring type of sparger for a bubble column reactor. Chemical Engineering & Technology.2010; 33(6):1015-1022
    [136]Liu S, Yang WQ, Wang H, Jiang F, Su Y. Investigation of square fluidized beds using capacitance tomography:preliminary results. Measurement Science and Technology.2001; 12(8):1120
    [137]Dyakowski T, Jeanmeure LFC, Jaworski AJ. Applications of electrical tomography for gas-solids and liquid-solids flows-a review. Powder Technology.2000; 112(3):174-192
    [138]Yang WQ, Stott AL, Beck MS. Development of capacitance tomographic imaging systems for oil pipeline measurements. Review of Scientific Instruments.1995; 66(8):4326
    [139]He R, Xie CG, Waterfall RC, Beck MS, Beck CM. Engine flame imaging using electrical capacitance tomography. Electronics Letters.1994; 30(7):559-560
    [140]Colak SB, van der Mark MB, t Hooft GW, Hoogenraad JH, van der Linden ES, Kuijpers FA. Clinical optical tomography and NIR spectroscopy for breast cancer detection. IEEE Journal of Selected Topics in Quantum Electronics.1999; 5(4):1143-1158
    [141]Benaron DA, Hintz SR, Villringer A, Boas D, Kleinschmidt A, Frahm J, Hirth C, Obrig H, van Houten JC, Kermit EL, Cheong W, Stevenson DK. Noninvasive functional imaging of human brain using light. Journal of Cerebral Blood Flow & Metabolism.2000; 20(3):469-477
    [142]Vasquez PAS, De Mesquita CH, LeRoux GAC, Hamada MM. Methodological analysis of gamma tomography system for large random packed columns. Applied Radiation and Isotopes. 2010; 68(4-5):658-661
    [143]Kazys R, Svilainis L. Analysis of adaptive imaging algorithms for ultrasonic non-destructive testing. Ultrasonics.1995; 33(1):19-30
    [144]Utomo MB, Warsito W, Sakai T, Uchida S. Analysis of distributions of gas and TiO2 particles in slurry bubble column using ultrasonic computed tomography. Chemical Engineering Science.2001; 56(21-22):6073-6079
    [145]Lee J, Ciang Chia C, Jin Shin H, Park C, Jin Yoon D. Laser ultrasonic propagation imaging method in the frequency domain based on wavelet transformation. Optics and Lasers in Engineering.2011; 49(1):167-175
    [146]Cheney M, Isaacson D, Newell JC. Electrical impedance tomography. SIAM Review. 1999; 41(1):85-101
    [147]Tapp HS, Peyton AJ, Kemsley EK, Wilson RH. Chemical engineering applications of electrical process tomography. Sensors and Actuators B:Chemical.2003; 92(1-2):17-24
    [148]Jin H, Han Y, Yang S, He G. Electrical resistance tomography coupled with differential pressure measurement to determine phase hold-ups in gas-liquid-solid outer loop bubble column. Flow Measurement and Instrumentation.2010; 21(3):228-232
    [149]Meng Z, Huang Z, Wang B, Ji H, Li H, Yan Y. Air-water two-phase flow measurement using a Venruri meter and an electrical resistance tomography sensor. Flow Measurement and Instrumentation.2010; 21(3):268-276
    [150]Peyton AJ, Yu ZZ, Lyon G, Al-Zeibak S, Ferreira J, Velez J, Linhares F, Borges AR, Xiong HL, Saunders NH, Beck MS. An overview of electromagnetic inductance tomography: description of three different systems. Measurement Science and Technology.1996; 7(3):261
    [151]Yu ZZ, Peyton AJ, Xu LA, Beck MS. Electromagnetic inductance tomography (EMT): sensor, electronics and image reconstruction algorithm for a system with a rotatable parallel excitation field. IEE Proceedings-Science, Measurement and Technology.1998; 145(1):20-25
    [152]Plaskowski A, Beck MS, Krawaczynski JS. Flow imaging for multi-component flow measurement. Transactions of the Institute of Measurement and Control.1987; 9 (2):108-112
    [153]Huang SM, Plaskowski AB, Xie CG, Beck MS. Tomographic imaging of two-component flow using capacitance sensors. Journal of Physics E:Scientific Instruments.1989; 22(3):173
    [154]Fasching GE, Loudin WJ, Jr Smith NS. Capacitive system for three-dimensional imaging of fluidized-bed density. IEEE Transactions on Instrumentation and Measurement.1994; 43(1): 56-62
    [155]Peng L, Merkus H, Scarlett B. Using regularization methods for image reconstruction of electrical capacitance tomography. Particle and Particle Systems Characterization.2000; 17(3): 96-104
    [156]Wang H, Tang L, Cao Z. An image reconstruction algorithm based on total variation with adaptive mesh refinement for ECT. Flow Measurement and Instrumentation.2007; 18(5-6): 262-267
    [157]Huang Z, Xie D, Zhang H, Li H. Gas-oil two-phase flow measurement using an electrical capacitance tomography system and a Venturi meter. Flow Measurement and Instrumentation. 2005; 16(2-3):177-182
    [158]Yan H, Liu LJ, Xu H, Shao FQ. Image reconstruction in electrical capacitance tomography using multiple linear regression and regularization. Measurement Science and Technology.2001; 12(5):575
    [159]Sun M, Liu S, Li Z, Lei J. Application of electrical capacitance tomography to the concentration measurement in a cyclone dipleg. Chinese Journal of Chemical Engineering.2008; 16(4):635-639
    [160]Soleimani M, Lionheart WRB. Nonlinear image reconstruction for electrical capacitance tomography using experimental data. Measurement Science and Technology.2005; 16(10):1987
    [161]Yang WQ, Peng L. Image reconstruction algorithms for electrical capacitance tomography. Measurement Science and Technology.2003; 14(1):R1
    [162]Yang WQ, Spink DM, York TA, McCann H. An image-reconstruction algorithm based on Landweber's iteration method for electrical-capacitance tomography. Measurement Science and Technology.1999; 10(11):1065
    [163]Su B, Zhang Y, Peng L, Yao D, Zhang B. The use of simultaneous iterative reconstruction technique for electrical capacitance tomography. Chemical Engineering Journal.2000; 77(1-2): 37-41
    [164]Reinecke N, Petritsch G, Boddem M, Mewes D. Tomographic imaging of the phase distribution in two-phase slug flow. International Journal of Multiphase Flow.1998; 24(4): 617-634
    [165]Warsito W, Fan LS. ECT imaging of three-phase fluidized bed based on three-phase capacitance model. Chemical Engineering Science.2003; 58(3-6):823-832
    [166]Degaleesan S, Dudukovic M, Pan Y. Experimental study of gas-induced liquid-flow structures in bubble columns. AIChE Journal.2001; 47(9):1913-1931
    [167]Forret A, Schweitzer J, Gauthier T, Krishna R, Schweich D. Influence of scale on the hydrodynamics of bubble column reactors:an experimental study in columns of 0.1,0.4 and 1 m diameters. Chemical Engineering Science.2003; 58(3-6):719-724
    [168]Forret A, Schweitzer J, Gauthier T, Krishna R, Schweich D. Liquid dispersion in large diameter bubble columns, with and without internals. The Canadian Journal of Chemical Engineering.2003; 81(3-4):360-366
    [169]Shah YT. Gas-liquid-solid reactor design. New York:McGrw-Hill,1979.
    [170]Butt JB. A note on the method of moments. AIChE Journal.1962; 8(4):553-556
    [171]Mullin RBM, Jr M.Weber. The theory of short-circuiting in continuous flow mixing vessels in series and the kinetics of chemical reactions in such systems. Transactions of the American Institute of Chemical Engineers.1935; 31:409-458
    [172]Danckwerts PV. Continuous flow systems:Distribution of residence times. Chemical Engineering Science.1953; 2(1):1-13
    [173]Fields PR, Slater NKH. Tracer dispersion in a laboratory air-lift reactor. Chemical Engineering Science.1983; 38(4):647-653
    [174]Gavrilescu M, Tudose RZ. Residence time distribution of the liquid phase in a concentric-tube airlift reactor. Chemical Engineering and Processing.1999; 38(3):225-238
    [175]陈甘棠.化学反应工程.第3版;北京:化学工业出版社,2007.
    [176]C.Y. Wen, Fan LT. Models for Flow Systems and Chemical Reactors. New York:Marcel Dekker,1975.
    [177]Nauman EB. Mixing in Continuous Flow Systems. New York:John Wiley & Sons,1983.
    [178]Zhang T, Wang T, Wang J. Application of residence time distribution for measuring the fluid velocity and dispersion coefficient. Chemical Engineering & Technology.2007; 30(1): 27-32
    [179]Brewster BS, Seader JD. Nonradioactive tagging method of measuring particle velocity in pneumatic transport. AIChE Journal.1980; 26(2):325-327
    [180]Kojima T, Ishihara K, Guilin Y, Furusawa T. Measurement of solids behaviour in a fast fluidized bed. Journal of Chemical Engineering of Japan.1989; 22(4):341-346
    [181]Wei F, Wang Z, Jin Y, Yu Z, Chen W. Dispersion of lateral and axial solids in a cocurrent downflow circulating fluidized bed. Powder Technology.1994; 81(1):25-30
    [182]Wei F, Zhu J. Effect of flow direction on axial solid dispersion in gas-solids cocurrent upflow and downflow systems. The Chemical Engineering Journal.1996; 64(3):345-352
    [183]Harris AT, Davidson JF, Thorpe RB. A novel method for measuring the residence time distribution in short time scale particulate systems. Chemical Engineering Journal.2002; 89(1-3): 127-142
    [184]Talmor E, Benenati RF. Solids mixing and circulation in gas fluidized beds. AIChE Journal.1963; 9(4):536-540
    [185]Rhodes MJ, Zhou S, Hirama T, Cheng H. Effects of operating conditions on longitudinal solids mixing in a circulating fluidized bed riser. AIChE Journal.1991; 37(10):1450-1458
    [186]Sutherland KS. Solids mixing studies in gas fluidised beds. Part I. A preliminary comparison of tapered and non-tapered beds. Transactions of the Institution of Chemical Engineers.1961; 39:188-194
    [187]Cranfield RR. A probe for bubble detection and measurement in large particle fluidised beds. Chemical Engineering Science.1972; 27(2):239-245
    [188]Avidan A, Yerushalmi J. Solids mixing in an expanded top fluid bed. AIChE Journal.1985; 31(5):835-841
    [189]Valenzuela JA, Glicksman LR. An experimental study of solids mixing in a freely bubbling two-dimensional fluidized bed. Powder Technology.1984; 38(1):63-72
    [190]Hull RL, Von Rosenberg AE. Radiochemical tracing of fluid catalyst flow. Industrial & Engineering Chemistry.1960; 52(12):989-992
    [191]Ambler PA, Milne BJ, Berruti F, Scott DS. Residence time distribution of solids in a circulating fluidized bed:Experimental and modelling studies. Chemical Engineering Science. 1990; 45(8):2179-2186
    [192]Abellon RD, Kolar ZI, den Hollander W, de Goeij JJM, Schouten JC, van den Bleek CM. A single radiotracer particle method for the determination of solids circulation rate in interconnected fluidized beds. Powder Technology.1997; 92(1):53-60
    [193]Lin W, Weinell CE, Hansen PFB, Dam-Johansen K. Hydrodynamics of a commercial scale CFB boiler-study with radioactive tracer particles. Chemical Engineering Science.1999; 54(22):5495-5506
    [194]Thiel WJ, Potter OE. The mixing of solids in slugging gas fluidized beds. AIChE Journal. 1978; 24(4):561-569
    [195]Bellgardt D, Werther J. A novel method for the investigation of particle mixing in gas-solid systems. Powder Technology.1986; 48(2):173-180
    [196]Bi J, Yang G, Kojima T. Lateral mixing of coarse particles in fluidized beds of fine particles. Transactions of the Institution of Chemical Engineers.1995; 73:162-167
    [197]Levenspiel O. Chemical Reaction Engineering.3rd ed.; New York:John Wiley & sons, 1998.
    [198]Fogler HS. Elements of Chemical Reaction Engineering.4th ed.; Upper Saddle River, NJ: Prentice Hall PTR,2006.
    [199]Wu Y, Cheng Z, Huang Z. Backmixing reduction of a bubble column by interruption of the global liquid circulation. Industrial & Engineering Chemistry Research.2009; 48(14): 6558-6563
    [200]Alvare J, Al-Dahhan MH. Liquid phase mixing in trayed bubble column reactors. Chemical Engineering Science.2006; 61(6):1819-1835
    [201]Walter JF, Blanch HW. Liquid circulation patterns and their effect on gas hold-up and axial mixing in bubble columns. Chemical Engineering Communications.1983; 19(4):243-262
    [202]Yao BP, Zheng C, Gasche HE, Hofmann H. Bubble behaviour and flow structure of bubble columns. Chemical Engineering and Processing.1991; 29(2):65-75
    [203]Burns LF, Rice RG. Circulation in bubble columns. AIChE Journal.1997; 43(6): 1390-1402
    [204]Lorenz O, Schumpe A, Ekambara K, Joshi JB. Liquid phase axial mixing in bubble columns operated at high pressures. Chemical Engineering Science.2005; 60(13):3573-3586
    [205]Ranade VV. Modelling of turbulent flow in a bubble column reactor. Chemical Engineering Research and Design.1997; 75(1):14-23
    [206]Vial C, Poncin S, Wild G, Midoux N. A simple method for regime identification and flow characterisation in bubble columns and airlift reactors. Chemical Engineering and Processing. 2001; 40(2):135-151
    [207]Thet MK, Wang C, Tan RBH. Experimental studies of hydrodynamics and regime transition in bubble columns. The Canadian Journal of Chemical Engineering.2006; 84(1): 63-72
    [208]Groen JS, Oldeman RGC, Mudde RF, van den Akker HEA. Coherent structures and axial dispersion in bubble column reactors. Chemical Engineering Science.1996; 51(10):2511-2520
    [209]Mudde RF, Groen JS, Van Den Akker HEA. Liquid velocity field in a bubble column: LDA experiments. Chemical Engineering Science.1997; 52(21-22):4217-4224
    [210]Pfleger D, Becker S. Modelling and simulation of the dynamic flow behaviour in a bubble column. Chemical Engineering Science.2001; 56(4):1737-1747
    [211]Warsito W, Fan LS. Dynamics of spiral bubble plume motion in the entrance region of bubble columns and three-phase fluidized beds using 3D ECT. Chemical Engineering Science. 2005; 60(22):6073-6084
    [212]Pfleger D, Gomes S, Gilbert N, Wagner HG. Hydrodynamic simulations of laboratory scale bubble columns fundamental studies of the Eulerian-Eulerian modelling approach. Chemical Engineering Science.1999; 54(21):5091-5099
    [213]Buwa VV, Ranade VV. Dynamics of gas-liquid flow in a rectangular bubble column: experiments and single/multi-group CFD simulations. Chemical Engineering Science.2002; 57(22-23):4715-4736
    [214]Guenther C, Breault R. Wavelet analysis to characterize cluster dynamics in a circulating fluidized bed. Powder Technology.2007; 173(3):163-173
    [215]Deshpande SS, Joshi JB, Kumar VR, Kulkarni BD. Identification and characterization of flow structures in chemical process equipment using multiresolution techniques. Chemical Engineering Science.2008; 63(21):5330-5346
    [216]Tabib MV, Sathe MJ, Deshpande SS, Joshi JB. A hybridized snapshot proper orthogonal decomposition-discrete wavelet transform technique for the analysis of flow structures and their time evolution. Chemical Engineering Science.2009; 64(21):4319-4340
    [217]Yang TY, Leu LP. Multiresolution analysis on identification and dynamics of clusters in a circulating fluidized bed. AIChE Journal.2009; 55(3):612-629
    [218]Takei M, Zhao T, Yamane K. Measurement of particle concentration in powder coating process using capacitance computed tomography and wavelet analysis. Powder Technology. 2009; 193(1):93-100
    [219]Diery A, Rowlands D, Cutmore TRH, James D. Automated ECG diagnostic P-wave analysis using wavelets. Computer Methods and Programs in Biomedicine.2011; 101(1):33-43
    [220]Mallat SG. A theory for multiresolution signal decomposition:the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence.1989; 11(7):674-693
    [221]Daubechies I. Ten Lectures on Wavelets. Philadelphia, Pennsylvania:Society for Industrial and Applied Mathematics,1992.
    [222]Labat D. Recent advances in wavelet analyses:Part 1. A review of concepts. Journal of Hydrology.2005; 314(1-4):275-288
    [223]Zhao G, Yang Y. Multiscale resolution of fluidized-bed pressure fluctuations. AIChE Journal.2003; 49(4):869-882
    [224]Reis MS, Saraiva PM, Bakshi BR. Multiscale statistical process control using wavelet packets. AIChE Journal.2008; 54(9):2366-2378
    [225]Akhtar MA, Tade M, Pareek V. Simulations of Bubble Column Reactors Using a Volume of Fluid Approach:Effect of Air Distributor. Canadian Journal of Chemical Engineering. 2007;85:290-301.
    [226]Todt J, Liicke J, Schugerl K, Renken A. Gas holdup and longitudinal dispersion in different types of multiphase reactors and their possible application for microbial processes. Chemical Engineering Science.1977; 32:369-375
    [227]Patil VK, Joshi JB, Sharma MM. Sectionalised bubble column:Gas hold-up and wall side solid-liquid mass transfer coefficient. The Canadian Journal of Chemical Engineering.1984; 62(2):228-232
    [228]陈斌,王丽雅,李希.带阻尼内构件鼓泡塔的研究(Ⅰ)——内构件对流速分布的影响.化学反应工程与工艺.2006;22(4):317-323
    [229]王丽军,王丽雅,张煜,周青钠,李希.带阻尼内构件鼓泡塔的研究(Ⅱ)——内构件对气液传质速率的影响.化学反应工程与工艺.2007;23(2):109-113
    [230]Degaleesan S, cacute MPD. Liquid backmixing in bubble columns and the axial dispersion coefficient. AIChE Journal.1998; 44(11):2369-2378
    [231]Urseanu MI, Ellenberger J, Krishna R. A structured catalytic bubble column reactor: hydrodynamics and mixing studies. Catalysis Today.2001; 69(1-4):105-113
    [232]Dreher AJ, Krishna R. Liquid-phase backmixing in bubble columns, structured by introduction of partition plates. Catalysis Today.2001; 69(1-4):165-170
    [233]Zhang T, Wang J, Wang T, Lin J, Jin Y. Effect of internal on the hydrodynamics in external-loop airlift reactors. Chemical Engineering and Processing.2005; 44(1):81-87
    [234]Loubiere K, Olivo E, Bougaran G, Pruvost J, Robert R, Legrand J. A new photobioreactor for continuous microalgal production in hatcheries based on external-loop airlift and swirling flow. Biotechnology and Bioengineering.2009; 102(1):132-147
    [235]Mark A Y, Ruben G C, David F O. Airlift bioreactors:Analysis of local two-phase hydrodynamics. AIChE Journal.1991; 37(3):403-428
    [236]Wang T, Wang J, Zhao B, Ren F, Jin Y. Local hydrohynamics in an external loop airlift slurry reactor with and without a resistance-regulating element. Chemical Engineering Communications.2004; 191(8):1024-1042
    [237]Zhang K, Qi N, Jin J, Lu C, Zhang H. Gas holdup and bubble dynamics in a three-phase internal loop reactor with external slurry circulation. Fuel.2010; 89(7):1361-1369
    [238]Gavrilescu M, Tudose RZ. Mixing studies in external-loop airlift reactors. Chemical Engineering Journal.1997; 66(2):97-104
    [239]Zhang T, Wang T, Wang J. Application of residence time distribution for measuring the fluid velocity and dispersion coefficient. Chemical Engineering & Technology.2007; 30(1): 27-32
    [240]Liu M, Zhang T, Wang T, Yu W, Wang J. Experimental study and modeling on liquid dispersion in external-loop airlift slurry reactors. Chemical Engineering Journal.2008; 139(3): 523-531
    [241]Roy S, Joshi JB. CFD study of mixing characteristics of bubble column and external loop airlift reactor. Asia-Pacific Journal of Chemical Engineering.2008; 3(2):97-105
    [242]Dhaouadi H, Poncin S, Hornut JM, Wild G, Oinas P, Korpijarvi J. Mass transfer in an external-loop airlift reactor:experiments and modeling. Chemical Engineering Science.1997; 52(21-22):3909-3917
    [243]Guo YX, Rathor MN, Ti HC. Hydrodynamics and mass transfer studies in a novel external-loop airlift reactor. Chemical Engineering Journal.1997; 67(3):205-214
    [244]Marlanne Utiger. Frank Stuber. Anne-Marie Duquenne. Henri Delmas. Christophe Guy. Local Measurements for the study of External loop airlift hydrodynamics. The Canadian Journal of Chemical Engineering.1999,77,375-382
    [245]Bentifraouine C, Xuereb C, Riba J. An experimental study of the hydrodynamic characteristics of external loop airlift contactors. Journal of Technology and Biotechnology. 1997; 69(3):345-349
    [246]Mohanty K, Das D, Biswas MN. Hydrodynamics of a novel multi-stage external loop airlift reactor. Chemical Engineering Science.2006; 61(14):4617-4624
    [247]Young MA, Carbonell RG, Ollis DF. Airlift bioreactors:Analysis of local two-phase hydrodynamics. AIChE Journal.1991; 37(3):403-428
    [248]Vial C, Poncin S, Wild G, Midoux N. Experimental and theoretical analysis of the hydrodynamics in the riser of an external loop airlift reactor. Chemical Engineering Science. 2002; 57(22-23):4745-4762
    [249]Chisti MY. Airlift Bioreactors. London:Elsevier Applied Science,1989.
    [250]Kawagoe MK, Yoshida S, Ishii Y, Naoe K. Radial liquid velocity distribution in an external-loop airlift column with a tapered riser. The Canadian Journal of Chemical Engineering.1999; 77(5):811-815
    [251]Wu Y, Al-Dahhan MH. Prediction of axial liquid velocity profile in bubble columns. Chemical Engineering Science.2001; 56(3):1127-1130

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700