用户名: 密码: 验证码:
金属氧化物半导体气体传感器气体检测关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
易燃气体检测对防止煤矿瓦斯泄漏,监测石油化工行业安全生产,保证飞船、潜艇等密闭环境的人身安全具有重大意义。金属氧化物半导体(MOS)气体传感器因其具有结构简单、价格低廉、响应速度快、使用寿命长以及对可燃性气体和有机挥发性气体具有较高的灵敏度等优点而得到广泛应用,目前已成为世界上产量最大、应用最广的传感器。但由于存在交叉敏感、传感器漂移、加热功耗过大等问题,在实际应用中很难获得准确稳定的分析结果,直接影响着气体检测的精度。本文针对金属氧化物半导体气体传感器在易燃气体检测应用中的几个关键问题,进行了深入细致的研究,主要完成的工作如下:
     为解决传感器的非线性响应特性及对非目标气体交叉敏感,研究了基于支持向量机(SVM)的传感器选择性改善方法。将4个MOS气体传感器组成传感器阵列,利用支持向量多分类机(MC-SVM)进行混合气体识别,应用最小二乘支持向量回归(LS-SVR)进行浓度测量。以浓度测量根均方误差作为泛化性能指标,利用训练样本的k遍历交叉验证结果作为目标函数,提出了基于小生境粒子群优化算法(NPSO)的参数寻优方法,能找到LS-SVR模型的全局最优参数。与其他阵列信号处理和模式识别方法如人工神经网络方法相比,该方法提高了气体识别准确率和浓度测量精度,特别适合于小样本气体检测的问题。
     为抑制传感器的输出特性漂移问题,提出了基于盲源分离理论(BSS)的混合气体识别及传感器漂移补偿方法。建立了气体传感器阵列稳态响应的盲分离模型,论证了混合气体分析的盲可辨识条件。将未知气体浓度作为源信号,传感器阵列响应作为混合信号,设计了气体浓度和传感器稳态响应时间序列的构建方法。利用基于负熵的快速定点独立成分分析(FastICA)算法对气体传感器阵列稳态响应进行处理,不仅能够识别混合气体,同时能够去除传感器阵列非线性漂移的影响,对盲源分离理论的发展及其在传感器信息处理中的应用具有重要意义。
     为降低传感器的加热功耗,研究了单传感器温度调制工作方式下的传感器动态响应特征提取技术,结合MC-SVM和LS-SVR方法实现混合气体识别与浓度测量。与传感器阵列方法相比,动态检测方法只需用一个传感器就可实现混合气体的组分分析,大大降低了传感器的加热功耗。研究了基于距离判据准则的传感器动态响应特征评估方法,解决动态响应特征参数选择难的问题。为抑制实际工作情况下噪声对传感器动态响应的影响,提出了基于小波奇异熵(WSE)理论的动态响应特征提取方法,与虚拟阵列(VA)、快速傅里叶变换(FTT)和离散小波变换(DWT)特征提取方法相比,在强噪声干扰下仍具有较高的泛化精度。
     设计并实现了基于DSP的混合气体检测试验验证系统硬件平台,利用该平台完成了气体传感器的标定,在DSP上验证了传感器选择性改善、功耗性降低、单传感器动态检测等方法的有效性,实现了甲烷和氢气二元混合气体成分的在线测量。评测了传感器工作于恒温方式以及温度调制工作方式下各种算法(包括支持向量多分类机分类、最小二乘支持向量回归、动态响应特征提取等方法)的有效性,验证了系统的各项功能。该研究内容为易燃易爆危险品检测及有毒有害气体成分分析仪的开发奠定了基础。
Combustible gas detection is of great importance in preventing gas leakage of coal mine, monitoring safety condition of petrochemical industry, guarantying personnel safety in airship, submarine and other closed environments. Since metal oxide semiconductor (MOS) gas sensor has the advantages of simple structure, low cost, quick response, longevity of service, and high sensitivity to combustible gases and volatile organic gases, it has been most produced and widely used in the world. However, it is a bit difficult to obtain stable analysis result in the application since its sensitivity to environmental humidity, poor selectivity, drift and high heating power, which directly lead to the negative influence to the precision of gas detection. This paper focuses on several key issues related to combustible gas detection and hazard localization of MOS, and makes an in-depth study. Major tasks of this paper are as follows:
     To solve the nonlinear response of MOS gas sensor and the cross-sensitivity to the non-target gases, this paper studies the support vector machines (SVM) based sensor selectivity improvement method. The sensor array comprises four MOS gas sensors. The gas category is identified by multi-classifier SVM (MC-SVM) and gas concentration is measured via least square support vector regression (LS-SVR). Given the root mean square error of concentration measurement as the criterion of generalization performance and using the k-fold cross-validation result of training sample as the objective function, the paper proposes a niche particle swarm optimization (NPSO) based parameter optimization algorithm which can find the global optimal parameters of the built LS-SVR model. Compared with other array signal processing and pattern recognition methods such as artificial neural networks (ANNs), this method improves the accuracy of gas recognition and the precision of concentration measurement, and it is especially suited for gas detection within small samples.
     To restrain the influence of sensor output drift, this paper proposes blind source separation (BSS) based mixed gases recognition and sensor drift inhibition method. The blind separation model of gas sensor array steady-state response is built and the blind identification condition of gas mixture analysis is demonstrated. Given the unknown gas concentration as the source signals and the sensor array response as the mixed signals, this paper devises the time sequences for both gas concentration and sensor steady-state response. The negative entropy based fast fixed point independent component analysis (FastICA) algorithm is used to process the sensor array steady-state response. Experimental results demonstrate that this ICA based method can not only recognize the mixed gases but also remove the non-linear drift of the gas sensor array. It shows important significance for the development of BSS theory and its application in sensor information processing.
     To reduce the heating power of gas sensor, this paper researches the single sensor dynamic response feature extraction technology under temperature modulation. The gas mixture classification and concentration measurement can be achieved in combination with MC-SVM and LS-SVR respectively. Compared with the sensor array based approach,this method that uses only one sensor to achieve gas identification and concentration measurement greatly reduce the sensor’s heating power. Also, this paper uses distance based class divisibility criterion as feature evaluation criteria to solve the difficulty of feature parameter selection of dynamic response. To restrain the noisy influence on the sensor dynamic response in the actual working condition, this paper proposes the wavelet singular entropy (WSE) based dynamic response feature extraction method. Experimental results show that, compared with virtual array (VA), fast Fourier transform (FFT) and discrete wavelet transform (DWT), the WSE based feature extraction method has a higher generalization accuracy when a strong noise exists.
     Finally, this paper designs and implements the hardware platform of the mixed gas detection test sytem using DSP. Sensor calibration of this system is accomplished on this platform, and selectivity improvement, heating power reduction as well as signle sensor dymanic detection methods are verified on DSP. The system successfully implements the binary gas mixture analysis for CH4 and H2 online. Also, the paper evaluates the validity and the real-time ability of various alforithms (e.g. SVM multi-calssifier, LS-SVR and dymanic response feature extraction, etc) on DSP when sensor works in the constant temperature mode and in the temperature modulation mode, and verifies the whole function of the test system. This technology lays the foundation in the fields of combustible and explosive material detection as well as poisonous and harmful gas component analysis instruments.
引文
[1] Gardner J W, Bartlett P N. Electronic Noses: Principles and Applications. Oxford University Press, 1999: 140-179.
    [2] Pearce T C, Schiffman S S, Nagle H T et al. Handbook of Machine Olfaction: Electronic Nose Technology. WILEY-VCH: Weinheim, 2003: 134-159.
    [3]郑爽,王佑安,王震宇.中国煤矿甲烷向大气排放量.煤矿安全, 2005, 2:29-33.
    [4]施文.有毒有害气体检测仪器原理和应用.化学工业出版社. 2009, 26-27.
    [5] Winter C. Hydrogen Energy-Abundant, Efficient, Clean: A Debate Over the Energy System of Change. International Journal of Hydrogen Energy, 2009, 34:1-52.
    [6] Clark W W, Rifkin J, O'Connor T et al. Hydrogen Energy Stations: Along the Roadside to the Hydrogen Economy. Utilities Policy, 2005, 13: 41~50.
    [7] Lee D, Lee D, Ban S et al. SnO2 Gas Sensing Array for Combustible and Explosive Gas Leakage Recognition. IEEE Sensors Journal. 2002, 2:140-149.
    [8] Lee D, Lee D. Environmental Gas Sensors. IEEE Sensors Journal. 2001, 1:214-224.
    [9] General Information for TGS Sensors. Figaro Gas Sensor Company: Osaka, Japan, 2000.
    [10] http://www.winsensor.com.
    [11]邓立三.气体检测与计量.黄河水利出版社. 2009, 92-94.
    [12] Waitz T, Becker B, Wagner T et al. Ordered Nanoporous SnO2 Gas Sensors with High Thermal Stability. Sensors and Actuators B. 2010, 150:788-793.
    [13] Han N, Tian Y, Wu X et al. Improving Humidity Selectivity in Formaldehyde Gas Sensing by a Two-sensor Array Made of Ga-doped ZnO. Sensors and Actuators B. 2009, 138:228-235.
    [14] Zhang S, Park S, Lim J et al, Sonochemical Synthesis and Gas Sensing Properties of Well Aligned ZnO Nanorods. Metals and Materials International. 2008, 14:621-624.
    [15] Liao L, Zheng Z, Yan B et al. Morphology Controllable Synthesis ofα-Fe2O3 1D nanostructurs: Growth Mechanism and Nanodevice Based on Single Nanowire. J. Phys. Chem. C 2008, 112:10784-10788.
    [16] Golovanov V, Liu C C, Kiv A et al. Microfabricated One-electrode In2O3 and Fe2O3-In2O3 Composite Sensors. Comput. Model. New. Tech. 2009, 13:68-73.
    [17]康昌鹤,康省悟.气、湿敏感器件及其应用.科学出版社. 1988, 203-204.
    [18]丁晖.金属氧化物半导体气体传感器在气体分析应用中的关键问题的研究.西安交通大学博士学位论文, 2004: 1-2.
    [19] Han N, Tian Y, Wu X et al. Improving Humidity Selectivity in Formaldehyde Gas Sensing by a Two-sensor Array Made of Ga-doped ZnO. Sensors and Actuators B. 2009, 138:228-235.
    [20] Sohn J H, Atzeni M, Zeller L et al. Characterisation of Humidity Dependence of a Metal Oxide Semiconductor Sensor Array Using Partial Least Squares. Sensors and Actuators B. 2008, 131:230-235.
    [21] Sharma R K, Chan P C H, Tang Z et al. Sensitive, Selective and Stable Tin Dioxide Thin-films for Carbon Monoxide and Hydrogen Sensing in Integrated Gas Sensor Array Applications. Sensors and Actuators B. 2001, 72:160-166.
    [22] Capone S, Siciliano P, Barsan N et al. Analysis of CO and CH4 Gas Mixtures by Using a Micromachined Sensor Array. Sensors and Actuators B. 2001, 78:40-48.
    [23] Haugen J E, Tomic O, Kvaal K. A Calibration Method for Handling the Temporal Drift of Solid State Gas-sensors. Analytica Chimica Acta, 2000, 407:23-39.
    [24] Persaud K, Dodd G. Analysis of Discrimination Mechanisms of the Mammalian Olfactory System using a Model Nose. Nature. 1982, 299:352-355.
    [25] Gardner J W, Bartlett P N. A Brief History of Electronic Noses. Sensors and Actuators B. 1994, 18-19:211-220.
    [26]孟庆浩,李飞.主动嗅觉研究现状.机器人. 2006, 28(1):89-96.
    [27]孟庆浩,李飞.,张明路等.湍流烟羽环境下多机器人主动嗅觉实现方法研究.自动化学报. 2008, 34(10): 1281-1290.
    [28] Lilienthal A, Loutfi A, Duckett T. Airborne Chemical Sensing with Mobile Robots. Sensors. 2006, 6:1616-1678.
    [29] Marques L, Almeida A. Mobile Robot Olfaction. Auton Robot. 2006, 20:183-184.
    [30] Lee D, Kim Y, Huh J et al. Fabrication and Characteristics of SnO2 Gas Sensor Array for Volatile Organic Compounds Recognition. Thin Solid Films. 2002, 416:271-278.
    [31] Shepherd R, Beirne S, Lau K T et al. Monitoring Chemical Plumes in an Environmental Sensing Chamber with a Wireless Chemical Sensor Network. Sensors and Actuators B. 2007, 121:142-149.
    [32]王平.人工嗅觉与人工味觉.北京:科学出版社(第二版), 2007, 1-2.
    [33]太惠玲,谢光忠,蒋亚东.基于气体传感器阵列的混合气体定量分析.仪器仪表学报. 2006, 27(7): 666-670.
    [34] Wilson, A D, Baietto M. Applications and Advances in Electronic-nose Technologies. Sensors. 2009, 9:5099-5148.
    [35] Arshak K, Moore E, Lyons G et al. A Review of Gas Sensors Employed in Electronic Nose Applications. Sensor Review. 2004, 24:181-198.
    [36] Egashira M, Shimizu Y. Odor Sensing by Semiconductor Metal Oxides. Sens. Actuat. 1993, 14:443-446.
    [37]海铮,王俊.电子鼻信号特征提取与传感器优化的研究.传感技术学报, 2006, 19(3): 606-610.
    [38] Hines E L, Llobet E, Gardner J W. Electronic Noses: A Review of Signal Processing Techniques. IEE. Proc. Circuits Devices Syst. 1999, 146(6):297-310.
    [39] Ricardo G O. Signal Processing and Pattern Recognition for an Electronic Nose. Ph.D. Thesis. North Carolina State University, 1999.
    [40] Gutierrez-Osuna R. Pattern analysis for machine olfaction: A review. IEEE Sensors J. 2002, 2:189-201.
    [41] Shaffer R E, Rose-Pehrsson S L, Mcgill R A. A Comparison Study of Chemical Sensor Array Pattern Recognition Algorithms. Analytica Chimica Acta, 1999, 384:305-317.
    [42] Bicego M, Tessari G, Tecchiolli G et al. A Comparative Analysis of Basic Pattern Recognition Techniques for the Development of Small Size Electronic Nose. Sensors and Actuators B. 2002, 85:137-144.
    [43] Pardo M. Data Analysis for a Hybrid Sensor Array. Sensors and Actuators B. 2005, 106:136-143.
    [44] Ricardo G O. Pattern Analysis for Machine Olfaction: A Review. IEEE Sensors Journal. 2002, 2(3):189-202.
    [45] Gardner J W. Detection of Vapours and Odours from A Multisensor Array Using Pattern Recognition Part 1. Principle Component and Cluster Analysis. Sensors and Actuators B. 1991, 4:109-115.
    [46] Gardner J W, Hines E L, Tang H C. Detection of Vapours and Odours from a Multisensor Array Using Pattern Recognition Part 2. Artificial Neural Networks. Sensors and Actuators B. 1992, 9:9-15.
    [47] Lee D, Ban S, Lee M et al. Micro Gas Sensor Array with Neural Network for Recognizing Combustible Leakage Gases. IEEE Sensors Journal. 2005, 5(3):530-536.
    [48] Bermak A, Belhouari S B. Bayesian Learning Using Gaussian Process for Gas Identification. IEEE Transactions on Instrument and Measurement. 2006, 55(3):787-792.
    [49] Linder R, Poppl S J. A New Neural Network Approach Classifies Olfactory Signals with High Accuracy. Food Quality and Preference. 2003, 14:435-440.
    [50]马戎,周王民,陈明.基于传感器阵列与神经网络的气体检测系统.传感技术学报. 2004, 9(3):395-398.
    [51]丁晖,刘君华,申忠如.基于分布式多子网神经网络的多组分混合气体识别.仪器仪表学报, 2001, 22(6): 592-598.
    [52]曲建岭,王磊,高峰.利用前馈神经网络进行气体定性分析.仪器仪表学报, 2000, 21(5): 471-473.
    [53] Rock F, Barsan N, Weimar U. Electronic Nose: Current Status and Future Trends. Chem. Rev. 2008, 108:705-725.
    [54] Ghasemi-Varnamkhasti M, Mohtasebi S S, Siadat M et al. Meat Quality Assessment by Electronic Nose (Machine Olfaction Technology). Sensors 2009, 9: 6058-6083.
    [55] El Barbri N, Llobet E, El Bari N et al. Electronic Nose Based on Metal Oxide Semiconductor Sensors as an Alternative Technique for the Spoilage Classification of Red Meat. Sensors 2008, 8:142-156.
    [56] Khallaf W, Pace C, Gaudioso M. Least Square Regression Method for Estimating Gas Concentration in an Electronic Nose System. Sensors 2009, 9:1678-1691.
    [57] Panigrahi S, Balasubramanian S, Gub H et al. Design and Development of a Metal Oxide Based Electronic Nose for Spoilage Classification of Beef. Sensors and Actuators B. 2006, 119:2-14.
    [58] Capone S, Zuppa M, Presicce D S et al. Metal Oxide Gas Sensor Array for the Detection of Diesel Fuel in Engine Oil. Sensors and Actuators B. 2008, 131: 125-133.
    [59] http://www.neotronics.com
    [60] http://www.znose.com
    [61] http://www.cyranosciences.com
    [62] http://www.aromascan.com
    [63]王平,陈裕泉,吴坚等.人工嗅觉——电子鼻的研究.中国生物医学工程学报. 1996, 15(4):344-353.
    [64]李建平,高晓光,朱慧敏.微结构气敏传感器热分析与结构设计.传感技术学报. 2000, 13(3).
    [65]曲建岭,王磊,高峰.运用人工神经网络进行混合气体定量分析的研究.西北工业大学学报, 2001, 19(3): 399-402.
    [66]魏广芬,唐祯安,余隽.基于主成分分析和BP神经网络的气体识别方法研究.传感技术学报. 2001, 14(4):292-297.
    [67]张覃轶,谢长生,阳浩等.电子鼻模式识别算法的比较研究.传感技术学报. 2005, 18(3):576-579.
    [68] Cho J H, Kim Y W, Na K J et al. Wireless Electronic Nose System for Real-time Quantitative Analysis of Gas Mixtures Using Micro-gas Sensor Array and Neuro-fuzzy Network. Sensors and Actuators B. 2008, 134:104-111.
    [69] Yu X, Li C, Low Z N et al. Wireless Hydrogen Sensor Network Using AlGaN/GaN High Electron Mobility Transistor Differential Diode Sensors. Sensors and Actuators B. 2008, 135:188-194.
    [70] Choi S, Kim N, Cha H, Ha R. Micro Sensor Node for Air Pollutant Monitoring: Hardware and Software Issues. Sensors 2009, 9, 7970-7987.
    [71] Hayes J, Beirne S, Lau K T et al. Evaluation of a Low Cost Wireless Chemical Sensor Network for Environmental Monitoring. Proceedings of the IEEE Sensors. 2008: 530-533.
    [72] Pei Z M, Deng Z D, Xu S, Xu X. Anchor-free Localization Method for Mobile Targets in Goal Mine Wireless Sensor Networks. Sensors, 2009, 9: 2836-2850.
    [73] Zhao A, Wang L, Yao C H. Research on Electronic-nose Application Based on Wireless Sensor Networks. Journal of Physics, 2006, 48: 250-254.
    [74]李竞,冀铮,李群.高集成度无线气体传感器节点设计.中国安全生产科学技术. 2008, 4(6):49-52.
    [75]魏宁,尹洪胜,刘秀荣等.基于无线传感器网络的煤矿瓦斯监测系统的设计.工矿自动化. 2010, 1:70-72.
    [76] Maekawa T, Suzuki K, Takada T et al. Odor Identification using a SnO2-based Sensor Array. Sensors and Actuators B. 2001, 80:51-58.
    [77] Gong J. Non-silicon Microfabricated Nanostructured Chemical Sensors for Electric Nose Application. PhD Thesis. University of Central Florida, 2005.
    [78] Hierlemann A. Polymer-based Sensor Arrays and Multicomponent Analysis for the detection of Hazardous Organic Vapours in the Environment. Sensors and Actuators B. 1995, 26-27:126-134.
    [79] Takahiro H, Haruhiko K, Takashi O. Recognition of Human Activities by Gas Sensor Response using Genetic Algorithm. Scripta Technica. 2001, 85:50-61.
    [80]魏广芬.基于微热板式气体传感器的混合气体检测及分析.大连理工大学博士论文. 2006, 66-87.
    [81]邓乃扬,田英杰.数据挖掘中的新方法:支持向量机.北京:科学出版社, 2004: 224-255.
    [82] Distante C, Ancona N, Siciliano P. Support Vector Machines for Olfactory Signals Recognition. Sensors and Actuators B. 2003, 88:30-39.
    [83] Pardo M, Sberveglieri G. Classification of Electronic Nose Data with Support Vector Machines. Sensors and Actuators B. 2005, 107:730-737.
    [84] Artursson T, Eklov T, Lundstrom I et al. Drift Correction for Gas Sensors using Multivariate Methods. Journal of Chemometrics. 2000, 14:711-723.
    [85] Ding H, Liu H, Shen Z. Drift Reduction of Gas Sensor by Wavelet and Principal Component Analysis. Sensors and Actuators B. 2003, 96(1-2):354-363.
    [86]丁晖,刘君华,申忠如.气体传感器特性漂移抑制的研究.计量学报. 2002, 23(1).
    [87]张敏,田逢春.气体传感器阵列温度漂移抑制的研究.传感技术学报. 2007, 20(6):1237-1239.
    [88] Le Vine H D. Method and Apparatus for Operating a Gas Sensor, US Pat.3906473, Sept.16, 1975.
    [89] Owen L J. Gas Monitors. US Pat.4185491, Jan.29, 1980.
    [90] Clifford P K, Tuma D T. Characteristics of Semiconductor Gas Sensors: II. Transient Response to Temperature Change. Sensors and Actuators, 1983, 3:255-281.
    [91] Nakata S, Kato Y, Kaneda Y et al. Rhythmic Chemical Reaction of CO on the Surface of a SnO2 Gas Sensor. Applied Surface Science. 1996, 103:369-376.
    [92] Nakata S, Ojima N. Detection of a Sample Gas in the Presence of an Interferant Gas based on a Nonlinear Dynamic Response. Sensors and Actuators B. 1999, 56:79-84.
    [93] Nakata S, Takemura K, Neya K. Nonlinear Dynamic Responses of a Semiconductor Gas Sensor: Evaluation of a Kinetic Parameters and Competition Effect on the Sensor Response. Sensors and Actuators B. 2001, 76:436-441.
    [94] Nakata S, Neya K, Takemura K. Nonlinear Dynamic Response of a Semiconductor Gas Sensor-competition Effect on the Sensor Response to Gaseous Mixtures. Thin Solid Films. 2001, 391:293-298.
    [95] Barsan N, Tomescu A. The Temperature Dependence of the Response of SnO2-based Gas Sensing Layers to O2, CH4 and CO. Sensors and Actuators B. 1995, 26-27:45-48.
    [96] Fort A, Rocchi S, Serrano-Santos et al. CO Sensing with SnO2-based Thick Film Sensors Surface State Model for Conductance Responses During Thermal-modulation. Sensors and Actuators B. 2006, 116:43-48.
    [97] Llobet E, Ionescu R, Al-Khalifa S et al. Multicomponent Gas Mixture Analysis using a Single Tin Oxide Sensor and Dynamic Pattern Recognition. IEEE Sensors Journal. 2001, 1(3):207-213.
    [98] Ionescu R, Llobet E, Brezmes J et al. Dealing with Humidity in the Qualitative Analysis of CO and NO2 Using a WO3 Sensor and Dynamic Signal Processing. Sensors and Actuators B. 2003, 95:177-182.
    [99] Vergara A, Llobet E, Brezmes J et al. Quantitative Gas Mixture Analysis using Temperature-modulated Micro-hotplate Gas Sensors Selection and Validation of the Optimal Modulating Frequencies. Sensors and Actuators B. 2007, 123:1002-1016.
    [100]王磊,刘锦淮.基于气体传感器阵列的动态检测系统.传感器与微系统. 2008, 27(3):92-93.
    [101] Huang X, Wang L, Sun Y et al. Quantitative Analysis of Pesticide Residue based on the Dynamic Response of a Single SnO2 Gas Sensor. Sensors and Actuators B. 2004, 99:330-335.
    [102] Huang J R, Li G Y, Huang Z Y et al. Temperature Modulation and Artificial Neural Network Evaluation for Improving the CO Selectivity of SnO2 Gas Sensor. Sensors and Actuators B. 2006, 114:1059-1063.
    [103]魏广芬,唐祯安,王永强等.气体传感器的温度调制技术研究进展.传感器与微系统. 2010, 29(5):1-4.
    [104] Ge H, Liu J. Identification of Gas Mixtures by a Distributed Support Vector Machine Network and Wavelet Decomposition from Temperature Modulated Semiconductor Gas Sensor. Sensors and Actuators B. 2006, 117:408-414.
    [105] Nakata S, Okunishi H, Inooka S. Gas Sensing System Based on the Cyclic Temperature Further Characterization by the Second Harmonic Perturbation. Analytica Chimica Acta. 2004, 517:153-159.
    [106] Nakata S, Okunishi H. Characteristic Responses of a Semiconductor Gas Sensor Depending on the Frequency of a Periodic Temperature Change. Applied Surface Science. 2005, 240:366-374.
    [107] Llobet E, Brezmes J, Ionescu R et al. Wavelet Transform and Fuzzy ARTMAP-based Pattern Recognition for Fast Gas Identification Using a Micro-hotplate Gas Sensor. Sensors and Actuators B. 2002, 83:238-244.
    [108] Ionescu R, Llobet E. Wavelet Transform-based Fast Feature Extraction from Temperature Modulated Semiconductor Gas Sensors. Sensors and Actuators B. 2002, 81:289-295.
    [109] Huang X J, Choi Y K, Yun K S et al. Oscillating Behaviour of Hazardous Gas on Tin Oxide Gas Sensor Fourier and Wavelet Transform Analysis. Sensors and Actuators B. 2006, 115:357-364.
    [110] Ding H, Ge H, Liu J. High Performance of Gas Identification by Wavelet Transform-based Fast Feature Extraction from Temperature Modulated Semiconductor Gas Sensors. Sensors and Actuators B. 2005, 107:749-755.
    [111]林继鹏,刘君华.基于小波基的SVM多气体融合.吉林大学学报(信息科学版). 2005, 23(4): 402-407.
    [112]葛海峰,林继鹏,刘君华等.基于支持向量机和小波分解的气体识别研究.仪器仪表学报. 2006, 27(6):573-578.
    [113]张愉,齐美星,童敏明.基于RBF神经网络的单一催化传感器检测混合气体研究.传感技术学报, 2009, 22(5): 623-626.
    [114]李熙,何秀丽,李建平等.基于单个SnO2传感器的CO/H2混合气体定量分析.传感技术学报, 2007, 20(10): 2169-2173.
    [115] Yin Y, Yu H, Zhang H. A Feature Extraction Method based on Wavelet Packet Analysis for Discrimination of Chinese Vinegars Using a Gas Sensors Array. Sensors and Actuators B. 2008, 134:1005-1009.
    [116] Natale C D, Martinelli E, D’Amico A. Counteraction of Environmental Disturbances of Electronic Nose Data by Independent Component Analysis. Sensors and Actuators B. 2002, 82:158-165.
    [117]田敬民,李守智.金属氧化物半导体气敏机理探析.西安理工大学学报. 2002, 18(2):144-147.
    [118] Barsan N, Weimar U. Conduction Model of Metal Oxide Gas Sensor. Journal of Electroceramics. 2001, 7:143-167.
    [119] Naktani Y. Enhancement of Gas Sensitivity by Controlling Microstructure of a-Fe2O3 Ceramics. Jpn J Appl Phys. 1983, 22:912.
    [120] Naktani Y, Matsuoka M. Microstructure of a-Fe2O3 Ceramics as a Combustible Gas Sensor. Jpn J Appl Phys. 1982, 21:758.
    [121]候正则,王恩信,完利祥. Fe2O3气敏材料及添加剂的作用.电子科技大学学报. 1990, 19(5):541-545.
    [122]王弘,曾桓兴,沈瑜生.氧化铁气体传感器研究I. r-Fe2O3微粒制备及其气敏特性.半导体学报. 1987, 8(1):44-48.
    [123]曾桓兴,王弘,沈瑜生.氧化铁气体传感器研究II. Fe2O3气敏特性.半导体学报. 1988, 9(6):648-653.
    [124] Lin H Y, Chen Y W, Li C. The Mechanism of Reduction of Iron Oxide by Hydrogen. Thermochim. Acta 2003, 400:61-67.
    [125]王恩信,候正则,恽正中.厚膜Fe2O3气敏元件的研制.电子科技大学学报. 1994, 23(3):369-273.
    [126] Ding J, McAvoy T, Cavicchi R et al. Surface State Trapping Models for SnO2-based Microhotplate Sensors. Sensors and Actuators B. 2001, 77:597-613.
    [127] Barsan N, Weimar U. Conduction Model of Metal Oxide Gas Sensor. Journal of Electroceramics. 2001, 7:143-167.
    [128]冯志刚.自确认压力传感器的研究.哈尔滨工业大学博士论文. 2009.
    [129] Weston J, Watkins C. Support Vector Machines for Multi-Class Pattern Recognition, 1999.
    [130] Kumar S, Ghosh J, Crawford M.M. Hierarchical Fussion of Multiple Classifiers for Hyperspectral Data Analysis. Pattern Analysis and Applications. 2002, 5(2): 210-220.
    [131] Duda R, Hart P, Stork D. Pattern Classification. New York: Wiley Interscience. 2000:126-129.
    [132] Hao P Y, Chiang J H, Tu Y K. Hierarchically SVM Classification based on Support Vector Clustering Method and Its Application to Document Categorization. Expert Systems with Applications. 2007, 33(3): 627-635.
    [133] Suykens J A K, Vandewale J. Least Squares Support Vector Machines Classifiers. Neural Process. Lett. 1999, 9:293-300.
    [134] Suykens J A K. Least Squares Support Vector Machines for Classification and Nonlinear Modeling. Neural Network World 2000, 10:29-47.
    [135] Zhang Y. Enhanced Statistical Analysis of Nonlinear Processes Using KPCA, KICA and SVM. Chem. Eng. Sci. 2009, 64:801-811.
    [136]黄席樾,向长城,殷礼胜.现代智能算法理论及应用(第二版). 2009, 220-223.
    [137] Kennedy J, Eberhart R C. Particle Swarm Optimization. Proceedings of the IEEE Internationa1 Conference on Neura1 Networks. Perth, Australia, 1995:1942-1948.
    [138] Hyvarinen A, Karhunen J, Oja. E. Independent Component Analysis. Wiley, 2001.
    [139] Cichocki A, Amari S I. Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. New York: Wiley, 2002.
    [140] Kermitt M, Tomic O. Independent Component Analysis Applied on Gas Sensor Array Measurement Data. IEEE Sensors Journal. 2003, 3(2):218-228.
    [141] Yadava R D S, Chaudhary R. Solvation, Transduction and Independent Component Analysis for Pattern Recognition in SAW Electronic Nose. Sensors and Actuators B. 2006, 113:1-21.
    [142] Balasubramanian S, Panigrahi, Logue C M et al. Independent Component Analysis-processed electronic nose data for predicting Salmonella Typhimurium Populations in Contaminated Beef. Food Control. 2008, 19:236-246.
    [143] Hyvarinen A. New Approximations of Differential Entropy for Independent Component Analysis and Projection Purcuit. Advances in Neural Information Processing Systems. 1998, 10:273-279.
    [144]雷亚国,何正嘉,訾艳阳等.基于特征评估和神经网络的机械故障诊断模型.西安交通大学学报. 2006, 40(5):558-562.
    [145] Ortega A, Marco S, Perera A et al. An Intelligent Detector based on Temperature Modulation of a Gas Sensor with a Digital Signal Processor. Sensors and Actuators B. 2001, 78:32-39.
    [146]何正友,蔡玉梅,钱清泉.小波熵理论及其在电力系统故障检测中的应用研究.中国电机工程学报. 2005, 25(5):39-40.
    [147]申弢,黄树红,韩守木等.旋转机械振动信号的信息熵特征.机械工程学报. 2001, 37(6):94-98.
    [148]谢平,刘彬,林洪彬等.多分辨率奇异谱熵及其在振动信号监测中的应用研究.传感技术学报. 2004, 4:547-550.
    [149] Rosso O, Blanco S, Yordanova J et al. Wavelet Entropy:a New Tool for Analysis of Short Duration Brain Electrical Signals. Journal of Neuro Science Methods. 2001, 105:65-75.
    [150]何正友,钱清泉.多分辨信息熵的计算及其在故障检测中的应用.电力自动化设备. 2001, 21(5):9-11.
    [151]印欣运,何永勇,彭志科.小波熵及其在状态趋势分析中的应用.振动工程学报. 2004, 17(2):165-169.
    [152]胡昌华,李国华,周涛.基于Matlab 7.x的系统分析与设计—小波分析. 2003, 25-27.
    [153] TMS320F28335 Digital Signal Controllers (DSCs) Data Manual. Texas Instruments Corporation, 2007.
    [154]侯其立,徐科军,李叶等.基于TMS320F28335的高精度科氏质量流量变送器研制.仪器仪表学报. 2010, 31(12):2788-2795.
    [155] A True System-on-chip Solution for 2.4 GHz IEEE 802.15.4/ZigBee. Texas Instruments Corporation, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700