用户名: 密码: 验证码:
汽液固三相流的CCD可视化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽液固三相循环流换热器具有良好的防、除垢和强化传热的作用,在各工业领域具有广泛应用前景。但是,目前对该系统的流动、强化传热、以及防除垢机理的研究尚有不足之处,这与该系统本身比较复杂和已有的研究多是在不透明的设备中进行等因素有关。本文采用CCD测量和图像处理技术对汽液固三相自然循环流动沸腾系统进行了可视化研究。
    首先在总结了多相流强化传热和防除垢技术的研究现状、测试手段及其图像处理方法研究进展的基础上,提出了本文的研究思路与方法。
    本文利用一套采用透明膜电加热的汽液固三相自然循环流沸腾蒸发装置系统为实验台,在自行开发的CCD测量和图像处理软件及硬件系统以及片光源系统的基础上,对热模情况下的汽液固三相自然循环流内部的分散相的流动及分布情况,汽液固三相流传热特性等进行了研究。结果表明:固含率的轴向分布具有波动的特性,而且随热通量的逐渐增加先增加后减小,随固体颗粒加入量的增加而增加。在液固两相区内,固体颗粒的径向分布规律是管壁附近多而管中心少,而在汽液固三相区,其分布规律恰恰相反。固体颗粒的轴向速度的轴向分布也是波动的,轴向速度随热通量的增加而增加,而固体颗粒对其影响是多方面的。无论是轴向、径向固含率还是固体颗粒的径向速度都是随时间波动的。汽液固三相流动沸腾传热系数随热通量和固体颗粒加入量的增加而增加,是汽液两相流动沸腾传热系数的1.5-3.5倍。
    在本文中初步讨论了流化床中的汽含率、液含率以及汽泡速度等随操作参数的变化规律。并根据实验结果,将渐进模型和表面更新机理结合起来,建立了汽液固三相流动沸腾传热系数模型。模型计算结果与实验结果吻合较好。
The vapor-liquid-solid (V-L-S) circulating fluidized bed heat exchanger can effectively enhance heat transfer and prevent and remove the fouling, and has been widely applied in many industrial process. However, the mechanisms of flow and heat transfer are still not well understood due to the system complex and the limitation of the measuring methods due to the opaque characteristic of the system in practice. In this paper, a CCD measuring system and techniques of image dealing are used to carry out a visual investigation on a vapor-liquid-solid three-phase natural circulating flow boiling system.
    Based on summarizing the development and research situations of techniques of enhancing heat transfer and preventing and removing the foulings for multi-phase flow, measuring means and method of image dealing. The idea of this paper is given.
    A set of new type vapor-liquid-solid three-phase natural circulating flow boiling system, whose flow-up bed and flow-down bed are glasses plated with transparent electrically heating film, is established as experiment apparatus. Flow characteristics, distributions of suspensions and characteristics of heat transfer in the V-L-S system are investigated by using the CCD measuring system, software of image dealing developed by own-self, system of laser sheet and other hardware system. The results show that the axial distributions of solid holdup occupy the character of fluctuation. Solid holdup increases with the increase of the amount of solid particles and the increase of heat flux when it is relatively low, but decreases when heat flux is relatively high. The radial distribution rule in liquid-solid two-phase region is that radial solid holdup is greater near the wall than in the center of the heating tube, which is contrary to that in V-L-S three-phase region. Axial velocity of solid particles increases with the increase of heat flux, whose distributions also occupy the character of fluctuation. However, the amount of solid particles influences axial velocity of solid particles on many aspects. Axial and radial holdups of solid particles and radial velocity of solid particles are all fluctuating with time. Heat transfer coefficient of V-L-S three-phase flow increases with the increase of heat flux and the additive amount of solid particles, which is 1.5 or 3.5 times larger than that of vapor-liquid flow.
    
    In addition, the changes of holdups of liquid and vapor and velocity of bubble with the operation parameters are discussed in this paper. A flow boiling heat transfer model of the V-L-S three-phase flow incorporating the asymptotic model and the mechanism of surface renewal is proposed here. The values calculated by this model agree well with the experimental data.
引文
[1] 张利斌,多相流循环流化床内流动的理论和实验研究:[学位论文],天津大学,1999,6
    [2] 贾丽云,液固循环流化床和流化床换热器流动特性的研究:[学位论文],天津大学,1998
    [3] 刘俊杰,管内液固循环流化床流动特性研究:[学位论文],河北工业大学,2002
    [4] L. P. Match,D. G.Klaren, Scale control in High Temperature Distillation Utilized Fluidized Bed Heat Exchanger,Research and Development Rept.,571(1970)
    [5] C. A. Allen,E. S. Grimmett, Liquid-Fluidized-Bed Heat Exchanger Design parameters. Department of Energy Idaho Operation office,Under Contrast,(4) 1570 (1978)
    [6] J. F. Richardson,W. N. Zaki, Sedimentation and Fluidization: PartⅠ,Trans.Instn. Chem. Engrs., 32:35-53(1954)
    [7] D. G. Klaren, Development of a vertical Flash Evaporator,Ph. D. Thesis,Delft University of Technology,1975
    [8] J. A. M. Merjer, Inhibition of Calcium sulfate Scale by a Fluidized Bed, Ph. D. Thesis, Delft University of Technology, l984
    [9] A. W. Veenman,A Review of New Development in Desalization by Distillation Process, Desalization by Distillation Process, Desalization,27:21~29(1978)
    [10] A. W. Veenman,Desalinnation 22:49~52(1977)
    [11] D. G. Klaren,Fluidized Bed Heat Exchanger:A Major Improvement severe Heat Transfer in Heat Exchanger Theory and Practice, Hemisphere publishing Corporation, 885~896(1981)
    [12] D. G. Klaren, R. E. Vailie, The Non-fouling Fluidized Bed Heat Exchange, National Heat Transfer Conference HTD vol. 108, Heat Transfer Equipment Fundamentals, Design, Application and Operation Problems,273~279(1989)
    [13] J. St. Kollbach, R. Rautenbach,Continuous cleaning of Heat Transfer In Heat Exchanger with Recirculating Fluidized Bed. Heat Transfer Engineering, 8(4): 26~32(1987)
    [14] J. St. Kollbach, R. Rautenbach, The Fluidized Bed Technique in the Evaporation of wastewater with severe Fouling/Scaling Potential-Latest Developments, Application, Limitations Desalination,81(1~3): 285~298(1991)
    
    [15] D. G. Klaren,Apparatus for Carrying out a Physical and/or chemical Process,such as a Heat Exchange, PCT, WO 94/24507,1994.10
    [16] D. G. Klaren, Selbstreinigendes Konzept, Chemamlagen Verfahren, 28(5): l6~18(1995)
    [17] Hidetoshi et al., Mechanism of Calcium Sulfate Scale Deposition on Heat-Transfer Surfaces and Mechanical Removal of Scale by Particle Abrasion Method, 日本海水学会志,48(2):96(1994)
    [18] S. W. Jone, Ph.D. Dissertation, North Western University Evanston, IL, 1982
    [19] Yang Yuming, Maa Jerru, Boiling of Suspension of Solid Particles in Water, Int. J. Heat & Mass Transfer, 1994, 27(1): 126~130
    [20] Y. E. Chuah, V. P. Carey, Boiling Heat Transfer in a Shallow Fluidized Particle Bed, J. Heat Transfer, 1987, 109: 196~203
    [21] M. H. Shi, et al, A Study on Solid Particles on Boiling Hypersteresis, J. of Thermal Science, 1992, 1(1): 41~45
    [22] 李修伦,刘绍丛,汽液固三相流化床沸腾换热的研究,化工学报,44(2),224-229,1993
    [23] 李修伦,闻建平,三相流沸腾传热。高校化学工程学报,1995,9(4):326-331
    [24] 李修伦,闻建平,垂直管内三相流沸腾传热特性,化学工程,23(4):50-54,1995
    [25] 闻建平,汽-液-固三相流化床沸腾传热的研究,[学位论文],天津大学(1992)
    [26] 张利斌,李修伦,张金钟,林瑞泰,三相循环流化床中沸腾传热特性,化工学报,50(2):208-214(1999).
    [27] 张利斌,汽-液-固三相循环流化床沸腾传热的研究:[学位论文],天津大学,1996
    [28] 李秀伦,新型汽液固三相流化床蒸发器性能研究: [学位论文],天津大学,1996
    [29] 邹克华,三相流循环流化床流动沸腾传热和压降的研究: [学位论文],天津大学, 1999
    [30]于志家,慕旭宏,汽液固三相流载气蒸发传热研究,工程热物理学报, 1993,14(3):305~308
    [31]于志家,徐维勤,沈自求,垂直套管环隙内汽液固三相流动沸腾传热的研究,工程热物理学报,18(2):234~237(1997)
    [32]张少峰,三相循环流化床蒸发器防除垢和强化传热的研究,[学位论文],天津: 天津大学,2000
    [33]陈健生,汽-液-固三相循环流化床蒸发器强化传热及防垢研究,[学位论文],
    
    
    天津:天津大学,1999
    [34] 高振楠,新型三相循环流化床麦草浆黑液蒸发器传热及防除垢研究,[学位论文],天津大学,2003
    [35] 贾原媛,三相循环流化床麦草浆黑液蒸发防、除垢和强化传热研究,[学位论文],天津:天津大学,2003
    [36]刘明言,聂万达,李修论等. 中国药学会年会论文集,北京,207-208(2001)
    [37]刘明言,聂万达,姜峰等.中药更年安浸取液汽液固三相流自然循环蒸发浓缩,化工学报,54(7):1029-1131(2003)
    [38]刘明言,聂万达,李修伦等.中药浸取液三相流化床高效防垢蒸发浓缩技术及装置研发与产业化,科学技术成果鉴定证书(2002)。
    [39]任斌,宋继田,惰性粒子流化床蒸发器浓缩茶浸提液的传热研究,食品与机械,2002,87(1): 18~19
    [40] 连桂森,多相流基础,浙江大学出版社,杭州,1996.
    [41] J. H. Choi, C. K. Yi and J. E. Son, Axial void age profile in a cold mode CFB, By P. Basu(ed.),Circulating Fluidized Bed TechnologyⅢ,Oxford: Pergamon Press, 1990,131~135
    [42] H. Takeuchi and T. Hirama, Flow visualization in the riser of a circulating fluidized bed, By P Basu(ed.), Circulating Fluidized Bed TechnologyⅢ,Oxford: Pergamon Press,1990,177~182
    [43] 林宗虎,汽液固多相流测量,中国计量出版社, 北京,1988
    [44] W. Einstein, and H. M. Shao, Radial variation in solid density in high velocity fluidization, By P Basu (ed.), Circulating Fluidized Bed TechnologyⅢ, Toronto: Pergamon Press, 1986,201~206
    [45] M. Azzi, and P. Turlier, et al, Use for a momentum probe and gamma densitometry to study local properties of fast fluidized bed, By P Basu(ed.), Circulating Fluidized Bed TechnologyⅢ,Toronto: Pergamon Press,1990,189~194
    [46] Y. Yang, , Y. Jin and Z.YU, et al, The radial distribution of local particle velocity in a dilute circulating fluidized bed, By P Basu(ed.), Circulating Fluidized Bed TechnologyⅢ,Toronto: Pergamon(1991)
    [47] 杨勇林,金涌,俞芷青等,低密度循环流化床反应器床层截面平均颗粒速度的变化规律,化学反应工程与工艺,6(4):30~36(1990)
    [48] 孙国钢,钱贵华,李静海,循环流化床稀相流动局部空隙率的测量,化工冶金,17(3):242~247(1996)
    
    [49] R. C. Chen and L. S. Fan, Particle image velocimetry for characterizing the flow structure in three-dimensional gas-liquid-solid fluidized beds, Chem.Eng.Sci.,47(13/14):3615~3622(1992)
    [50] J. Werther, and E. U. Hartage, et al. Measurement techniques for gas-solid fluidized bed reactors, international Chem.Eng.,33(1):18~27(1993)
    [51] Z.B. Gbavcic , D. V. Vukovic and F. K. Zadanski. Tracer particle movement in a two-dimensional water-fluidized bed, Powder Technology, 62:199~200(1990)
    [52] R. Grousson and S. Mallick, Study of flow patten in a fluid by scattered laser light, Appl.Opt.16: 2334(1977)
    [53] R. J. Adrian. “Multi-point optical measurements of simultaneous vectors in unsteady flow-a review”,Heat and Fluid Flow,2,1986,2:127~145
    [54] P. Buchhave. Particle image velocitmetry status and trends, Experimental Thermal and Fluid Science,1992,15:586~604
    [55] I. Grant. Particle image velocimetry: a review, Proc Instn Mech Engrs 1997,1211:55~71
    [56] 王庆友,孙学珠主编,CCD应用技术,天津:天津大学出版社,1993
    [57] 王跃科、杨华勇等,CCD图象传感技术的现状与应用前景,光学仪器,18(5):32-37
    [58] 王庆有、孙学珠主编. CCD应用技术. 天津:天津大学出版社,1993
    [59] 蔡文贵、李永远,许振华编. CCD应用及技术. 北京:电子工业出版社,1993
    [60] R C Chen, L.S.Fan Particle image velocimetry for characterizing the flow structure in three-dimensional gas-liquid-solid fluidized beds. Chemical Engineering Science, 1992,47(13/14): 3615-3622
    [61]李盛彬、王庆有、郭青,彩色线阵CCD用于物体尺寸精密测量的研究,光电子· 激光,Vol.12 (11):1159-1161, 2001
    [62]H. Wang, Y. Y. Zhang, G. H. He et al. A Contactless CCD Dilatometer for Foil Materials, International Journal of Thermophysics, 2001, 20(2): 743-754
    [63] Wei-Kom Chu, Smith, Chuck; Bunting, Ralph et al. Application of CCD camera in medical imaging. Proceedings of SPIE - The International Society for Optical Engineering .1999,3649: 121-125
    [64] 傅德胜,寿亦禾, 图像图像处理学,东南大学初版社,南京,2002
    [65] K. R. Castleman 著,朱志刚,林学,石定机等译,数字图像处理,电子工业出版社,北京,1998
    [66]刘绍丛,垂直圆管内汽-液-固三相流动沸腾传热的研究:[学位论文],天
    
    
    津大学,1991
    [67] 潘国昌,郭庆丰,杨柏极。填料塔进料气体分布器的研究。炼油设计,1995,25(2):28-32
    [68] W-G Liang, J-X Zhu, Y. Jin et al. Radial Nonuniformity of Flow Structure in a Liquid-Solid Circulating Fluidized Bed, Chem. Eng. Sci. , 50, 2001-2010 (1996)
    [69] Y. Zheng, J-X. Zhu, N. Marwaha et al. Radial Solids Flow Structure in a Liquid-Solid Circulating Fluidized Bed, Chem. Eng. Sci. J. 88 (2002)
    [70] W-G Liang, S-L Zhang, J-X Zhu et al. Flow Characteristics of the Liquid-Solid Circulating Fluidized Bed, Powder Technol., 90 95-102 (1997)
    [71] Y. Zheng and J-X. Zhu, Studies on Liquid Solid Velocity in a Liquid –Solid Circulating Fluidized Bed, Chem. Eng. Tech,
    [72] L. S. Fan, Gas-Liquid-Solid Fluidization Engineering, 1989, Butterworths, Boston
    [73] W. M. Rohsenow., A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids, ASME Trans., 1952,74:969-976
    [74] J. C. Chen, Process Design and Development, Ind. Eng. Chem., 1965,3: 322-329
    [75] M. M. Shah., A New Correlation for Heat Transfer During Boiling Flowing Through Pipes, ASHRAE Trans., 1976,82(2):66-86
    [76] Z. Liu, and R. H. S. Winterton,., Wet Wall Flow Boiling Correlation with Explicit Nuclear Term., 5th Miami Int. Symp. Multiphase Transport and Particulate Phenomena, 1988
    [77] D. Steiner., and J. Taborek., Flowing Boiling Heat Transfer in Vertical Tubes Correlated by an Asymptotic Model, Heat Transfer Engineering, 1995, 13(2):43-68
    [78] W. A. Hamilton, A Correlation for Heat Transfer in Liquid Fluidized Beds, Can. J. Chem. Eng., 1970, 48:52
    [79] Y. M. Yang, and J. R. Maa, Boiling of Suspension of Solid Particles in Water, Int. J. Heat Mass Transfer, 1984,27(1):126-130
    [80] P. Basu, P. K. Nag, Int. J. of Heat and Mass transfer, 1987,30: 2399-2409
    [81] M. Jamialahmadi, Prediction of Heat Transfer to Liquid-Solid Fluidized Beds, The Canadian Journal of Chemical Engineering, 1995, 73(8): 444~455
    [82] J.G. Collier, Boiling within Vertical Tubes. Heat Exchanger Design Handbook, Sect. 2. 7. 3-12. McGrawhill, New York. 1983
    [83] 鲁钟琪,两相流与沸腾传热,北京:清华大学出版社,2002
    
    [84] Haid. M., H. Martin, Heat Transfer in Liquid/Solid Fluidized Beds, Chem. Eng. Process, 1994, 33: 211~225

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700