用户名: 密码: 验证码:
基于TCI与IAQ的空调智能控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人们80%以上的时间在室内度过,而调查显示,室内的热舒适指标(TCI)和室内空气品质(IAQ)仍远没达到健康、舒适的要求。本文以衡量热舒适性的PMV和反映IAQ的CO_2浓度为控制输入,建立相应的控制策略,分别对变频空调器压缩机、蒸发器风机、新风阀(机)和台式小风扇进行控制,以同时满足0     根据本文的研究结果,可以得出如下结论:
     a.利用神经网络信息处理技术对热舒适性指标进行智能预测是可行的。
     b.按照室内空气质量标准最小新鲜空气量30m~3/h·人进行送风,室内CO_2浓度能满足小于1000ppm的要求。在适合用CO_2浓度反映IAQ的环境中,采用CO_2需求控制通风能满足IAQ要求,而且节能。采用CO_2的需求控制通风比按实际人数×30m~3/h·人的新风量控制节能5%左右,比按12人×30m~3/h·人的新风量控制节能超过17%。
     c.根据本文的空调系统模型,采用模糊控制技术对变频空调器分别进行传统设定温度和设定温湿度控制,基本上能满足舒适性要求。但用设定温湿度控制时,因为温度和相对湿度控制之间存在耦合效应,导致控制效果不如设定温度控制,后者的控制精度在0.1℃左右。
     d.本文基于PMV的智能控制满足热舒适性0People typically spend over 80 percent of their time indoors where,however,is far from health and comfort in terms of thermal comfort index(TCI)and indoor air quality(IAQ).
    The idea of using predicted mean vote(PMV), indicating human thermal comfort, and carbon dioxide(CO2) concentration, indicating occupancy and indoor air quality(IAQ), as control inputs to develop control strategies for a residence is proposed by varying inverter air-conditioner compressor frequencies, evaporator fan speeds, fresh air valve positions(or fresh air fan speeds), and the desk fan speeds respectively with PMV within a range from 0 to 0.5 and CO2 under lOOOppm. Computer simulations of thermal comfort and indoor air quality in a standard air-conditioned office compartment is conducted by modeling air conditioner system. At the same time, the analysis of energy consumption is carried out with CI control compared with the conventional temperature and relative humidity control and CO2-based DCV compared with the target per-person ventilation rates. In addition, the development of intelligent ANN-based PMV predictor are presented.
    The conclusions can be drawn from the research as follows:
    a. It is reliable to predict PMV by the use of Neural Network.
    b.The target per-person ventilation rates of the minimum up to 30 steres per person per hour of the flow rate of fresh air in accordance with "Indoor Air Quality Standard" can assure CO2 under 1000ppm. However, CO2-based demand-controlled ventilation (CO2-based DCV) systems can keep an acceptable indoor air quality with a CO2 setpoint of 1000ppm, and energy can be conserved in the indoor spaces where CO2 is suitable
    
    
    to reflect IAQ porformence. Fortunately, CO2-based DCV consumes 5% less than the strategy which acquires the flow rate by multiplying actual occupants by 30m3 per person per hour, and up to 17% less than the one which achieves the flow rate by multiplying 12 occupants by 30m3 per person per hour. Interestedly,the conventional set-point control algorithms comply with the same rule.
    c. Thermal comfort can be maintained even with the conventional temperature and humidity control only if air-conditioner type, control strategy, and control algorithms are considered reasonably. The performace of the strategy concerning temperature and relative humidity simultaneously is inferior to the one concerning only temperature because of cross-coupling,and the later keeps precision around 0. 1C.
    d.Intelligent CI control,with PMV within a range from 0 to 0.5,can provide superior performance over conventional set-point control in terms of human comfort and energy utilization.The former consumes less energy,over 17% less,compared with the conventional temperature and humidity control algorithms,and still achieves an overall saving of 2%~4% than the conventional set-point temperature control.
引文
[1] 金招芬,朱颖心 主编.建筑环境学.中国建筑工业出版社,2001.
    [2] 贾衡 主编.人与建筑环境.北京工业火学出版社,2001.
    [3] 龙惟定,潘毅群,白玮.智能建筑的室内生态环境.暖通空调,2001,31(4):75-78.
    [4] 清华大学建筑学院生态住宅研究小组.生态住宅.www.hvacr.com.cn/…
    [5] 魏庆芃,谭刚,王鹏.建筑生态环境与节能效果综合评价.清华同方技术通讯,2000,10.
    [6] 叶国栋.舒适空调中的热舒适指标控制研究.湖南大学硕士学位论文,2002.
    [7] 彦启森,石文星.空调器的发展历程与展望.清华同方技术通讯,2000,10.
    [8] Alan E. Luedtke, etc.. INDOOR ENVIRONMENTAL MANAGEMENT. World Workplace' 99, IFMA, October 3-5, 1999, Los Angeles, California.
    [9] [英]布赖恩·爱德华兹 著,周玉鹏,宋晔晧 译.可待续性建筑(第二版).中国建筑工业出版社,2003.
    [10] 龙惟定.发展燃气空调的必要性.2003年全国空调技术交流会学术报告.
    [11] 涂逢祥.建筑节能·37.中国建筑工业出版社,2002.
    [12] 赵蕾.变频热泵房间空调器的工质替代及动态特性研究.西安建筑科技大学博士学位论文,2001.
    [13] 付祥钊 主编.夏热冬冷地区建筑节能技术.中国建筑工业出版社,2002.
    [14] 余庄等.智能建筑中暖通空调和照明系统的计算机控制系统与策略.暖通空调,1999,29(5):38-40.
    [15] 周兴禧.变频空调系统特性的仿真研究.流体机械,2000,Vol.28(2):43-47.
    [16] Wai L. Tse, Albert T.P. So, and C. Eng..Implementation of Comfort-Based Air-Handing Unit Control Algorithms. ASHRAE Trans. 2000,106(1):29-44.
    [17] K.H.Yang, C.H. Su. An approach to building energy savings using the PMV index. Building and Environment, 1997, Vol. 32, No.1, pp. 25-30.
    [18] MacArthur, J. W. 1986. Humidity and predicted-mean-vote based(PMV based) comfort control. ASHRAE Transactions. 92(1B):5-17.
    [19] Simmonds P. Thermal comfort and optimal energy use. ASHRAE Transactions, 99(1):1037-1048.
    [20] Henderson, H.I.,K. Rengarajan, and D.B. Shirley. 1992. The impact of comfort control on air conditioner energy use in humid climates. ASHRAE Transactions, 98(2):104-113.
    [21] 凌人杰.房间PMV控制器[J].家用电器,1990(9):3-3.
    [22] Shin-ichi Tanabe, Ken-ichi Kimura. EFFECTS OF AIR TEMPERATURE, HUMIDITY, AND
    
    AIR MOVEMENT ON THERMAL COMFORT UNDER HOT AND HUMID CONDITIONS. ASHRAE Trans. 1994. 100(2): 953-969.
    [23] 付祥钊.长江流域住宅热环境质量标准.住宅科技,1998,9:6-9.
    [24] 殷平.室内空气计算参数对空调系统经济性的影响.暖通空调,2002,32(2):21-25.
    [25] 廖传善 等.编著.空调设备与系统的节能控制.北京:中国建筑工业出版社,1984.
    [26] R.H. Howell. Calculation of Humidity Effects on Energy Requerements of Refrigerated Display Cases. ASHRAE Transactions 1993, Vol. 99(1):679-693.
    [27] Harold G. Lorsch, Ossama A. Abdou. THE IMPACT OF THE BUILDING INDOOR ENVIRONMENT ON OCCUPANT PRODUCTIVITY-part2:Effects of Temperature. ASHRAE Trans. 1994. 100(2):895-901.
    [28] Harold G. Lorsch, Ossama A. Abdou. THE IMPACT OF THE BUILDING INDOOR ENVIRONMENT ON OCCUPANT PRODUCTIVITY-part3:Effects of Indoor Air Quality. ASHRAE Trans.1994. 100(2):902-913.
    [29] Rob Moult(江森自控亚太区总监).智能建筑的过去、现在和未来.工程设计CAD与智能建筑,2002,12:65-70.
    [30] Walter M. Kroner, Jean A. Stark-Martin. ENVIRONMENTALLY RESPONSIVE WORKSTATIONS AND OFFICE-WORKER PRODUCTIVITY. ASHRAE Trans., 1994, 100(2):750-755.
    [31] 刘欧子等.人体热舒适与室内空气品质研究—回顾、现状与展望.建筑热能通风空调,2001,2:26-28.
    [32] P.O.范格著,于晓明.译21世纪的室内空气品质:追求优异.暖通空调,2000,30(3):32-35.
    [33] 崔九思 主编.室内空气污染监测方法.北京:化学工业出版社,2002.
    [34] 马仁民.国外非工业建筑室内空气品质研究动态.暖通空调,1999,29(2):38-41.
    [35] 晏辉.舒适性空调建筑的IAQ.华东交通大学学报,2002,19(3):5-8.
    [36] 上海的办公楼建设和室内空气品质问题.洁净与空调技术.1997(2):6-12.
    [37] 王勇利,朱能,祝秀娟.不同性别人员舒适性与室内参数的关系的调查研究.全国暖通空调制冷 2002年学术文集.
    [38] 封跃鹏,张太生.室内空气污染概述.环境监测管理与技术,2002(3):17-20.
    [39] Kalman I. Krakow, Sui Lin, and Zhao-Shu Zeng. Temperature-and Humidity Control During Cooling and Dehumidifying by Compressor and Evaporator Fan Speed Yariation. ASHRAE Trans.,101(1):292-304.
    [40] 黄国辉,赵文敏.直流型变频空调器的智能模糊控制.暖通空调,2002(4):56-59.
    [41] 汪善国.美国的空调程控节能系统.暖通空调,1997,27增刊:31-36.
    [42] Kaya, A.,C.S. Chen, S. Raina, and S.J. Alexander. Optimum control policies to minimize energy use in HVAC systems. ASHRAE Transactions, 88(2):235-248.
    
    
    [43] D.G. Scheatzle, Arch. D.,P.E.,AIA. The Development of PMV-Based Control for a Residence in a Hot Arid Climate. ASHRAE Transactions. 1991.97(2):1002-1019.
    [44] 张良杰等.基于神经网络与模糊逻辑控制技术的“舒逸”智能空调控制器.制冷学报,1994,3:54-57.
    [45] S. Tanabe, K. Kimura. Effects of air temperature, humidity, and air movement on thermal comfort under humid conditions. ASHRAE Trans, 1994, 100(2):953-969.
    [46] Sunao Funakoshi, Kazuya Matsuo. PMV-BASED TRAIN AIR-CONDITIONING CONTROL SYSTEM[J].ASHRAE Trans. 1995, Part Ⅰ:423-430.
    [47] J. Xia, H.Yu,X. Jin, G. Huang. A PMV-based controller for VAY applications. Proc. of ACHRB'2000, Shanghai.
    [48] T. Goto, L.G. Berglund. Fan air speed controls assisted by human response simulation for comfort in warm environment. ISHVAC99, Vol(1).Shenzhe,China,1999.
    [49] M. Kakegawa, L.G. Berglund. An automatic window opening system for comfort control assisted by human response simulation. ISHVAC99, Vol(1). Shenzhen, China, 1999.
    [50] 郭富军,杨昌智.热舒适指标在空调系统控制中的应用研究.湖南大学学报,2000(9).
    [51] Wai L.Tse, Albert T.P. So, and C. Eng..Implementation of Comfort-Based Air-Handing Unit Control Algorithms, ASHRAE Trans. 2000,106(1):29-44.
    [52] www.dhs.cahwnet.gov/ohb/HESIS/ieq3.htm.
    [53] 张国强 等.挥发性有柳化合物对室内空气品质影响研究进展.暖通空调,2001,31(6):25-29.
    [54] 刘君卓.智能建筑物内的空气质量.工程设计CAD及自动化,1998(6):43-45.
    [55] 宋广生 编.室内环境质量评价及检测手段.北京:机械工业出版社,2002:61-112.
    [56] P. D. Knoespel, J. W. Mitchell, W.A. Beckman. MACROSCOPIC MODEL OF INDOOR AIR QUALITY AND AUTOMATIC CONTROL OF VENTILATION AIRFLOW[J]. ASHRAE Transactions. 1991.97(2): 1020-1030.
    [57] 彦启森.空调与人居环境.暖通空调,2003,33(5):1-5.
    [58] 沈晋明.我国目前室内空气品质改善的对策与措施.暖通空调,2002(2):34-37.
    [59] 许钟麟,张益昭.改善室内空气品质的重要手段—新风过滤处理的新概念.暖通空调,1997,27(1):5-9.
    [60] 陈秋琼.改善室内空气环境的几种方法.上海建设科技,2000(3):14-21.
    [61] John T. Trowbridge, etc. Evaluation of strategies for controlling humidity in residences in humid climates. ASHRhE Transactions, 100(2):59-73.
    [62] (日本)中原信生 著,楼世竹,白玮 译.高层建筑暖通空调设计和建筑优化及故障检测与室内空气品质、节能和全球环境问题的协调.暖通空调,1998,28(2):30-36.
    
    
    [63] 武文斐,陈俊俊 等.多污染源置换通风通风效果与舒适性研究.环境工程,2002(4):69-71.
    [64] 沈晋明.实时室内空气品质的概念与控制理念.洁净与空调技术,2002(3):8-11.
    [65] 潘毅群,龙惟定,范存养.办公楼的室内空气品质与通风.暖通空调,2002(6):28-30.
    [66] 曾艺.变风量空调系统的新风.暖通空调,2001,31(6):35-38.
    [67] 陆耀庆 主编.实用供热空调手册.中国建筑工业出版社.
    [68] Mike B. Schell, Stephen C. Turner, and R. Omar Shim. Application of CO_2-Based Demand-Controlled Ventilation Using ASHRAE Standard 62:Optimizing Energy Use and Ventilation. ASHRAE Trans. 98(1):1213-1225.
    [69] Steven J. Emmerich and Andrew K. Persily. Literature Review On CO_2-Based Demand-Controlled Ventilation. ASHRAE Trans.,103(2):229-243.
    [70] 陈焕新 等.合理控制空调列车车厢内CO_2浓度.建筑热能通风空调,2001(6):32-34.
    [71] Mohsin A. Alalawi,Moncef Krarti, Ph.k.,P.E..Experimental Evaluation of CO_2-Based Demand-Controlled Ventilation Strategies. ASHRAE Transactions Part Ⅱ,2002:307-316.
    [72] 李春泰.改善室内空气品质的一个生态学方案.东北林业大学报,1990,18(2):114-117.
    [73] 清华3E暖通空调网房间空调器专题.家用空调器.www.hvacr.com.cn/ztyj/….
    [74] 石文星,石斌华,彦启森.变频空调器的三种控制算法.暖通空调,2000(6):16-19.
    [75] 张良杰等.基于神经网络与模糊逻辑控制技术的“舒逸”智能空调控制器.制冷学报,1994,3:54-57.
    [76] 徐佳铭.室内环境调控系统.中外技术情报,1994,8:18-21.
    [77] Oskarsson, P.,K.I. Krakow, and S. Lin. Evaporator models for operation with dry, wet, and frosted finned surfaces-Part 1:Heat transfer and fluid flow theory. ASHRAE Trans. 96(1):373-380.
    [78] Oskarsson, P.,K.I. Krakow, and S. Lin. Evaporator models for operation with dry, wet, and frosted finned surfaces-Part 2:Evaporator model and verification. ASHRAE Trans. 96(1):381-392.
    [79] J. Chi, D. Didion. A Simulation Model of Transient Performance of a Heat Pump. Int. J. Refrig. 1982, Vol. 5, No. 3:176-184.
    [80] J.W. Macarther, EW. Grald. Prediction of Cyclic Heat Pump Performance with Fully Distributed Model and Fully Comparison with Experimental Data. ASHRAE Trans., 1987,93(2):1159-1178.
    [81] J.W. Macarther, E.W.Grald. Unsteady Compressible Two-phase Model for
    
    Predicting Cyclic Heat Pump Performance and Comparison with Experimental Data. Int. J. Refrig. 1989, Vol. 12, No.1:29-41.
    [82] N. Rajendran, M. Pate. A Computer Model of Startup Transients in a Vapor Compression Refrigeration System. Proc. of Progress in the Design and Construction of Refrigeration System, 201-211, International Institute of Refrigeration, Prudue Univer. USA., 1986.
    [83] U. Bonne, A. Patani, R.D. Jacobson, D.A. Mueller. Ellectric-driven Heat Pump Systems Simulations and Controls Ⅱ. ASHRAE Trans., 1980, Vol. 86(1): 687-705.
    [84] 葛云亭.房间空调器系统仿真模型研究,博士论文.清华大学,1997.
    [85] 葛云亭.蒸发器动态参数数学模型的建立与理论计算.制冷学报,1995(1):9-17.
    [86] J.V.C. Vargas, etc. Simulation in Transient Regime of a Heat Pump with closed-loop and on-off control. Int. J. Refrig. 1995, 18(4):235-243.
    [87] S.M. Jeter, etc..Analysis and Simulation of Variable Speed Drive Heat PumDs. ASME, AESI. 1, 1986.
    [88] 周子成.房间空调器热泵运行时的瞬态仿真.制冷学报,1998(4):14-18.
    [89] 刘顺波.房间空调器动态特性与智能化控制研究.西安交通大学博士学位论文,1999.4.
    [90] 周兴禧.变频空调器基于系统的变工况模糊控制仿真研究.流体机械,2000,Vol.28(7):42-46.
    [91] 丁国良,张春路 著.制冷空调装置智能仿真.北京:科学出版社,2002.
    [92] 丁国良,张春路,李灏.神经网络在空调器仿真中的应用研究.制冷学报,1999(2):31-37.
    [93] 丁国良,张春路,李灏 等.制冷空调装置智能仿真方法研究探讨.制冷学报,1998(2):10-14.
    [94] Gagge, A.P.,A.P. Fobelets, and L.G. Berglund. 1986. A standard predictive index of human response to the thermal environment. ASHRAE Transactions, 92(2B):709-731.
    [95] 连之伟等.空调房间热环境模糊综合评判.暖通空调,2001,31(5):15-18.
    [96] L.G. Berglund. Common Elements in the Design and Operation of Thermal Comfort and Ventilation Systems. ASHRAE Transactions, 100(1):776-781.
    [97] 涂光备,嵇赞喆,刘学营,皮伟.提高热湿环境空气流速的热舒适研究.全国暖通空调制冷 2002年学术文集.
    [98] Auliciems, A.,and S.V. Szokolay. 1997. Thermal comfort-Design tools and techniques. PLEA and University of Queensland.
    
    
    [99] 范存养.热舒适评价指标PMV及其实际应用.暖通空调,1993,3:20-26.
    [100] 欧阳沁,朱颖心.自然风的1/f紊动特性的研究现状与展望.全国暖通空调制冷2002年学术文集.
    [101] 王怡.冬季集中供暖房间和空调房间热环境调查分析.暖通空调,2002,32(3):18-19.
    [102] B. W. Olesen, D. F. Liedelt. NEW DEVELOPMENTS IN INTERNATIONAL STANDARDS FOR THE INDOOR THERMAL ENVIRONMENT. www.eu-ray.com/technics/Comfort-HB2000-2.pdf
    [103] 郭利华,朱能,蒋薇.人体热舒适性的实验研究.全国暖通空调制冷2002年学术文集.
    [104] E. Mayer. Individual thermal comfort controlled by an "artificial skin"-sensor. Proc. of IAQVEC2001,2001, Vol. (Ⅲ), Changsha, China.
    [105] 张桂芳,汤广发,李念平,张冷,黄宇.室内空气品质的灰色综合评判.湖南大学学报(自然科学版),2001(5):107-111.
    [106] Guodong Ye, Changzhi Yaang, Youming Chen, Yuguo Li.A new approach for measuring predicted mean vote(PMV) and standard effective temperature(SET).Building and Environment, 2003(38):33-44.
    [107] 俞准,谢英柏,王江江,朱能.室内热舒适性指标的评价.全国暖通空调制冷 2002年学术文集.
    [108] 彭维.卧式风机盘管机组舒适性能的评价.新疆工学院学报,1997,18(1):55-57.
    [109] P.O. Fanger, h.K. Nblikov, H. Hanzawa et al. Turbulence and draft[J].Ashrae Journal, 1989,31(4):18-23.
    [110] 赵荣义,许为全.改善室内空气环境的调节策略.暖通空调,1997,27(1):1-4.
    [111] F. THELLIER, A. CORDIER, M. GALEOU, F. MONCHOUX, OFUDYM. COMFORT ANALYSIS AS A CRITERION FOR ENERGY MANAGEMENT. www.ibpsa.org/proceedings/…
    [112] Peter V. Nielsen, Ph.n. etc..Measurement of Thermal Comfort and Local Discomfort by a Thermal Manikin. ASHRAE Transaction HI-02-17-4:1097-1103.
    [113] 闫军.室内环境控制的组合传感器研究开发动向.家用电器科技,1996(2):35-36.
    [114] S. I. Mistry, S.S. Nair, Ph.D..NONLINEAR HVAC COMPUTATIONS USING NEURAL NETWORKS[J].ASHRAE Transactions, 1993,99(1):775-784.
    [115] 石磊,李兆东,刘义,潘利辉应用人工神经网络处理HVAC非线性计算.节能,2002,4:13-16.
    [116] 石磊,赵蕾,潘利辉.应用人工神经网络预测PMV指标.西安建筑科技大学学报(自然科学版),2002(1):80-83.
    [117] 高立新.室内热舒适度智能预测器的研究.计算机测量与控制,2002,10(8):519-520.
    [118] 吕伟等.室内空气品质问题综述.暖通空调,2000,3:16-20.
    [119] 沈晋明.室内空气品质的评价.暖通空调,1997,27(4):22-25.
    
    
    [120] 叶海.室内环境品质的综合评价指标.建筑热能通风空调,2000,1:31-34.
    [121] P.O. Fanger. The New Comfort Equation for Indoor Air Quality. ASHRAE J. 1989, 10.
    [122] 初春玲等.室内空气品质的模糊性综合评判.建筑热能通风空调,1999,3:9-11.
    [123] 文伟,李念平,朱赤晖.室内空气品质主观评价与室内空气污染物的灰色系统关联度分析.建筑热能通风空调,2001(6):28-31.
    [124] 王华平,范存养.室内换气排污效果的评价指标.暖通空调,1997,27(1):29-34.
    [125] D.J. Moschandreas. Indoor air quality research trends and future challenges. Proc. of IAQVEC2001,2001, Vol. (1), Changsha, China: 13-20.
    [126] 耿世彬等.室内气态污染物检测技术现状与发展.洁净与空调技术,2002(4):15-18.
    [127] 马学童等.基于气体传感器阵列的室内空气品质监控系统.传感器技术,2002,21(11):24-27.
    [128] 蒋晴霞等.室内环境智能监测控制系统的设计.电子技术,2000,10:31-33.
    [129] 苏华友等.室内环境监控系统模型实验研究.西南工学院学报,2001,16(4):51-53.
    [130] 丁国良,张春路,赵力 编著.制冷空调新工质热物理性质的计算方法与实用图表.上海交通大学出版社,2003.
    [131] 吴业正 主编.小型制冷装置设计指导.北京:机械工业出版社,1998.
    [132] Parsons,K.C..Human thermal environments:the effects of hot, moderate,and cold environments on human health,comfort and performance(Second Edition).London: Taylor&Francis,2002.
    [133] 徐湘波,胡益雄 编.建筑物及汽车空调负荷.国防科技大学出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700