用户名: 密码: 验证码:
气液反应器局部分散特性的实验与数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气液和气液固反应器广泛应用于石油化工、生物化工和废水处理等工业过程中。气液反应过程的强化、反应装置的大型化趋势对于气液反应器的设计、优化提出了新的要求,高通气量操作条件下气液分散特性是目前研究工作的薄弱点,反应器内局部气液分散行为的深入解析可以为现有反应器的优化操作和新结构反应器的开发提供指导。本文采用实验测量和数值模拟相结合的方法对高通气量操作条件下气液反应器内的局部气液分散特性进行系统研究,取得了以下几个方面的研究结果。
     采用特制的双电导电极探针法对搅拌槽内气泡尺寸和局部气含率进行了测量,获得了中高通气量操作条件下搅拌槽内局部气液分散特性、以及操作条件对其的影响规律。结果表明:比之低通气量,在中高通气量下搅拌和通气对气液分散的控制能力逐渐减弱,全槽内气体分布的均匀性也变差;对于上层上翻斜叶桨和下层凹叶桨(PTU-CBT)双层组合式搅拌,通气量的增加导致下层搅拌桨向槽底部的气体循环能力减弱、下层搅拌桨局部区域气含率明显增加、上层搅拌桨区域气含率增加不明显;高通气量操作条件下宜采用靠近边壁通气的多管式气体分布器
     在欧拉双流体模型的基础上耦合气泡数密度(BND)模型、引入气泡破碎和聚并函数,建立了大范围通气量下搅拌槽内气液分散的计算流体力学(CFD)数值计算方法。以PTU-CBT组合桨为例获得了气液搅拌槽内的气相和液相速度场、气泡大小与分布、局部气含率等重要信息,数值模拟与实验数据吻合良好,表明该方法能很好地对较高通气量搅拌槽内气液分散特性进行模拟计算并可视化。进一步的模拟研究表明,通气量的增加使气液相局部循环涡流和返混减弱、搅拌桨端区域的最大气液相速度明显减小;随通气量提高气泡尺寸明显增大并且分布均匀性变差,高通气量下液面附近气泡聚并增加易形成气泛;搅拌转速提高使平均气泡尺寸减小、搅拌桨作用区的局部气含率提高、全槽平均气含率也提高。
     基于传热和相变理论,采用UDF方法将流体相变模型加入到CFD中进行耦合计算,获得了不通气沸腾体系搅拌槽内流体力学特性。沸腾体系搅拌槽内汽含率分布与通气搅拌槽有很大的不同,沸腾体系搅拌槽内汽含率主要集中在靠近液百区域和上层桨叶片后部,槽体下部区域的汽含率几乎为零。另一方面,建立了预测搅拌槽内气体停留时间分布的拉格朗日-示踪粒子法和欧拉-示踪剂方法,对气(?)在搅拌槽内的返混和分散特性进行了研究。数值模拟结果表明:气泡尺寸、搅拌转速和通气量对搅拌槽内气体的返混和分散有明显的影响。
     对多种双层桨组合进行实验和CFD数值模拟研究发现,在较高通气量相同操作条件下,PCBDT-CBDT桨组合的气液分散特性最佳;桨叶片上开孔的桨组合比其相对应叶片未开孔桨组合气液分散效率更高。对多种形式气体分布器数值模拟研究发现,在较高通气量下,且下层桨为径向流桨时宜采用大直径的气体分布器
     将气泡尺寸和局部气含率的实验测量与CFD数值模拟的研究扩展到鼓泡塔反应器。发现在鼓泡塔自下而上可分为鼓泡区、气泡过渡流域和充分发展流域,在过渡流域塔内气液分散特性随轴向高度变化敏感,在充分发展流域塔内气液分散基本不随轴向高度变化。根据塔内气液流型发展规律,提出了在鼓泡塔内设置多层气体分布器和增加导流筒内构件的创新构思,以调控塔内气液两相流。数值模拟研究表明:双层分布器相对单层分布器的鼓泡塔可改善在耗氧反应体系中氧浓度分布的均匀性,采用带导流筒的鼓泡塔可改善液体在塔内循环、使气液反应在全塔内更加均匀。
Gas-liquid and gas-liquid-solid mechanically stirred reactors are widely applied in many process industries, for example, petrochemical, biochemical and sewage treatment process. With the intensification of gas-liquid reaction process and the scale-up of equipment, new requirement raised for optimizing the existing reactors or designing novel reactors with high performance. Investigation on the local gas dispersion in these reactors can provide guidance in optimization and design. However, due to the complexity of the gas-liquid system and the restriction of measurement techniques, the study on local gas dispersion under high superficial gas velocity is still weak in recent research work. In present study, the local gas dispersion in gas-liquid reactors was investigated in detail under medium and high superficial gas velocity by both experimental measurement and numerical simulation. The main contributions of the paper include:
     The local gas holdup and bubble size distribution were measured with double-tip conductivity probes in a dual-impeller agitated vessel under medium and high superficial gas velocity. The effects of stirring speed, gas inlet rate, impeller combinations on gas dispersion performance were investigated. It was found that the effects of stirring speed and gas inlet rate on gas dispersion decrease under medium and high superficial gas velocity compared with that under lower superficial gas velocity. Gas dispersion became worsen under medium and high superficial gas velocity. For the stirred vessel with impeller combination of pitch up turbine as upper impeller and concave blade turbine as lower impeller (PTU-CBT), the lower impeller discharge capacity of dispersing gas to the bottom region decreases with increasing of the gas inlet rate, local gas holdup increases greatly in lower impeller region while lightly in upper impeller region and upper circulation region. It is reasonable to mount the pipe gas distributors near wall region in stirred vessel under high superficial gas velocity condition.
     The gas dispersion under relatively high superficial gas velocity was simulated numerically with computation fluid dynamics (CFD). The Euler-Euler multiphase flow model, multi-reference frame method and a transport equation for the bubble number density (BND) function were used in the numerical simulation. The gas and liquid velocity, gas holdup and bubble size were achieved. The simulation results are in good agreement with the experimental value measured with double-tip conductivity probes, which indicated that the numerical method in our work could well predict the gas dispersion in stirred vessel under relatively high superficial gas velocity. The numerical simulation results show that, with the increasing of gas inlet rate, the eddy flow and back mixing of gas and liquid weaken, the maximum velocity of gas and liquid in impeller region decreases. Under high superficial gas velocity, the uniformity of bubble size distribution decrease, bubbles are inclined to coalesce in surface region. With increasing of the stirring speed, the global mean bubble size falls and the global gas holdup increases.
     The fluid flow in a boiling stirred vessel and gas residence time distribution in an aerated stirred vessel were numerically simulated, respectively. The phase change mode couple CFD method was used to predict the hydrodynamics in boiling stirred vessel. The numerical simulation results show that, gas holdup distribution in boiling stirred vessel is quite different from that in aerated stirred vessel. When heat was introduced from the bottom of the vessel, the boiling zone is mainly in surface region. The gas holdup in surface region is very high while is almost zero in bottom region. DPM method and tracer method were adopted to predict the gas residence time distribution. The numerical simulation results show that, bubble size, stirring speed and gas inlet rate have great effects on gas disperson and back mixing in aerated stirred vessel.
     Among the investigation of many dual-impeller combinations with experimental and CFD method, it was found that PCBDT-CBDT impeller combination is the best for gas dispersion under the same operating condition. The numerical simulation results also show that impeller combination with holes on the blades is more effective for gas dispersion than the corresponding impeller combination without holes on the blades. Gas distributor with large diameter is better for gas dispersion for agitated vessel mounted lower radial impeller under medium and high superficial gas velocity.
     The gas dispersion in bubble columns was experimental investigated and numerically simulated. Flow pattern in bubble column can be divided into bubbling region, transient flow region and fully developed flow region from lower side to upper side. Gas holdup and bubble size change sharply with the axial height in transient flow region while almost keeps unchanged in fully developed flow region. To improve the fluid flow, novel technique of mounting double stage gas distributor and flow draft tube in the bubble column was adopted. Bubble column with double stage gas distributors can improve the uniformity of oxygen distribution for oxidation reaction system compared with that with single stage gas distributor. Bubble column with flow draft tube can improve the liquid circulation and make gas liquid reaction evenly in the bubble column.
引文
[1]Joshi J. B., Ranade V. V., Gharat S. D. Sparged loop reactor reactors [J]. Canada Journal of Chemical Engineering,1990,68:705-741.
    [2]Wild G. and Poncin S. Hydrodynamics of three-phase sparged reactions[C]. In:Nigam K D P and Schumpe A (eds.).Three-phase sparged reactions. New York:Gordon and Breach Science Publishers, Topics in Chemical Engineering series,1996:11-13.
    [3]Bao X. J., He K. A. Insight into distillation/absorption columns and FCC risers using gamma scanning technique [J]. Chinese J. Chem. Eng.,1995,3 (3):171-179.
    [4]徐世艾.气液固三相搅拌设备研究[D].杭州.浙江大学,1999.
    [5]高正明.气液搅拌槽内气-液分散特性及流体力学性能的研究[D].北京.北京化工学院,1992.
    [6]Kramers H., Baars G. M., Knoll W. H. A comparative study on the rate of mixing in stirred tanks[J]. Chemicial Engineering Science,1953 2(1):35-42.
    [7]Brennan D. J., Lehrer I. H. Impeller mixing in vessels experimental studies on the influence of some parmeters and formulation of a general mixing time equation[J]. Chemical Engineering Research and Design,1976,54 (A3):139-152.
    [8]Hoogendoom C. J., Den Hartog A. P. Model studies on mixers in the viscous flow regime [J]. Chemical Engineering Science,1967,22 (12):1689-1699.
    [9]Camarasa E, Vial C, Poncin S. Influence of coalescence behaviour of the liquid and of gas sparging on hydrodynamics and bubble characteristics in a bubble column [J]. Chemical Engineering Processing,1999,38:329-344.
    [10]Li H., Prakash A. Influence of slurry concentrations on bubble population and their rise velocities in a three-phase slurry bubble column [J]. Powder Technology,2000,113: 158-167.
    [11]孙科霞,陈学俊,张鸣远,杨健.应用双头电导探针技术测量气液两相泡状流局部参数[J].计量学报1999,20(4):297-303.
    [12]Tiefeng Wang, Jinfu Wang, Weiguo Yang, Yon Jin. Bubble behavior in gas-liquid-solid three-phase circulating fluidized beds[J]. Chemical Engineering Journal,2001,38(14): 1-8.
    [13]张志斌,戴干策,陈敏恒.搅拌槽中气泡大小分布规律的研究[J].化工学报,1989(2):183-189.
    [14]高正明,姚文杰等.应用热膜风速仪测定搅拌槽内气-液两相流的流体力学参数[J].化学反应工程与工艺,1994,10(1):90-97.
    [15]高永慧,吴小薇,沈本善.用声学方法测量气液混相物质中的含气量[J].石油大学学报,1999,23(1):108-111.
    [16]马志杰.CCD法测量精馏设备巾气泡尺寸分布[J].化工纵横,2001,(11);8-1 1.
    [17]王铁峰.气液浆态反应器流体力学行为的实验研究与数值模拟[D].清华大学博士学位论文.2004.
    [18]Khopkar A. R., Rammohan A. R. Gas-liquid flow generated by a Rushton turbine in stirred vessel:CARPT/CT measurements and CFD simulations[J].Chemical Engineering Science,2005,60:2215-2229.
    [19 Beck M.S., G reen R. G., Thom R. Non-intrusive measurement of solids mass flow in pneumatic conveying. JP hysE:Sc iIn strum,1987,20:835-840.
    [20]高正明,王英琛,施力田,傅举孚.搅拌槽内的气泡尺寸分布[J].高校化学工程学报,1999,8(3):283-287.
    [21]肖作兵.新型轴向流搅拌器的气液分散特性研究[J].上海轻工业高等专科学校学报,1998,19(4):15-18.
    [22]Laakkonen M., Moilanen P., Aittammaa J. Local bubble size distribution in agitated vesses[J]. Chemical Engineering Journal,2005,106:133-143.
    [23]Schafer M., Wachter P., Durst F. Experiment investigation of local bubble size distributons in stirred vessels using Phase DobblerAnemometry[C]. in:H.E.A.van den Akker.J.J.Derksen (Eda). Proceedings of the 10th Euopean Conference on Mixing, Elsevier, Delft, The Netherlands,2000:202-212.
    [24]Alves S. S., Maid C. J., Vasconcelos J. M. T., Serralheiro A.. J. Bubble size in aerated stirred tanks. Chemical Engineering Journal,2002,89:109-117.
    [25]Alves S. S., Maid C. J., Vasconcelos J. M. T. Experimental and modeling study of gas dispersion in a double turbine stirred tank[J]. Chemical Engineering Science,2002,57: 487-496.
    [26]Greaves M., Barigou M. The internal structure of gas-liquid dispersions in a stirred reactor[C]. Proceeding of the Sixth European Conference on Mixing, Pavia, Italy, BHRA, Springer, Berlin,1988:313-320.
    [27]沈春银.组合桨多相混合性能[D].华东理工大学博士学位论文.2002.
    [28]Burgess J. M., Calderbank P. H. Chemical Engineering Science,1975, (30):713.
    [29]Weiland P. H. German Chemical Engineering,1980,3:296.
    [30]张志斌,张建正,戴干策,陈敏恒.搅拌反应器内双层桨作用下的气泡大小分布的放大规律研究[J].化学反应工程与工艺,1989.5(3):59-64.
    [31]Bouaifi M., Hebrard G., Bastoul D., Roustan M. A comparative study of gas hold up,bubble size,interfacial area and mass transfer coefficients in stirred gas-liquid reactors and bubble columns[J]. Chemical Engineering and Processing,2001,40:97-111.
    [32]Shen Chun-yin, Chen Jian-pei, Jia Rong, Dai Gan-ce. Gas Dispersion in Mechanically Agitated Gas-Liquid Reactors Using Mixed Hydrofoil and Rushton Turbine Impellers[C]. First Sino-Japanese Conference on Polymerization Reaction Engineering and Mixing Technology,2005.
    [33]Shan Y. T., Kelkar B. G. Design parameter estimations for bubble column reactors[J]. AIChE J.,1982,28 (3):353-363.
    [34]张同旺,何广湘,靳海波.浆态床鼓泡反应器流体力学的研究进展[J].北京石油化工学院学报.2001,9(2):47-53.
    [35]肖作兵,戴干策.液体性质对翼型轴桨气液分散性能的影响[J].化学工程师,1997,63(6):22-31.
    [36]Cents A.H.G., Jansen D.J.W., Brilman W. F. Influence of small amout of additives on gas hold-up, bubble size and interfacial area[J]. Ind Eng.Chem.Res.,2005,44:4863-4870.
    [37]胡华,朱德权,刘永民,杜建新,丁福新,袁乃驹.电解质对溶液中气泡大小的影响[J].清华大学学报(自然群学版),1995,35(3):106-110.
    [38]Akita K., Yoshida F. Bubble size interfacial area and liquid-phase mass transfer coefficient in bubble columms[J]. Ind Eng Chem Proc. Des. Dev.,1974,13 (1):84-91.
    [39]Schugerl K., Lucke J. Bubble column bioreactors[J]. ADV IN Bioche. Eng.,1977,7: 1-84.
    [40]Machon V. A., Pacek W., Nienow A.W. Bubble sizes in electrolyte and alcohol solutions in a turbulent stirred vessel [J]. Chemical Engineering Research Design,1997,75 A: 339-348.
    [41]Parthasarathy R., Ahmed N. Bubble breakup in stirred vessels-predicting the sauter mean diameter[J]. Trans. Instrum.Chem.Eng.,1991,69:295-301.
    [42]Caldebank P H. The interfacial area in gas-liquid contacting with mechanical agitation[J]. Tran.InstChem.Eng.,1958,36:443.
    [43]龙建刚,包雨云,高正明.搅拌槽内不同桨型组合的气-液分散特性[J].北京化工大学学报.2005,32(5):1-5.
    [44]沈春银,陈佩剑.张家庭,戴干策.气液两相机械搅拌釜中水翼-涡轮组合桨的功率消耗[J].华东理工大学学报,2002,28(6):578-583.
    [45]陈凯,王嘉骏,顾雪萍,冯连芳,王凯.双层搅拌器组合的气液分散性能研究[J].化学工程,2004,32(3):24-27.
    [46]Shewale S. D., Pandit A. B. Studies in multiple impeller agitated gas-liquid contactors [J]. Chemical Engineering Science,2006,61:489-504.
    [47]庄庆龙,陈剑佩,纪瑞青.桨型和导流筒型式对气液两相体系气含率的影响[J].化工进展.2006,25:179-184.
    [48]Paglianti, Akenaka K.T., Ujalski W. B., Akahashi K. T. Estimationof Gas hold-up in aerated vessels[J]. The CandiaL Journal of Chemical Engineering,2000,78 (2):386 -392.
    [49]Archis A. Yawalkar, Vishwas G. Pangarkar, Anthony A.C.M. Beenac er s. Gas Hold-up in Stirred Tank Reactors[J].The Candial Journal of Chemical Engineering,2002,80 (2): 158-166.
    [50]Arjunwadkar S. J., Sarvanan K., Kulkarni P. R., Pandit A. B. Gas-liquid mass transfer in dual impeller bioreactor[J]. Biochemical Engineering Journal,1998:99-106.
    [51]郝志刚,包雨云,高正明.多层组合桨搅拌槽内气-液分散特性的研究[J],高校化学工程学报,2004,18(5):547-552.
    [52]高正明,王英琛,施力田,傅举孚.搅拌槽内局部气含率及其分布规律的研究[J],化学反应工程与工艺1994,10(3):311-315.
    [53]Nienow A. W., Wisdom D.J., Middleton J.C. The effect of scale and geometry on flooding, recirculation and power in gassed stirred vessels[C].2th European Conference on Mixing England: Cambridage,1977, F1.1-F1.16.
    [54]Nagase Y., Yasui H. Fluid motion and mixing in a gas liquid contactor with turbine agitators[J]. Chemical Engineering Journal,1983,27 (1):37-47.
    [55]Lu W. M., Ju S. J. Local gas holdup, mean liquid velocity and turbulence in an aerated stirred tank using hot-film anemometry[J]. Chemical Engineering Journal,1987,35(1): 9-17.
    [56]Gao Zhengming, Smith J. M., Miiller-Steinhagen H. Void fraction distribution in sparged and boiling reactors with modern impeller configuration [J]. Chemical Engineering and Processing,2001,40:489-497.
    [57]Mann R. Gas-liquid stirred vessel mixer, towards a unified theory based on networks of zones[J]. Chemical Engineering Research and Design,1986,64 (1):23-24.
    [58]Vlaev S. D., Martinov M. Non-uniformity of gas dispersion in turbine-generated viscoelastic circulation flow[J]. Candial Journal of Chemical Engineering,1998,76 (2): 405-412.
    [59]刘飞鸣,施建强,林兴华,林明富.三层组合式气液搅拌桨的功率特性[J].石油化工设备2003,32(4):5-7.
    [60]Dohi., TakahashiT., Minekawa K., Kawase Y. Power consumption and solid suspension performance of large-scale impeller in gas-liquid-solid three-phase stirred tank reactors[J]. Chemical Engineering Journal,2004,97:103-114.
    [61]肖维缄,王嘉骏,顾雪萍,冯连芳.对二甲苯氧化反应器冷态模拟实验研究[J].石油化工,2004,33(7):632-635.
    [62]Hudcova V, Machon V. Gas-liquid dispersion with dual Rushton turbine impeller[J]. Biotechnology and Bioengineering,1996,34:617-626.
    [63]Cui Y.Q., van der Lans R. G. M., Luyben K.C. A. M. Local power uptake in gas-liquid systems with single and multiple rushton turbines[J].Chemical Engineering Science,1996,51 (11):2631-2636.
    [64]Michel B. J., Miller S. A.. Power requirements of gas-liquid agitated systems[J]. AIChEJ.,962,18 (2):262-266.
    [65]Rewatkar V. B., Deshpande A. J., Pandit A. B. and Joshi J. B. Gas holdup behavior of mechanically agitated gas-liquid reactors using pitched blade down flow turbine[J]. Candial Journal Chemical Engineering,1993,71:226-237.
    [66]Hicks R. W. and Gates L. E. How to select turbine agitators for dispersing gas into liquids[J]. Chemical Engineering,1976,83(14):141-148.
    [67]Hudcova V., Machon V. and Nienow A W. Gas-liquid dispersion with dual Rushton turbine impellers[J]. Biotechnology and Bioengineering,1989,34:617-628.
    [68]Nienow A. W. Gas dispersion performance in fermenter operation[J]. Chemical Engineering and Progress,1990:61-71.
    [69]Myers K. J. and Russel M.I. Gassed power draw of mixed impeller systems[J]. Candial Journal of Chemical Engineering,1997,75:620-625.
    [70]Rewatkar B. and Joshi J. B. Effect of addition of alcohol on the design parameters of mechanically agitated three-phase [J]. The Chemical Engineering Journal,1992,42: 107-117.
    [71]Dutta N. and Pangarkar V. G. Critical impeller speed for solid suspension in multi-impeller three phase agitated contactors [J]. Canadian Journal of Chemical Eingineering,1995,73:273-283.
    [72]Bouaifi M., Roustan M. Power consumption, mixing time and homogenization energy in dual-impeller agitated gas-liquid reactors[J]. Chemical Engineering process,2001,40 (2): 87-95.
    [73]Shewale S. D., Pandit A. B. Studies in multiple impeller agitated gas-liquid contactors [J]. Chemical Engineering Scinece,2006,61 (2):489-504.
    [74]刘建新,徐彦.精对苯二甲酸氧化反应器中气体停留时间分布[J].化学工程,2008,36(5):28-31.
    [75]Hanhart J., Kramers H., Westerterp K. The residence time distribution of gas in an agitated gas-liquid reactor[J]. Chemical Engineering Science,1963,18 (8):503-509.
    [76]Chapman C. M., Gibilaro L. G., Nienow A. W. A dynamical response technique for the estimation of gas-liquid mass transfer coefficients in gas-liquid stirred vessels[J]. Chimical Engineering Science,1982,37 (6):891-896.
    [77]王凯,冯连芳.混合设备设计,机械工业出版社,北京,2000.4.
    [78]Bujalski W. and Nienow A W. The use of upward pumping 45° pitched blade turbine impellers in three-phase reactors [J]. Chemical Engineering Science,1990,45 (2): 415-421.
    [79]顾坚,魏靖,吴肖群,吕德伟.机械搅拌槽中三相体系粒子悬浮特性研究[J].化学工程,1999,27(4):19-23.
    [80]徐魁,崔英德,戴干策.翼形桨在气液固三相搅拌釜中的混合性能[J].化工学报,1997,48(6):756-763.
    [81]Joosten E. H., Schilder J. G. M. and Janssen J. J. The influence of suspended solid material on the gas-liquid mass transfer in stirred gas-liquid contractors[J]. Chemical Engineering Science,1977,32:563-566.
    [82]Satio A.and Kamiwano M. Power consumption, gas dispersion and solid suspension in three phase mixing vessels[C].6th European Conference on Mixing,1988,407-412.
    [83]Bao Yuyun, Hao Zhigang, Gao Zhengming, Shi Litian, Smith, J. M. Suspension of buoyant particles in a three phase stirred tank[J]. Chemical Engineering Science,2005, 2283:2292.
    [84]Hu B., Pacek A.W., Stitt E.h., Nienow A.W. Bubble sizes in agitated air-alcohol systems with and without particles:Turbulent and transitional flow [J]. Chemical Engineering Science,2005,60:6371-6377.
    [85]李天成,辛峰,朱慎林.外环流反应器结构与操作参数对气含率的影响[J].清华大学学报(自然科学版),2003,43(12):1620-1630.
    [86]Chapman M., Nienow A. W., Cooke M. and Middleton J. C. Particle-gas-liquid mixing in stirred vessels, Part Ⅱ:gas-liquid mixing[J]. Chemical Engineering Research and Design,1983,61:82-95.
    [87]Chapman M, Nienow A. W., Cooke M. and Middleton J. C. Particle-gas-liquid mixing in stirred vessels, Part Ⅲ:gas-liquid mixing[J]. Chemical Engineering Research and Design,1983,61:167-181.
    [88]吕效平.多相机械搅拌气升式环流反应器中的气-液传质[J].南京化工大学学报,1998,20(3):51-55.
    [89]张淑华,李涛,朱炳辰,朱子彬.三相机械搅拌反应器气液传质[J].化工学报,2005,56(2):220-226.
    [90]白亮,赵玉龙.高温高压下三相机械高压搅拌釜中气体质量传递特性的研究[J].燃烧化学学报,1997,25(3):84-288.
    [91]Cieszkowski S., Dylag M. Gas-liquid-solic mixing in a stirred tank [C].6# European Conference on Mixing,1988,421-426.
    [92]Smith, J. M., Gao Z. Vertical void distribution in gas-liquid reactors[C]. Proceedings of Third International Symposium on Mixing in Industrial Process, Osaka, Japan,1999, 189-196 (Mixing WP, Soc. Chem. Eng.Japan).
    [93]Smith J.M., Gao Z., Middleton J.C. The unsparged power demand of modern gas dispersing impeller in boiling liquids[J]. Chemical Engineering Journal,2001,84: 15-21.
    [94]黄小华,包雨云,高正明.热态气-液-固三相搅拌反应槽的气-液分散特性[J].北京化工大学学报,2007,34(2):117-121.
    [95]张新年,包雨云,高正明.温度对气-液-固三相搅拌反应器内气液分散特性的影响[J].中国科技论文在线,2008,3(3):184-188.
    [96]Dohi D., Matsuda Y., Shimizu K., Minekawa K., Kawase Y. An experimental investigation into vapor dispersion and solid suspension in boiling stirred tank reactors[J], Chemical Engineering Processing,2002,41:267-279.
    [97]Gao Z., Smith J.M., Muller-Steinhagen H. Gas dispersion in sparged and boiling reactors[J]. Chemical Engineering Research and Design,2001,79:973-978.
    [98]Zhao D., Gao Z. Muller-Steinhagen H., Smith J.M. Liquid-phase mixing times in sparged and boiling agitated reactors with high gas loading[J]. Incd. Eng.Chem.Res.,2001,40: 1482-1489.
    [99]白丁,包雨云,高正明.不通气的沸腾气-液-固三相搅拌槽中的气液分散和固体悬浮[J].高校化学工程学报,2007,5(21):753-759.
    [100]Jahoda M., Tomaskova L., Mostek M. CFD prediction of liquid homogenization in a gas-liquid stirred tank[J]. Chemical Engineering Research and Design,2009,87: 460-467.
    [101]张政,谢灼利.流体-固体两相流的数值模拟[J].化工学报,2001,52(1):1-12.
    [102]王维,李佑楚.颗粒流体两相流模型研究进展[J].化学进展,2000,12(2):208-217.
    [103]Cook T. L., Harlow F. H. Virtual mass in multiphase flow[J]. int J.Multiphase,1984,10 (5):691-73.
    [104]Lance M., Naciri A.. Lift and added mass coefficient for a single bubble[J]. First European Fluid Mechanics Conference, September 1991, Cambridge, U.K.
    [105]Drew D. A., Lahey R. T. The virtual mass and lift force on a sphere in rotating and straining inviscid flow[J].Int.J. Multiphase Flow.1987.13:113-121.
    [106]Calor, B., Waslo, S. Chemical Engineering Science,1986,23:1434-1446.
    [107]Ishii M., Zuber N. Drag coefficient and relative velocity in bubbly, droplet or particulate f1ows[J]. AIChE J.,1979,25 (5):843-855.
    [108]Schiller L., Naumann Z. A drag coefficient correlation[J]. Z.Ver.Deutsch.Ing.,1935,77, 318.
    [109]Grace J. R., Wairegi T and Nguyen T.H. Shapes and velocities of single drops and bubbles moving freely through immiscible liquids[J]. Trans. Inst. Chem. Eng.,1916,54:167-173.
    [110]Lopez de Bertodano M. Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY/USA 1991.
    [111]Lo S., Dohi N., Itano N. Modelling of multiphase flows in multi-impellers stirred vessels[J]. Proceedings of the hydrotransport, Maastricht,1999,14:8-10.
    [112]Belhila and Simonin. Eulerian prediction of turbulent bubbly flow downstream of a sudden pipe expansion[J]. Proceedings of the Sixth Workshop on two-phase flow prediction. Erlangen, Germany,1992,264-273.
    [113]Antal S. P., Lahey R. T. and Flaherty J. E. Analysis of phase distribution in fully developed laminar bubble two-phase flow[J].Int J. Multiphase Flow,1991,17:635-652
    [114]Odar F., Amilton W. S. J. Forces on a sphere accelerating in a viscous fluid[J]. Fluid Mech.,1964,18:302-303.
    [115]Vojir D. J., Michaelides E E. Int J. Multiphase Flow,1994,20 (3):547-556.
    [116]McLaughlin J. B.J. Effect of the history term on the motion of rigid spheres in a viscous fluid[J]. Fluid Mech.,1993,246:249-265.
    [117]Elgobashi S. E., Rizk, M. A. A two-equation turbulence model for dispersed dilute confined two-phase flows[J]. International Journal of Multiphase Flow,1989,15 (1): 119-133.
    [118]Ranade V. V. and Van den Akker H E A. A Computational Snapshot of Gas-liquid Flow in Baffled Stirred Reactors [J]. Chemical Engineering Science,1994,49 (24b):517-519.
    [119]孙海燕.搅拌槽内流场数值模拟和表面曝气的研究[D].北京:中国科学院研究生院,2003.
    [120]宋月兰,高正明,李志鹏.多层新型桨搅拌槽内气-液两相流动的实验与数值模拟[J].对程工程学报,2007,7(1):24-28.
    [121]Khopkar A. R., Rammohan A. R., Ranade V. V., Dudukovic M.P. Gas-liquid flow generated by a Rushton turbine in stirred vessel:CARPT/CT measurements and CFD simulations [J]. Chemical Engineering Science,2005,60:2215-2229.
    [122]夏建业,唐演,张嗣良.搅拌槽中不同搅拌系统气液氧传递的CFD模拟[C].第一届全国工业搅拌技术会议论文集,2008,106-113.
    [123]吴高杰,祝贺,雷建奇,陈剑佩.搅拌对反应器中氧传递影响的CFD模拟[C].第一届全国工业搅拌捞术会议论文集,2008,122-133.
    [124]霍旺,高翔,王惠挺,骆仲泱,施平平,芩可法.搅拌容器内氧气非均相传质过程的数值模拟[J].浙江大学学报,2008,42(12):2216-2221.
    [125]Hulburt H. and Katz S. Some problems in particle technology, A statistical mechanical formulation[J]. Chemical Engineering Science,1964,19:555-574.
    [126]Lane G. L., Schwarz M. P., Evans G. M. Numerical modeling of gas-liquid flow in stirred tanks[J]. Chemical Engineering Science,2005,60:2203-2214.
    [127]Wu Q., Kim S., Ishii M., Beus S. G. One-group interfacial area transport in vertical bubbly flow[J]. Int. J. Heat Mass Transfer,1998,41:1103-1112.
    [128]Kerdouss F., Bannari A., Proulx P. CFD modeling of gas dispersion and bubble size in a double turbine stirred tank. Chemical Engineering Science,2006,61:3313-3322.
    [129]马志杰,宋海华,张敏卿.利用Monte Carlo方法预测精馏塔板上气泡尺寸分布及比相界面积[J].高校化学工程学报,2003,17(2):19-24.
    [130]Laakkonen M, Moilanen P., Alopaeus V., Aittamaa J. Modelling local bubble size disttributions in agitated vessels[J]. Chemical Engineering Science,2007,62:721-740.
    [131]洪厚胜,张庆文,欧阳平凯.用CFD研究气升式内环流生物反应器下降管中的流体力学性质[J].高校化学工程学报,2006,20(1):85-89.
    [132]王卫京,毛在砂.气液两相搅拌槽内气泡直径的数值模拟[J].大逆大学学报,2006,27(2):31-34.
    [133]Murthy B.N., Ghadge R.S., Joshi J.B. CFD simulation of gas-liquid-solid stirred reactor: Prediction of critical impeller speed for solid suspension[J]. Chemical Engineering Science,2007 (62):7184-7195.
    [134]Ranganathan P., Sivaraman S., Gerald D. S. CFD modeling of gas-liquid-solid mechanically agitated contactor[J]. Chemical Engineering Research and Design,2008 (6):1331-1344.
    [135]Nishio T., Takahashi K. Bubble size distribution near the vessel wall in a gas sparged vessel agitated by pitched blade paddle up-pumping[J], Journal of Chemical Engineering of Japan,2007,40(4):312-318.
    [136]Laakkonen M, Moilanen P. Local bubble size distributions in agitated vessel comparison of three experimental techniques [J], Chemical Engineering Research and Design,2005, 83 (AI):50-58.
    [137]Forrester S. E., Rielly C. D. and Carpenter K. J. Gas-inducing impeller design and performance characteristics [J]. Chemical Engineering Science,1998,53 (4):603-615.
    [138]Breucker C, Steiff A. and Weinspach P. M. Interactions between stirrer, sparger and baffles concerning different mixing problems [C]. Proc 6th European Conference on Mixing,1988,399-406.
    [139]章兆波.组合桨气-液搅拌反应器传递现象研究[M],浙江大学,2001.
    [140]马志超,包雨云,高娜,高正明.不同叶片形状盘式涡轮搅拌桨的气-液分散特性[J].过程工程学按烈2009,9(5):854-858.
    [141]Takahashi K., Mcmanamey W.J., Nienow A.W. Bubble size distribution in impeller region in a gas sparged vessel agitated by a Rushton turbine [J]. J.Chem. Eng. Japan., 1992,25,427-434.
    [142]Chen Lei, Bao Yuyun, Gao Zhengming. Void fraction distribution in cold gassed and hot sparged phase strirred tanks with multi-impeller [J]. Chinese Journal of Chemical Engineering,2009,17(6):887-895.
    [143]Lahey R, Lopez de Bertodano M., Jones O. Phase distribution in complex geometry conduits[J]. Nuclear Engineering and Design,1993,141 (1-2):177-201.
    [144]Sato Y., Sadatomi M. Momentum and heat transfer in two phase bubble flow [J]. int. J. Multiple Flow,1981,7:167-177.
    [145]Chesters A. K. The modeling of coalescence processes in fluid-liquid dispersions:A review of current understanding[J]. Transactions of the Institution of Chemical Engineers,1991,69:259-270.
    [146]Lane G. L., Schwarz M. P., Evans G. M. Predicting gas-liquid flow in a mechanically stirred tank[J]. Applied Mathematical Modeling,2002,26 (2):223-235.
    [147]Venneker B.J., Derksen J.J., Akker H. A. Population balance modeling of aerated stirred vessels based on CFD[J], AIChE J,2002,48 (4):673-685.
    [148]Moilanen P., Laakkonen M., Visuri O., Alopaeus V., Aittamaa J. Modelling mass transfer in an aerated 0.2m3 vessel agitated by Rushton, Phasejet and Combijet impellers [J]. Chemical Engineering Journal,2008,142 (1):95-108.
    [149]Luo H., Svendsen H. Theoretical model for drop and bubble break-up in turbulent dispersion [J]. AIChE Journal,1996,42(5):1225-1233.
    [150]Prince M. J., Blanch H. W. Bubbly coalescence and break-up in air-sparged bubble columns [J]. AIChE Journal,1990,36 (10):1485-1499.
    [151]陈甘棠.化学反应工程,化学工业出版社,北京,2000.1.
    [152]Haider A., Levenspiel O. Drag coefficient and terminal velocity of spherical and nonspherical particles[J]. Powder Technology,1989,58:63-70.
    [153]Thijert M. P. G., Oyevaar M.H., Kuper W.J. and Westerterp K.R. Residence time distribution of the gas phase in a mechanically agitated gas-liquid reactor [J]. Chemical Engineering Science,1992,47 (13/14):3339-3346.
    [154]王丽雅.鼓泡塔中流动与传递参数的检测[M].杭州.浙江大学,2006.
    [155]Wu Y. X., Ong B. C, Aldahhan M. H. Predictions of Radial Gas Holdup Profiles in Bubble Column Reactors [J]. Chemical Engineering Science,2001,56(3):1207-1210.
    [156]Luo H.&Svendsen, H.F., Turbulent circulation in bubble columns from eddy viscosity distributions of single-phase pipe flow [J]. Canadian Journal of Chemical Engineering, 1991,69,1389-1394.
    [157]Dhanasekharan K., Sanyal J., Jain A., Haidari A. A generalized approach to model oxygen mass transfer in bioreactors using population balance and computation fluid dynamics [J]. Chemical Engineering Science,2005,60 (1):213-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700